
1SCIeNTIfIC RepOrTs |  (2018) 8:2632  | DOI:10.1038/s41598-018-21022-8

www.nature.com/scientificreports

Dose and slice thickness evaluation 
with nMAG gel dosimeters in 
computed tomography
Chun-Chao Chuang1,2 & Jay Wu3

Computed tomography (CT) has been widely used in clinical diagnosis. It is important to estimate 
radiation dose and perform image quality assurance procedures for CT scans. In this study, nMAG gel 
dosimeters were used to simultaneously measure the 300-mm weighted CT dose index (CTDI) and 
slice sensitivity profile (SSP) for multiple detector CT (MDCT). Magnetic resonance imaging (MRI) was 
performed on the irradiated gel to create R2‒dose response curves for the tube voltages of 120 and 140 
kVp. The gel dosimeters were loaded in three home-made cylindrical phantoms to obtain CTDI100 and 
CTDI300. The full width at half maximum (FWHM) for 2, 5, 10, 14.4, and 38.4-mm slice thicknesses was 
measured and compared with the result obtained by radiochromic films. The difference in weighted 
CTDI100 obtained by the gel dosimeter and ionization chamber was less than 1%. The CTDI efficiency at 
120 and 140 kVp was in the range of 80.1%–82.5%. The FWHM of SSP measured by the gel dosimeter 
matched very well with the nominal slice thickness. The use of nMAG gel dosimeters combined with the 
home-made cylindrical phantoms can provide 300-mm weighted CTDI and slice thickness information, 
showing potential for quality assurance and clinical applications in MDCT.

Computed tomography (CT) provides high-resolution cross-sectional images and has been widely used in clini-
cal practice. According to statistical data from the National Council on Radiation Protection and Measurements 
(NCRP), the average effective dose for an abdomen CT scan is 10 mSv and the annual dose from CT scans 
accounts for 48% of total medical exposure1,2. Therefore, it is important to estimate radiation doses and perform 
image quality assurance procedures for CT scans. Even in some countries, acceptance tests and periodic quality 
assurance programs are required by legislation3.

The computed tomography dose index (CTDI) and the slice sensitivity profile (SSP) are two of the most 
important parameters in CT quality assurance. CTDI measurements often use a 100-mm-long cylindrical ion-
ization chamber to integrate the radiation dose along the Z-axis during a single CT scan4–6. However, as the 
number of detector rows increases in multiple detector CT (MDCT) as well as cone beam CT (CBCT), the CTDI 
measurement may become insufficient to cover the entire beam width and the scatter distribution outside the 
collimator, resulting in an underestimation of absorbed dose7,8. Although a 300-mm ionization chamber could be 
used to increase the measurement range in the Z direction, this device is fragile and expensive, and not yet widely 
available for clinical use9,10.

In terms of SSP evaluation, the dose distribution along the Z-axis for a single CT scan is used to calculate the 
full width at half maximum (FWHM) as an index for longitudinal resolution. Thermoluminescent dosimeters 
(TLD)11 and photodiodes12 have been used for SSP measurements. Due to the limited detector size, stacking 
of dose points to form a two-dimensional (2D) dose profile is required. For example, Paschoal et al.13 used a 
high-sensitivity photodiode array with 31 aligned photodiodes to measure single scan dose profiles. The spatial 
resolution and the nature of 2D dosimetry make radiochromic materials a suitable choice for dose profile meas-
urements. Li et al.14 used radiochromic films to record CT dose profiles and investigate the impact of X-ray energy 
and spatial resolution. Some physical phantoms for image quality assurance, e.g. the Catphan 404 slice geometry 
module, use a shallow-angle slice ramp to measure the cross-plane spatial resolution15. However, these phantoms 
cannot be used for measuring the dose distribution and beam width for MDCT or CBCT.
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In recent years, gel dosimeters are gradually being employed for dose assessment16–18 in medical applications. 
Gel dosimeters provide three-dimensional (3D) dose measurements and have a number of exceptional character-
istics such as tissue equivalence, high spatial resolution, low energy dependence, and low dose rate dependence. 
In this study, a methacrylic acid-based gel (nMAG) dosimeter was used to simultaneously assess radiation dose 
and longitudinal resolution of CT scans. For dose evaluation, the integration length of CTDI was extended to 
300 mm by using home-made PMMA phantoms. For SSP evaluation, the dose distribution along the Z-axis was 
measured using the nMAG gel and FWHM for different slice thicknesses was calculated.

