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Impaired airway mucociliary 
function reduces antigen-
specific IgA immune response to 
immunization with a claudin-4-
targeting nasal vaccine in mice
Hidehiko Suzuki1,2, Takahiro Nagatake1, Ayaka Nasu1, Huangwenxian Lan1, Koji Ikegami3, 
Mitsutoshi Setou3,4,5, Yoko Hamazaki6, Hiroshi Kiyono7,8, Kiyohito Yagi2, Masuo Kondoh9 & 
Jun Kunisawa1,7,10,11

Vaccine delivery is an essential element for the development of mucosal vaccine, but it remains to be 
investigated how physical barriers such as mucus and cilia affect vaccine delivery efficacy. Previously, we 
reported that C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) targeted claudin-4, 
which is expressed by the epithelium associated with nasopharynx-associated lymphoid tissue (NALT), 
and could be effective as a nasal vaccine delivery. Mice lacking tubulin tyrosine ligase-like family, 
member 1 (Ttll1-KO mice) showed mucus accumulation in nasal cavity due to the impaired motility of 
respiratory cilia. Ttll1-KO mice nasally immunized with C-CPE fused to pneumococcal surface protein A 
(PspA-C-CPE) showed reduced PspA-specific nasal IgA responses, impaired germinal center formation, 
and decreased germinal center B-cells and follicular helper T cells in the NALT. Although there was no 
change in the expression of claudin-4 in the NALT epithelium in Ttll1-KO mice, the epithelium was 
covered by a dense mucus that prevented the binding of PspA-C-CPE to NALT. However, administration 
of expectorant N-acetylcysteine removed the mucus and rescued the PspA-specific nasal IgA response. 
These results show that the accumulation of mucus caused by impaired respiratory cilia function is an 
interfering factor in the C-CPE-based claudin-4-targeting nasal vaccine.

Mucosal vaccines are used clinically to induce antigen-specific immune responses in mucosal tissue as the first 
line of defense against pathogens1,2. Secretory IgA is an effector molecule that prevents pathogenic invasion and 
neutralizes toxins2; therefore, mucosal vaccines must efficiently induce secretory IgA.

Mucosa-associated lymphoid tissues (MALTs) play a key role in the induction of antigen-specific secretory 
IgA responses in mucosal tissues. Nasopharynx-associated lymphoid tissue (NALT) is a representative MALT in 
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the nose3. NALT has efferent, but not afferent, lymph as the conventional site of entry for antigens delivered by 
antigen-capturing dendritic cells. In addition, M cells exist at the NALT epithelium and act as antigen uptake cells 
from the nasal cavity to the NALT3. After processing, the antigens are presented to T cells and B cells located in 
specialized sites within the NALT called germinal centers (GCs), and B cells undergo IgA class switching with the 
help of follicular helper T cells (Tfh cells)4. Therefore, the delivery of antigens to the NALT is an important means 
of inducing antigen-specific secretory IgA responses.

The mucosal epithelium acts as a physical barrier to the uptake of antigen into MALT. This barrier function 
of epithelial cells is established by cell–cell connections called tight junctions, which are specialized connec-
tions between adjacent epithelial cells that hold the cells together and regulate the passage of materials across 
the epithelial membrane5. Tight junctions contain a variety of proteins, including claudins, occludin, tricellulin, 
angulins, and zonula occludens5,6. Although these tight junction molecules would at first appear to be preventive 
factors for vaccine delivery, they are actually prospective targets for the delivery of nasal vaccines. Indeed, we 
previously used Clostridium perfringens enterotoxin (CPE) to target the tight junctions in the mucosal epithe-
lium associated with NALT. CPE binds to claudins in tight junctions through its C-terminus and forms a pore 
by polymerization through its N-terminus, which disrupts the barrier function of the epithelial layer and causes 
cytotoxicity7. Because claudin-4 is preferentially expressed in the mucosal epithelium associated with the NALT, 
including the M cells8–10, we used recombinant C-terminus of CPE (C-CPE) to deliver an antigen to the epithe-
lium without inducing cytotoxicity8,9. In another study, we found that nasally administered pneumococcal surface 
protein A (PspA), a surface protein expressed by Streptococcus pneumoniae, fused to C-CPE (PspA-C-CPE) pref-
erentially bound to NALT, including to M cells, and induced PspA-specific immune responses in the systemic and 
respiratory compartments11. We also confirmed that these immune responses were sufficient to protect against 
respiratory pneumococcal infection11.

