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Analysis of microRNA and Gene 
Expression Profiles in Alzheimer’s 
Disease: A Meta-Analysis Approach
Shirin Moradifard, Moslem Hoseinbeyki, Shahla Mohammad Ganji & Zarrin Minuchehr   

Understanding the molecular mechanisms underlying Alzheimer’s disease (AD) is necessary for the 
diagnosis and treatment of this neurodegenerative disorder. It is therefore important to detect the 
most important genes and miRNAs, which are associated with molecular events, and studying their 
interactions for recognition of AD mechanisms. Here we focus on the genes and miRNAs expression 
profile, which we have detected the miRNA target genes involved in AD. These are the most 
quintessential to find the most important miRNA, to target genes and their important pathways. A 
total of 179 differentially expressed miRNAs (DEmiRs) and 1404 differentially expressed genes (DEGs) 
were obtained from a comprehensive meta-analysis. Also, regions specific genes with their molecular 
function in AD have been demonstrated. We then focused on miRNAs which regulated most genes in 
AD, alongside we analyzed their pathways. The miRNA-30a-5p and miRNA-335 elicited a major function 
in AD after analyzing the regulatory network, we showed they were the most regulatory miRNAs in the 
AD. In conclusion, we demonstrated the most important genes, miRNAs, miRNA-mRNA interactions 
and their related pathways in AD using Bioinformatics methods. Accordingly, our defined genes and 
miRNAs could be used for future molecular studies in the context of AD.

Alzheimer’s disease (AD) is one of the ultimately fatal neurodegenerative diseases affecting more than 35 million 
people worldwide1. In 2020, it has been predicted that the number of people affected with this disease will rise 
worldwide2. In developed countries, Alzheimer’s disease (AD) is the sixth leading cause of all deaths. While other 
major causes of death are declining, deaths caused by Alzheimer grows dramatically3. The neurodegenerative dis-
eases such as AD is a type of disorder that neuronal function and structure is degenerated following by the death 
of neurons in the nervous system4. The greatest risk factor for neurodegeneration is age increase besides other 
risk factors. The pathophysiological process of AD patients before the clinical diagnosis is unknown4. The clinical 
pathogenesis of AD is said to be the accumulation of insoluble and extracellular amyloid-beta (Aβ) plaques and 
intracellular neurofibrillary tangles (NFT) in the brain5. This process has been shown intervened in long term 
potentiation (LTP), necessary in neuronal signaling, interfered in the signaling involved in pro-apoptotic signal-
ing and results in neuronal loss6. The application of molecular mechanisms in the diagnosis of the AD is not clear, 
but it is thought that many factors are involved in the pathogenesis of AD. Therefore, such studies should have a 
high impact on AD diagnosis and treatment3.

miRNAs- single stranded non-coding RNAs- are small (18–25 nucleotides) and involved in the 
post-transcriptional regulation of gene expression7. Indeed, characterization of regulatory RNAs is one of the 
most important findings in the context of molecular biology in recent years8. In brief, miRNAs could bond par-
tial complementarity to messenger RNA sequences, often in the 3′ untranslatable region (3′UTR). It has been 
shown that miRNAs participate and have implicated in neural development and differentiation as well as approx-
imately 70% of all miRNAs expressions in the brain and they can function as biological regulators in neurons, for 
instance, neuronal differentiation, neurogenesis and synaptic plasticity5,9. Therefore, it seems that miRNAs have a 
potential role in neurodegenerative diseases,5 and in particular AD. Evidence showed that miRNAs are involved 
in deregulation of neurodegenerative diseases4. Many studies demonstrated the expression of specific miRNA in 
the central nervous system (CNS) with different roles7,10. Therefore a comprehensive study in miRNA’s involved 
in neurodegenerative diseases could be conveniently used in innovative therapies4.
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The aim of this study is focused on miRNAs involved in AD and their target genes, the determination of the 
most important miRNAs, genes and their pathways in Alzheimer’s disease. Here we investigated and identified 
AD related differentially expressed genes (DEGs) and miRNAs (DEmiRs), miRNA-mRNA interactions and sig-
naling pathways. Our results showed the different expressions of some miRNA and their target genes in a disease 
group vs normal; that this miRNA and their target genes have important roles in AD and other neurodegenerative 
diseases. In addition, pathways are related to miRNAs-target genes showed that it is significantly linked to the AD.

Results
Gene and miRNA expression profile.  Differentially Expressed miRNAs and genes in AD.  Following the 
data sets selection according to our criteria (Fig. 1), analyzing the seven microarray data sets of genes and miR-
NAs expression profile according to the workflow (Table 1, Fig. 2) was done. After quality control and normali-
zation, expression profile for each data set was created and a meta-analysis was performed. By using our criteria, 
differentially-expressed microRNA and genes were divided into Up- or Down-regulated miRNAs and genes. 
The P value < 0.05 and a fold-change ≥ 1.23 were set as the cut off values of DEgenes and DEmiRs. Our results 
in the meta-analysis showed a list of 1404 DEGs including 672 Up-regulated and 732 Down-regulated DEGs 
were selected and used in our subsequent analysis (supplementary Table S1). About DEmiRs expression analysis 
showed that a total of 179 differentially expressed miRNAs, 83 Down-regulated and 96 Up-regulated miRNAs in 
AD (supplementary Table S2). In Table 2 we summarized the most 30 Up- and Down-regulated DEmiRs which 

Figure 1.  Data set selection flow chart. A total of 95 data sets from GEO was evaluated. Finally, 6 data sets for 
mRNA and 1 data set for miRNA were selected to be included in this meta-analysis.
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by their roles interfere in AD. For visualizing the Differentially Expressed miRNAs and genes, we sorted them. We 
also categorized the top Up- and Down-regulated DE genes in AD in Table 3.