Materials and Methods
CTDI algorithm.  The International Electrotechnical Commission (IEC) defines the CTDI100 as an integral of 
dose distribution over 100 mm along the Z-axis divided by the product of slice thickness (T) and slice number (n):
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A pencil-type ionization chamber (WDCT 10, RTI Electronics AB, Sweden) with the effective length of 10 cm 
and the diameter of 0.9 cm was used to measure the CTDI100 in the center and the periphery of a commercial 
CTDI phantom. The weighted CTDI is calculated as follows:
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where CTDIc and CTDIp are the CTDI measured in the central and peripheral regions of the CTDI phantom, 
respectively.

In this study, home-made PMMA cylindrical phantoms and nMAG gel dosimeters were used to extend the 
measurement range along the Z-axis to 450 mm. The radiation dose within 300 mm was integrated to obtain 
CTDI300. The ratio of weighted CTDI for 100-mm integration length to that for 300-mm defines the CTDI effi-
ciency as

= .CTDI CTDI /CTDI (3)eff 100,w 300,w

Preparation of gel dosimeters.  The nMAG gel dosimeters were prepared according to the recipe pro-
posed by Karlsson et al.19 in a normal oxygen environment. 8% gelatin (300 Bloom Type A, Sigma-Aldrich, St 
Louis, MO) was mixed with 84% pure water and heated to 45 °C until the gelatin was completely dissolved. The 
solution was then cooled to 32 °C, and 8% methacrylic acid (MAA, 99%, Sigma-Aldrich, St Louis, MO) was added 
and stirred for 25 min. Tetrakis(hydroxymethyl)phosphonium chloride (THPC) (TCI, Sigma-Aldrich, St Louis, 
MO) was added as a deoxidant. The solution was evenly mixed before dispensing to PMMA tubes of 16-mm 
diameter and 15-mm length. The gel tubes were coated with tin foil to avoid polymerization induced by external 
light and placed in a refrigerator at 4 °C for solidification.

Obtaining dose response curves for CT scans.  The CT scanning parameters were as follows: tube volt-
ages of 120 and 140 kVp, tube current of 320 mAs, and slice thickness of 10 mm. Gel tubes were placed on the 
scanning couch, and 10–25 repeated scans were performed in the axial mode. The point dose was also measured 
using a Famer-type ionization chamber (FC65-P, Scanditronix Wellhofer North America, USA) under the same 
scanning conditions. After irradiation, the gel tubes were immediately placed in the magnetic resonance imaging 
(MRI) room for 24 hours of temperature equilibrium.

MRI readouts.  A 1.5 T MRI system (Siemens Sonata, Siemens Medical Solutions Erlangen, Germany) with an 
8-channel head receive coil was used to read the nMAG gel dosimeters. The gel tubes were loaded in a cylindrical 
water phantom20. The multiple spin echo pulse sequence was applied to achieve 32 spin echoes. The scanning 
parameters were as follows: repetition time of 4500 ms, echo spacing of 22 ms, pixel size of 1 × 1 mm2, and field 
of view of 250 × 250 mm2. The slice thickness for the 7.7-cm center region of the gel tube was 0.7 mm, while the 
thickness for the outer region of the tube was 2.5 mm. After acquiring 32 sets of T2 images, the spin-spin relaxa-
tion rate R2 was estimated pixel by pixel by applying a monoexponential decay model and parametric fitting on 
the series of echo signals. A circular region of interest (ROI) with the diameter of 6 mm was selected at the center 
of the gel tube, and the mean R2 value was calculated to produce the dose response curve.