In addition to the tight junction, mucus is another physical barrier to effective mucosal vaccination. Mucus 
is a slippery secretion composed of mucins, serum proteins, inorganic salts, and lipids suspended in water that 
is produced by goblet cells in the epithelium of the respiratory tract12. Disulfide bonds crosslink the secreted 
mucins to produce a viscoelastic gel that covers the epithelium and prevents attachment of exogenous materials. 
The amount of mucus on the surface of the respiratory epithelium is controlled by the beating of the mucocilia, 
which are hair-like, tubulin-based structures that project from the body of epithelial cells in the respiratory tract13. 
Several post-translational modifications of the tubulin subunits are necessary for the mucocilia to assume the 
correct curved morphology and to beat asymmetrically14–17. For example, tubulin glutamylation, which is cata-
lyzed by tubulin tyrosine ligase-like protein 1 (Ttll1)18, adds several glutamic acids to the tubulin C-terminal 
tail domain, which is essential for ciliary function. We previously demonstrated that knockout of Ttll1 in mice 
resulted in impaired tubulin glutamylation and a change in mucociliary morphology from the usual curved form 
to a straight form, which resulted in mucus accumulation in the nasal cavity due to a lack of asymmetry in the 
mucocilia beating cycle14.

In the present study, we used Ttll1-KO mice to evaluate how the mucocilia and mucus in the nasal cavity affect 
the antigen-specific immune responses induced by immunization with a C-CPE-based, claudin-4-targeting nasal 
vaccine.

Results and Discussion
Antigen-specific nasal IgA response was decreased in Ttll1-KO mice nasally immunized with 
PspA-C-CPE. To examine whether airway mucociliary function affected the efficacy of the claudin-4-tar-
geting nasal vaccine, we nasally immunized Ttll1 mice with PspA-C-CPE once a week for three weeks. One 
week after the last immunization, we measured the concentration of PspA-specific antibodies with comparing 
Ttll1-hetero (He) to -KO mice. We first measured the concentration of PspA-specific antibodies in the nasal fluid. 
PspA-specific nasal IgA prevents colonization, or at least the initial stages of colonization, by S. pneumoniae2. The 
concentration of PspA-specific IgA antibody in the nasal fluid of Ttll1-KO mice was decreased compared with 
that of Ttll1-He mice (Fig. 1). In addition to PspA-specific nasal IgA, it is known that PspA-specific serum IgG 
eliminates S. pneumoniae19. Therefore, we also checked PspA-specific serum IgG. Unexpectedly, we found that 
the concentration of PspA-specific serum IgG was comparable between Ttll1-He and -KO mice (Supplementary 
Figure 1).

In addition to NALT, there are several alternative pathways through which immune responses can be induced. 
For instance, inducible bronchus-associated lymphoid tissue (iBALT) is induced by virus-based vaccine deliv-
ery (e.g., vaccinia virus vector), inflammation and infection20–22. The immunological structure and functions of 
iBALT are similar to those of other MALTs with regard to the initiation of antigen-specific immune responses23–25. 
Therefore, it is possible that nasal immunization with PspA-C-CPE induced the formation of iBALT as an induc-
tive site for the systemic immune response in Ttll1-KO mice. Another possibility is the involvement of M cells in 
the respiratory epithelium26. The morphologic and immunologic functions of respiratory M cells, such as their 
short microvilli and the ability to take up vaccine antigens and pathogens (e.g., Salmonella spp.), are the same as 
those of the M cells in the NALT26. Thus, respiratory M cells appear to be an alternative pathway for the induction 
of systemic immune responses in Ttll1-KO mice.

We also checked the mice’s protective immunity against pneumococcal infection. Although PspA-specific 
nasal IgA was impaired in Ttll1-KO mice, survival rate was comparable between Ttll1-He and -KO mice 
(Supplementary Figure 2). In general, physical barriers such as mucus prevent the attachment of pathogens to 
epithelium. Therefore, it is likely that the dense nasal mucus in Ttll1-KO mice prevented the attachment of S. 
pneumoniae to epithelial cells and thus they showed low susceptibility to pneumococcal infection.

Together, these findings show that impaired airway mucociliary function prevented the induction of the nasal 
immune response.
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Immune responses in the GCs of NALT were impaired in Ttll1-KO mice immunized with 
PspA-C-CPE. Nasal vaccines are generally designed to deliver antigen to the NALT, which is the lymphoid 
tissue responsible for the induction of antigen-specific immune responses in the nasal tissues3,27–29. PspA-C-CPE 
also binds to NALT epithelium, and leads to the induction of PspA-specific immune responses11. To determine 
how the PspA-specific nasal IgA response was impaired in Ttll1-KO mice nasally immunized with PspA-C-CPE, 
we determined the frequencies and percentages of different types of cell in the NALT. Flow cytometric analysis 
revealed that the frequencies and percentages of B220+ B cells, CD11c+ dendritic cells, CD3+ T cells, CD3+CD4+ T 
cells, and CD3+CD8α+ T cells were comparable in the NALT of Ttll1-He and -KO mice (Supplementary Figure 3).

We next examined the cellular composition and formation of GCs in the NALT, where naïve B cells undergo 
IgA class switching upon antigen stimulation30. Nasal immunization with PspA-C-CPE induced GC formation 
and induced GL7highB220+ GC B cell proliferation in the NALT of Ttll1-He mice (Fig. 2a–c). However, GCs 
were smaller and had fewer B cells in the NALT of Ttll1-KO mice compared with Ttll1-He mice (Fig. 2a–c). 
Furthermore, the percentage of follicular helper T cells (Tfh cells), which play an important role in GC formation 
and IgA class switching4, was significantly lower in the NALT of Ttll1-KO mice compared with in the NALT of 
Ttll1-He mice (Fig. 2d).

These results show that impaired GC formation in the NALT was associated with the attenuation of the nasal 
IgA antibody response to nasal immunization with PspA-C-CPE in Ttll1-KO mice.

Binding of PspA-C-CPE to the mucosal epithelium associated with the NALT was impaired 
in Ttll1-KO mice. We then examined the mechanisms underlying the impaired PspA-specific nasal IgA 
response that arose in Ttll1-KO mice nasally immunized with PspA-C-CPE. Immunofluorescence staining was 
used to examine the expression of claudin-4, the target molecule of C-CPE, in the mucosal epithelium associ-
ated with the NALT. Claudin-4 was highly expressed on the mucosal epithelium associated with the NALT in 
both Ttll1-He and -KO mice (Supplementary Figure 4), suggesting that the impaired antigen-specific nasal IgA 
response observed in the Ttll1-KO mice was not a result of reduced claudin-4 expression.

In a previous study, we found that impaired airway mucociliary motility caused mucus to accumulate in the 
nasal cavity of Ttll1-KO mice14, which led us to hypothesize that excessive amounts of mucus in the nasal cavity 
may prevent the binding of PspA-C-CPE to the mucosal epithelium associated with the NALT. Consistent with 
our previous findings14, in the present study we found that a dense mucus covered the NALT epithelium in 
Ttll1-KO mice but not in Ttll1-He mice (Fig. 3a). In addition, when we examined the intranasal distribution of 
PspA-C-CPE, we found that the binding of PspA-C-CPE to the mucosal epithelium associated with the NALT was 
attenuated in Ttll1-KO mice (Fig. 3b).

These findings indicate that accumulation of a dense mucus prevented the binding of PspA-C-CPE to 
the mucosal epithelium associated with the NALT, and therefore that the nasal vaccine was unable to induce 
PspA-specific nasal IgA response in Ttll1-KO mice.