CTDI measurements.  The nMAG gel tubes were loaded into a home-made PMMA cylindrical phantom 
with the diameter of 160 mm, length of 150 mm, and hole diameter of 16 mm. The locations of the holes were 
consistent with those in the 16-cm commercial CTDI phantom. Three cylindrical phantoms were placed contig-
uously on the examination couch to achieve the dose measurement of 450 mm (Fig. 1).

CT scans (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany) were performed with the 
following parameters: tube voltages of 120 and 140 kVp, tube current of 320 mAs, slice thicknesses of 2, 5, 10, 14.4, 
and 38.4 mm, and number of repeated scans of 25. After 24 hours of polymerization, the gel tubes were read by 
MRI. The R2 values along the axis of the gel tube were calculated and converted to the dose per scan using the dose 
response curve described above. Furthermore, the dose profile was integrated to obtain CTDI100 and CTDI300 in 
the central and peripheral regions of the phantoms. In addition, the 100-mm ionization chamber wrapped up by a 
5-mm-thick tissue-equivalent bolus was inserted in the holes of the home-made cylindrical phantom to measure 
CTDI100 under the same scanning parameters.
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SSP measurements.  Three cylindrical phantoms loaded with gel tubes were placed contiguously for CT 
imaging under 120 kVp, 320 mAs, and different slice thicknesses. 25 repeated scans were performed to reduce 
noise in the Z-axis. After the MRI readouts, the R2 distribution along the Z-axis was measured. Background sub-
traction was performed using an unirradiated gel. It is worth noting that the area within 1 cm of the tube sealing 
is an inactive region due to residual air. An exponential function was used to interpolate the data in this region. 
The 400-mm R2 profile was used to calculate FWHM. In addition, Gafchromic EBT film strips (International 
Specialty Products, NJ, USA) were placed in the phantoms to measure the dose profile under the same conditions. 
The strips were scanned using an Epson Expression 10000XL flatbed scanner, and the grayscale intensity along 
the Z-axis was directly analyzed for FWHM calculation. The FWHM results of nMAG gels and Gafchromic films 
were compared.

Uncertainty.  The uncertainty of dose and slice thickness measurement assessed with dosimeters can be sep-
arated into two types, A and B. The type A uncertainty lies in the statistical distribution of the repeated measure-
ment results. The sources of type A uncertainty in nMAG gel dosimeters include the following: preparation and 
preservation of the gels, time delay of MRI readings, uniformity of magnetic field, errors in R2 fitting, CT output 
variations, etc. As for the type B uncertainty, it is related to the available information rather than to statistical 
methods. In our experiment, the total uncertainty of the ionization chamber was 0.5%, and the total uncertainty 
of Gafchromic films and nMAG gel dosimeters was 5%.

Data availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author.

Results
Dose response curves.  Figure 2(a) shows the measured dose for different numbers of repeated scans with 
the Farmer-type ionization chamber under 120 and 140 kVp, respectively. The dose measurements had a strong 
positive correlation with the number of repeated scans. The linearity of response curves was larger than 0.999. 
Figure 2(b) shows the fitting of R2 versus dose for the two tube voltages measured by the nMAG gel dosimeter. 
The dose sensitivities for 120 and 140 kVp were 4.186 Gy−1s−1, and 4.509 Gy−1s−1, correspondingly, indicating 
relatively small energy dependence of the nMAG gel in the energy range of CT scans. We further used these dose 
response curves for subsequent dose conversion.