PspA-specific nasal immune IgA response was improved by removal of the nasal mucus in 
Ttll1-KO mice. We hypothesized that the dense mucus covering the mucosal epithelium associated with 
the NALT in Ttll1-KO mice prevented the binding of PspA-C-CPE to the NALT epithelium, preventing the 
induction of the nasal IgA immune responses. Previous studies have demonstrated that removal of nasal mucus 

Figure 1. Antigen-specific nasal immune response was decreased in Ttll1-KO mice nasally immunized with 
PspA-C-CPE. Ttll1-hetero (He) and -knockout (KO) mice were nasally immunized with PspA-C-CPE once a 
week for three weeks. One week after the final immunization, PspA-specific nasal IgA was measured by means 
of an enzyme-linked immunosorbent assay. Ttll1-He mice, n = 4; Ttll1-KO mice, n = 3. Data are presented as 
mean ± SEM and are representative of two independent experiments. Values were compared by using Welch’s 
t-test. *P < 0.05. OD, optical density.
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Figure 2. Immune responses in the germinal center of nasopharynx-associated lymphoid tissue were impaired 
in Ttll1-KO mice immunized with PspA-C-CPE. Ttll1-hetero (He) and -knockout (KO) mice were nasally 
immunized with PspA-C-CPE once a week for three weeks. (a) One week after the final immunization, sections 
of nasopharynx-associated lymphoid tissue (NALT) were stained with B220 (red), GL7 (light blue), and 
DAPI (blue). Scale bars, 100 µm. Ttll1-He, n = 5; Ttll1-KO, n = 4. (b–d). Frequency and numbers of germinal 
center (GC) B cells (b,c) and follicular helper T (Tfh) cells (d) in the NALT were determined by means of flow 
cytometry. Bars indicate the median value. Data were collected from two separate experiments. Values were 
compared by using the non-parametric Mann–Whitney U test.
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improves drug absorption in the nose31. We therefore removed the mucus by using N-acetylcysteine, which is 
a clinical expectorant that acts by cleaving the disulfide bonds between the mucin molecules in mucus31. We 
confirmed that the mucus was cleared from the NALT epithelium at 30 to 60 min after nasal administration of 
N-acetylcysteine in Ttll1-KO mice (Fig. 4a and Supplementary Figure 5). We also found that nasally administered 
PspA-C-CPE was retained at the mucosal epithelium associated with the NALT for 30 to 60 minutes after admin-
istration in C57BL/6 mice (Supplementary Figure 6). It is possible that reduced thiol could be reoxidized by air if 
longer extension time; therefore, based on these results, we nasally administered N-acetylcysteine to Ttll1-He or 
-KO mice followed 30 min later by nasal immunization with PspA-C-CPE. Our current findings suggested that 
Ttll1-KO mice without N-acetylcysteine treatment showed a decrease in PspA-specific nasal IgA together with 
impaired GC formation in the NALT because PspA-C-CPE was trapped by the dense nasal mucus. In contrast, the 
PspA-specific nasal IgA responses were comparable between Ttll1-He and -KO mice with N-acetylcysteine treat-
ment (Fig. 4b). Furthermore, the percentages of GC B cells and Tfh cells were also comparable between Ttll1-He 
and -KO mice with N-acetylcysteine treatment (Fig. 4c,d). These results indicate that the dense mucus produced 
by the Ttll1-KO mice impaired the nasal immune responses induced by PspA-C-CPE, and that the removal of the 
mucus by administration of an expectorant rescued the impaired nasal immune response.

It is noteworthy that although the mucus was removed, the function of the mucocilia would have remained 
impaired, suggesting that the function of the mucocilia does not affect the efficacy of nasal vaccines. Allergies 
such as hay fever also cause mucus to accumulate in the nose. Therefore, in patients with allergies, removal of the 
nasal mucus either by using expectorants (e.g., N-acetylcysteine) or simply by blowing the nose immediately prior 
to immunization may ensure the complete induction of immune responses by nasal vaccines.