CTDI measurements.  Tables 1 and 2 list the CTDI100 measured by the nMAG gel dosimeter and the 10-cm 
ionization chamber for different tube voltages and slice thicknesses. The tube current was fixed at 320 mAs. All 
CTDI measurements at the periphery were larger than those at the center. The main reason is that the center of 
the peripheral holes is only 1 cm away from the edge of the phantom, where the attenuation of photon beams is 
relatively low. The results obtained by the nMAG gel and the ionization chamber had a maximum difference of 
5.29% for CTDI100,c, while the maximum difference was 1.82% for CTDI100,p. The differences for CTDI100,w ranged 
from −1.21% to 0.83%, showing consistent results between both dosimeters.

Table 3 shows the CTDIeff of different slice thicknesses measured for tube voltages of 120 kVp and 140 kVp. 
The results were all between 80.1%–82.5%, indicating an insignificant impact of the change in the tube voltage 
and slice thickness on the CTDI efficiency. The observed trend is consistent with the results obtained by Li et al.7.

SSP measurements.  Figure 3 shows the R2 profiles along the Z-axis for 120 kVp obtained by the nMAG 
gel dosimeter at the center and periphery (12 o’clock direction) locations. As the slice thickness increased, the 
scatters on both sides increased as well. In addition, the profile measured at the center showed larger scatter tails 
compared to that obtained at the periphery for the same slice thickness. The main reason for this is that the center 
position accumulates more in-scatters due to divergence of the beam, whereas the peripheral position accumu-
lates more primary beams than scattered photons.

Figure 1.  Home-made PMMA cylindrical phantoms. (a) The phantom has the diameter of 160 mm, length of 
150 mm, and hole diameter of 16 mm. (b) Three phantoms were placed side by side to measure CTDI300 using 
nMAG gel tubes.
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Table 4 shows the FWHM measured at the center and periphery locations using the nMAG gel dosimeter 
and Gafchromic film for various slice thicknesses. When the slice thickness increased, the difference between the 
measured FWHM and the nominal slice thickness increased. In addition, the FWHMs measured at the center 

Figure 2.  Relationships (a) between the dose and the number of repeated scans measured by the Farmer 
chamber, and (b) between the R2 value and the dose measured by the nMAG gel dosimeter under 120 and 140 
kVp, respectively.

CTDI (mGy) 2 mm 5 mm 10 mm 14.4 mm 38.4 mm

CTDI100,c

  Ionization chamber 35.80 33.13 33.62 42.95 39.86

  nMAG gel 33.92 31.53 32.20 44.47 41.97

  Difference −5.25% −4.83% −4.22% 3.54% 5.29%

CTDI100,p

  Ionization chamber 37.00 34.39 34.70 44.96 43.33

  nMAG gel 37.47 34.79 35.33 44.58 42.81

  Difference 1.27% 1.16% 1.82% −0.85% −1.20%

CTDI100,w

  Ionization chamber 36.60 33.97 34.34 44.29 42.18

  nMAG gel 36.29 33.70 34.29 44.54 42.53

  Difference −0.85% −0.79% −0.15% 0.56% 0.83%

Table 1.  CTDI100 of different slice thicknesses measured by the 10-cm ionization chamber and the nMAG gel 
dosimeter at 120 kVp.

CTDI (mGy) 2 mm 5 mm 10 mm 14.4 mm 38.4 mm

CTDI100,c

  Ionization chamber 50.42 46.30 46.86 60.01 55.00

  nMAG gel 47.86 44.84 45.45 60.74 57.47

  Difference −5.08% −3.15% −3.01% 1.22% 4.49%

CTDI100,p

  Ionization chamber 51.57 47.57 47.54 62.53 58.73

  nMAG gel 52.21 48.43 48.06 62.35 58.11

  Difference 1.24% 1.81% 1.09% −0.29% −1.06%

CTDI100,w

  Ionization chamber 51.18 47.14 47.31 61.69 57.49

  nMAG gel 50.76 46.57 47.19 61.81 57.90

  Difference −0.82% −1.21% −0.25% 0.19% 0.71%

Table 2.  CTDI100 of different slice thicknesses measured by the 10-cm ionization chamber and the nMAG gel 
dosimeter at 140 kVp.
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were all larger than the corresponding FWHMs measured at the periphery. These results can be attributed to the 
contribution of scattered photons. When the Gafchromic films were used, the measured FWHMs were markedly 
greater than those measured by the nMAG gel dosimeters. This is especially pronounced in the center, where 
the difference measured by the film and gel significantly increased with the increase in the slice thickness. The 
FWHM measured by the film was up to 2.2 times the nominal slice thickness, whereas the results measured by the 
nMAG gel better represent the slice thickness.

Discussion
In terms of CTDI100,c measurements, the difference between the results obtained by the nMAG gel and the ion-
ization chamber was less than 6%. Compared to the results obtained by Hill et al. who used polyacrylamide gel 
(PAG)16,21, the error was greatly reduced mainly because the nMAG gel has better dose sensitivities. Moreover, the 
fine slice thickness of 0.7 mm for MRI readouts was applied in order to obtain a higher spatial resolution for R2‒
dose conversion. In terms of the MRI pulse sequence, 32 echo times were used, which produced more accurate T2 
results than using eight echo times22. However, the disadvantage is a longer scanning time.

For CTDI100,p, the use of home-made PMMA phantoms provides the ability to simultaneously measure the 
CTDI at four peripheral locations with gel dosimeters. Even the weighted CTDI can be calculated after one CT 
exposure. For different slice thicknesses, the results measured by the nMAG gel and the ionization chamber 
matched very well. Since CTDI100,p contributes two thirds of CTDI100,w, the error in weighted CTDI between the 
gel dosimeter and ionization chamber can be maintained within 1%. This verifies that the nMAG gel dosimeter 
can be used for output dose quality assurance in CT.

Tube voltage 2 mm 5 mm 10 mm 14.4 mm 38.4 mm

120 kVp 80.4% 81.7% 81.2% 80.3% 82.5%

140 kVp 81.1% 81.6% 80.1% 80.4% 81.7%

Table 3.  CTDIeff of different slice thicknesses measured by the nMAG gel dosimeter at 120 kVp and 140 kVp.

Figure 3.  Dose profiles along the Z-axis under the slice thickness of 2, 5, 10, 14.4, and 38.4 mm at (a) center and 
(b) periphery of the PMMA phantoms.

FWHM (mm) 2 mm 5 mm 10 mm 14.4 mm 38.4 mm

Center

  Film 2.92 5.76 11.93 31.75 71.38

  nMAG gel 2.54 5.46 10.66 19.81 48.02

  Difference 13.0% 5.2% 10.6% 37.6% 32.7%

Periphery

  Film 2.57 5.28 10.06 18.39 47.48

  nMAG gel 2.36 4.63 9.65 17.81 41.86

  Difference 8.2% 12.3% 4.1% 3.2% 11.8%

Table 4.  FWHM of different slice thicknesses measured by the nMAG gel dosimeter and Gafchromic film at 
120 kVp.
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With the increase in CT slice thickness, the 150-mm-long commercial CTDI phantom is unable to cover 
enough scattered photons, leading to an underestimation of radiation dose in patients by using CTDI100,w. This 
study used three home-made PMMA phantoms and nMAG gel dosimeters to extend the measurement range 
to 450 mm, and further integrate the 300-mm dose profile to calculate CTDI300,w. The CTDI efficiency was in 
the range of 80.1%‒82.5%, and no significant dependence on kVp or slice thickness was observed. These results 
are consistent with the conclusion of Li et al.7 who used Monte Carlo simulations. Since CTDI100,w is still used 
in clinical quality assurance and dose assessment, information given by the CTDI efficiency can be applied to 
correct CTDI100,w to include the dose contributed from scattered radiation and to improve the accuracy of dose 
evaluation.