In summary, we elucidated the immunological role of airway mucociliary function with respect to delivery of 
a claudin-4-targeting nasal vaccine in Ttll1-KO mice, which possess straight rather than normal curved airway 
mucocilia due to impaired tubulin glutamylation, resulting in the loss of beating asymmetry and accumulation of 
a dense nasal mucus14. This dense nasal mucus prevented the binding of PspA-C-CPE to NALT epithelium, lead-
ing to reduced PspA-specific nasal IgA responses together with impaired GC formation in the NALT. Removal 
of the nasal mucus by using an expectorant rescued the nasal immune response. In addition to claudins, other 
tight junction proteins (e.g., occludin, tricellulin, angulins) are considered as targets for the delivery of nasal 
vaccines. For example, Clostridium perfringens iota-toxin binds to angulin-1, which is expressed by respiratory 
epithelium32,33. Since the present results indicate that vaccine delivery to NALT epithelium is affected by the accu-
mulation of a dense nasal mucus, we conclude that nasal vaccines targeting occludin, tricellulin, and angulins may 
be possible but would similarly be affected by this accumulation of dense nasal mucus.

In this study, we used Ttll1-He mice as the controls for Ttll1-KO mice. We confirmed that the binding of 
PspA-C-CPE to NALT epithelium was identical between Ttll1-He and wild-type (WT) mice11. We also confirmed 
that Ttll1-WT and Ttll1-He mice showed comparable PspA-specific immune responses and GC formation in 

Figure 3. A dense mucus and reduced binding of PspA-C-CPE to the nasopharynx-associated lymphoid tissue 
epithelium was found in Ttll1-KO mice. (a) The mucus in sections of nasopharynx-associated lymphoid tissue 
(NALT) was stained with Alcian blue. Ttll1-He, n = 5; Ttll1-KO, n = 5. (b) Ttll1-hetero (He) or -knockout (KO) 
mice were nasally administered biotinylated PspA-C-CPE. Sections of NALT were stained with Alexa Fluor 
546-conjugated streptavidin (red) and DAPI (blue). Ttll1-He, n = 3; Ttll1-KO, n = 3.
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the NALT (Supplementary Figure 7a–d). In addition, we found that mucus removal had no effect on immune 
response induction in Ttll1-WT mice because Ttll1-WT mice did not show any accumulation of nasal mucus, 
which is consistent with the findings in Ttll1-He mice (Supplementary Figure 7e,f). These findings further suggest 
that mucus is a preventive factor for claudin-4-targeting nasal vaccine delivery.

Taken together, the present findings indicate that nasal mucus acts as a barrier against the delivery of nasal 
vaccines, and, therefore, that removal of nasal mucus is one approach to improve the efficacy of nasal vaccines.

Methods
Mice. Ttll1-KO mice (C57BL/6 background) were generated as previously described14. C57BL/6 mice were 
purchased from SLC, Inc. (Shizuoka, Japan). In the infection experiment, we killed the mice if their body weight 
was reduced by 20% or more. All experiments were approved by the Animal Care and Use Committee of the 
National Institutes of Biomedical Innovation, Health, and Nutrition (Approval Nos. DS27-47R1 and DS27-48R1) 
and were conducted in accordance with their guidelines.

Figure 4. PspA-specific nasal immune IgA response was improved by removal of the nasal mucus in Ttll1-KO 
mice. (a) Ttll1-knockout (KO) mice were nasally administrated N-acetylcysteine. After 30 min, mucus in 
sections of nasopharynx-associated lymphoid tissue (NALT) was visualized by staining with Alcian blue. (b–d) 
Thirty minutes after N-acetylcysteine administration, Ttll1-hetero (He) (○) or -KO mice (●) were nasally 
immunized with PspA-C-CPE (once a week for three weeks). One week after the final immunization, the level 
of PspA-specific nasal IgA was measured by means of an enzyme-linked immunosorbent assay (b). Data are 
presented as mean ± SEM. Mononuclear cells were isolated from NALT and flow cytometric analysis was used 
to determine the percentages of germinal center (GC) B cells (c) and follicular helper T (Tfh) cells (d). Bars 
indicate the median value. The data are representative of two independent experiments. Values were compared 
by using the non-parametric Mann–Whitney U test.
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Preparation of the PspA-C-CPE fusion protein. pET16b plasmids encoding PspA or PspA-C-CPE 
were prepared as previously described11. To obtain recombinant protein, plasmids were transformed into 
Escherichia coli strain BL21 (DE3) (TOYOBO, Osaka, Japan). To induce the production of PspA or PspA-C-CPE, 
isopropyl-D-thiogalactopyranoside (Nacalai Tesque, Kyoto, Japan) was added to the culture medium. The cul-
ture pellet was sonicated in buffer A (10 mM Tris–HCl [pH 8.0], 400 mM NaCl2, 5 mM MgCl2, 0.1 mM phe-
nylmethylsulfonyl fluoride, 1 mM 2-mercaptoethanol, and 10% glycerol). The supernatant was loaded onto a 
HiTrap HP column (GE Healthcare, Pittsburgh, Pennsylvania, USA). PspA or PspA-C-CPE protein was eluted 
with buffer A containing 100 to 500 mM imidazole. The solvent was exchanged with phosphate-buffered saline 
(PBS) by using a PD-10 column (GE Healthcare). The concentration of recombinant protein was measured by 
using a BCA Protein Assay Kit (Life Technologies, Carlsbad, California, USA). PspA-C-CPE was biotinylated by 
using a biotinylation kit (Thermo Fisher Scientific, Waltham, Massachusetts, USA).

Immunization and mucus removal. Mice were nasally immunized with PspA-C-CPE (PspA: 5 µg, 
C-CPE: 2 µg) once a week for three weeks. One week after the final immunization, nasal fluid and serum were 
collected as previously reported8.

To remove nasal mucus, mice were nasally administered 15 µg of N-acetylcysteine (Sigma-Aldrich, St Louis, 
Missouri, USA). After 30 min, the mice were nasally immunized with PspA-C-CPE as described above.

Enzyme-linked immunosorbent assay of PspA-specific production. The levels of PspA-specific IgA 
in nasal fluid and PspA-specific IgG in serum were measured by means of an enzyme-linked immune sorbent 
assay11. Ninety-six-well immunoassay plates were coated with PspA (0.05 µg/well) and incubated at 4 °C over-
night. To prevent nonspecific binding, the plates were treated with 1% bovine serum albumin in PBS for 2 h 
at room temperature. After washing the plates with 0.05% Tween 20 in PBS, 2-fold serially diluted serum and 
nasal fluid were added to the wells and the plates were incubated for 2 h at room temperature. After washing 
the plates with 0.05% Tween 20 in PBS, goat anti-mouse IgA or IgG-conjugated with horseradish peroxidase 
(SouthernBiotech, Birmingham, Alabama, USA) was added to the wells and the plates were incubated for 1 h 
at room temperature. PspA-specific antibodies were detected by using 3,3′,5,5′-tetramethylbenzidine peroxide 
substrate. Optical density (wavelength 450 nm) was used an index of the progression of the color reaction.

S. pneumoniae culture and infection. S. pneumoniae Xen10 (parental strain, A66.1 serotype 3; Caliper 
Life Sciences) were growth in brain–heart infusion broth at 37 °C under a 5% CO2 atmosphere with no aeration. S. 
pneumoniae Xen10 were washed and diluted with PBS. One week after the final immunization, mice were nasally 
challenged with 1.5 × 107 CFU of S. pneumoniae Xen10. The survival of mice was monitored for 14 days.