The characteristics of gel may affect the accuracy of dose and slice thickness evaluation. In terms of energy 
dependence, the effective atomic number is the most critical factor, especially in the energy range of diagnostic 
radiology. The nMAG gel has an effective atomic number of 7.623, which is close to the effective atomic numbers 
of soft tissue (Zeff = 7.64) and water (Zeff = 7.51). The energy dependence of nMAG gel is less than 3% for photon 
energies between 6 MV and 25 MV24, which is comparable to a Farmer-type ionization chamber25. In this study, 
we observed mildly energy dependence of 7.2% for 120 kVp and 140 kVp in CT. Therefore, the degree of polym-
erization of nMAG gel caused by different tube voltages can be negligible. Among other radiation detectors, 
the effective atomic number of TLD is 8.31, which has a 14% variation in the range of 32–250 keV26. The EBT 
Gafchromic film has a Zeff of 6.98, which also shows strong energy dependence in the range of 25 keV to 4 MV27. 
Therefore, the nMAG gel is more appropriate than other detectors for CT dose and image quality assurance.

The spatial resolution of a dosimeter is an important factor that affects dose profile and slice thickness assess-
ment. Ionization chambers and TLDs, which are commonly used in clinical practice, are often limited by the size 
of their active volume and cannot produce continuous dose measurements. Although films and diode arrays can 
measure 2D dose distribution, they are difficult to incorporate with the CTDI phantom. The gel dosimeter pro-
vides 3D dose distribution, which makes it one of the most promising radiation detectors.

Other possible sources of error for this experiment are the preservation of gel and the MRI readouts. Studies 
have shown that exposure to high temperatures during gel preservation may cause colloid melting and diffusion 
problems28. Therefore, the irradiated gel tubes need to be directly placed in the MRI scanning room to avoid 
changes in temperature. In terms of MRI readouts, 1-hour scan time can raise the temperature of the gel tube 
by 2–4 °C due to the radio-frequency heating effect, which could also cause colloid instability. In addition, the 
gel tubes must be kept equidistant in all directions when placed in the water phantom for MRI readouts to avoid 
magnetic field inhomogeneity. The field uniformity should also be corrected for accurate T2 estimations29.

The major advantage in using the gel dosimeter and the home-made cylindrical phantoms for CT quality 
assurance is the extension of dose integration to 300 mm, making it possible to accurately assess the dose con-
tribution from primary radiation and scattered photons. The weighted CTDI and the slice thickness can also be 
evaluated simultaneously, which has potential for clinical applications in MDCT and CBCT.

The main limitation of this experiment is the insufficient sensitivity of gel dosimeters. Although the nMAG 
gel is one of the most sensitive gel, the minimum dose of 100 mGy is still required to trigger polymerization. 
Therefore, CT scans must be repeated several times to accumulate sufficient radiation dose. In addition, the 
weighted CTDI cannot be assessed in conjunction with the 32-cm CTDI phantom or under 80-kVp tube voltage, 
since a significant portion of photons will be attenuated. These results should motivate the development of gel 
dosimeters with better dose sensitivities and the possible use of conversion factors to convert the dose measured 
in air (CTDI free-in-air) to the dose absorbed in the phantom (CTDI phantom)30.

Conclusion
In this study, the nMAG gel dosimeter and the home-made cylindrical phantoms were used for CT dose and 
image quality assurance. In terms of radiation dose, the differences in CTDI100,w obtained by the nMAG gel 
dosimeter and the 10-cm ionization chamber were less than 1%. The nMAG gel dosimeter can be used to meas-
ure CTDI300,w, and the results showed that the CTDI efficiency was in the range of 80.1%–82.5%, which can be 
used to correct the dose contributed from scattered photons in MDCT. In terms of image quality assurance, the 
nMAG gel dosimeter can be used to obtain the dose distribution along the Z-axis and calculate the FWHM of SSP 
for longitudinal resolution assessment. The weighted CTDI300 and SSP can be obtained at the same time, which 
shows potential for quality assurance and clinical applications in MDCT and CBCT.
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