Cell isolation and flow cytometric analysis. To isolate mononuclear cells from NALT, NALT was first 
obtained from the upper jaw of the mice. NALT cells were isolated by gently rubbing the NALT sample with a 
needle under a stereoscopic microscope. After washing with PBS, the collected cells were treated with anti-mouse 
CD16/32 (clone 93; BioLegend, San Diego, California, USA) for 15 min at room temperature. After washing 
with PBS containing 2% newborn calf serum, the cells were stained with fluorescein isothiocyanate-conjugated 
hamster anti-mouse CD3ε (clone 145-2C11, BD Biosciences, San Diego, California, USA), phycoeryth-
rin (PE)-conjugated rat anti-mouse B220 (clone RA3-6B2, BD Biosciences), PE-conjugated rat anti-mouse 
PD-1 (clone 29F1.A12, BioLegend), Alexa Fluor 647-conjugated rat anti-mouse GL7 (clone GL7, BioLegend), 
PE-Cy7-conjugated rat anti-mouse CD4 (clone RM4-5, BD Biosciences), PE-Cy7-conjugated Armenian ham-
ster anti-mouse CD11c (clone N418, BioLegend), APC-Cy7-conjugated rat anti-mouse CD8α (clone 53-6.7, BD 
Biosciences), and Brilliant Violet 421-conjugated rat anti-mouse CD45 (clone 30-F11, BioLegend) for 30 min at 
4 °C. After washing with PBS containing 2% newborn calf serum, cells were treated with 7-Amino-Actinomycin 
D (BioLegend) for 10 min at 4 °C and analyzed by means of flow cytometry (MACSQuant) (Miltenyi Biotec, 
Auburn, California, USA).

Histochemical analysis of tissue specimens. To examine the expression of claudin-4 in NALT, NALT 
was embedded in Tissue-Tek optimal cutting temperature compound (Sakura Finetek Japan, Tokyo, Japan) and 
cut into 6-µm sections by using a cryostat. Sections were fixed in 100% acetone for 1 min at 4 °C. To prevent 
non-specific binding, sections were treated with 2% fetal calf serum in PBS for 30 min at room temperature. The 
sections were then washed with PBS and stained with anti-claudin-4 antibody34 at 4 °C overnight. After the sec-
tions were again washed with PBS, they were stained with Cy3-goat anti-rat IgG for 30 min at room temperature, 
washed again with PBS, and stained with 4′,6-diamidino-2-phenylindole (DAPI). After a final wash with PBS, the 
sections were mounted in Fluoromount (Diagnostic BioSystems, Pleasanton, California, USA) and observed by 
means of fluorescence microscopy (BZ-9000, Keyence, Osaka, Japan).

To stain mucus, skin and excess soft tissue was removed from the head of the mice, embedded in Super Cryo 
Embedding Medium (Section-lab, Hiroshima, Japan), and cut into 6-µm sections by using a cryostat. The sec-
tions were treated with 3% CH3COOH solution for 3 min at room temperature, stained with Alcian Blue Solution 
(Sigma-Aldrich), washed again with 3% CH3COOH solution, and stained with Nuclear Fast Red Solution 
(Sigma-Aldrich) for 1 min at room temperature. The sections were then washed with running water, mounted in 
Fluoromount (Diagnostic BioSystems), and observed by using an optical microscope.

To examine the binding of PspA-C-CPE to NALT epithelium, mice were nasally administered with biotiny-
lated PspA-C-CPE (PspA: 5 µg, C-CPE: 2 µg). After 30 min, skin and excess soft tissue was removed from the 
head of the mice, embedded in Super Cryo Embedding Medium (Section-lab), and cut into 6-µm sections by 
using a cryostat. The sections were fixed with 100% acetone for 1 min at 4 °C, followed by treatment with 2% fetal 
calf serum in PBS for 30 min at room temperature to prevent non-specific binding. After washing with PBS, the 
sections were stained with Alexa Fluor 546-conjugated streptavidin and incubated at 4 °C overnight to detect 
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biotinylated PspA-C-CPE, washed again with PBS, and stained with DAPI. The sections were then washed with 
PBS, mounted in Fluoromount (Diagnostic BioSystems), and observed by means of fluorescence microscopy 
(BZ-9000, Keyence).

Data analysis. Data are presented as mean ± SEM. Statistical analyses were performed by using Welch’s t-test 
or the non-parametric Mann–Whitney U test (GraphPad Software, San Diego, California).
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