For further analyzing on the meta-analysis results (Up- and Down-regulated genes), we used ClueGO a 
Bioinformatics tool for clustering pathways and gene ontology terms. This tool visualized the interactions 
between genes and clusters; therefore, we can separate them easily based on their importance. The most impor-
tant among them had been chosen by “Term P value Corrected with Bonferroni step down.” The KEGG path-
way analysis of Up- and Down-regulated genes that were highly enriched have been shown here: the significant 
pathways in Up-regulated genes were ECM-receptor interaction and Cell adhesion molecules (CAMs) but for 
Down-regulated genes, which were involved in 10 pathways were oxidative phosphorylation, Parkinson’s dis-
ease, Synaptic vesicle cycle, Alzheimer’s disease, Epithelial cell signaling in Helicobacter pylori (HPI) infection, 
Huntington’s disease and citrate cycle (TCA cycle) were highly significant. These pathways and the number of 
genes involved, have been shown in Fig. 3 by individual curves (supplementary Tables S3, S4). The significant 
pathways of Up- and Down-regulated genes with their interactions have been visualized by ClueGo software in 
Figs 4, 5.

Study of brain regions and sex-related differences in gene expression in AD.  Analyzing the expression profile of 
brain regions with six data sets was done in which each data set represented one region in the brain and one of 
them (GSE5281) consists of more than one region; likewise, the sample size was insufficient for further studying 
of brain regions independently. Analyzing the gene expression profile on the six data sets according to brain 
regions separately and based on control vs AD was done. The sub meta-analysis of hippocampus and entorhinal 
cortex have been analyzed; but, the expression profile of other regions was utilized to continue the reviewing. The 
top DEGs, the top region specific genes and the genes which were in common with meta-analysis results in each 
brain region (based on the resold P value < 0.001) was categorized in supplementary Table S5. Also, the signifi-
cant molecular functions of region specific genes (P value < 0.001) in eight brain regions were demonstrated in 

GEO accession 
number Experiment

Sample size

PlatformControls Patients

mRNA

1 GSE4757 Dunckley,…et al.61 10 10 [HG-U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array

2 GSE12685 Williams,…et al.62 8 6 [HG-U133A] Affymetrix Human 
Genome U133A Array

3 GSE28146 Blalock,…et al.59 8 22 [HGU133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array

4 GSE1297 Blalock,…et al.60 9 22 [HG-U133A] Affymetrix Human 
Genome U133A Array

5 GSE5281
Liang,…et al.63

74 87 [HG-U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 ArrayLiang,…et al.64

6 GSE16759 Nunez-Iglesias,…et al.47 4 4 [HGU133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array

miRNA

7 GSE16759 Nunez-Iglesias,…et al.47 4 4 USC/XJZ Human 0.9 K miRNA940v1.0

Table 1.  Microarray data sets used in this study and their experimental design. Gene Expression Omnibus 
dataset (GEO) is the one of the international public repositories in the context of high-throughput data; 
Controls: control samples; Patients: Alzheimer’s disease patients.

Figure 2.  Workflow and analysis process.
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Fig. 6. The hierarchical clustering analysis was used for the top 30 DE genes in the meta-analysis result compared 
to the expression profile of all brain regions in Fig. 7a.

The sub meta-analysis of male and female with four data sets (GSE16759 due to the low sample size and 
GSE4757 due to its unknown gender was excluded) have been done. Our results in the context of sub 
meta-analysis on male and female showed the lists of 1903 DEGs in male (830 Up-regulated and 1073 
Downregulated DEgenes) which 1210 genes were male specific and 2333 DEGs in female (1125 Up-regulated 
genes and 1208 Down-regulated DEgenes) that 1640 genes were female specific respectively (all details about gen-
der specific genes and significant DEGs have been categorized in Supplementary Table S6). Thus, male and female 
specific genes were specified in AD; the female specific genes are involved in pathways associated with neurode-
generative diseases such as Oxidative phosphorylation, Alzheimer’s disease, Huntington’s disease, Parkinson’s dis-
ease pathways which demonstrated the importance of these genes in neurodegenerative including AD. In about 
male specific genes, no significant pathway was determined. Since, the aim of our study in this meta-analysis 
project was to exclude the interventive factors and categorized the top DEGs among AD across brain regions; 
for comparing the effects of gender on our meta-analysis result, we used T-test and one-way analysis of variance 
(ANOVA), these statistical analyses just among common DEGs of meta-analysis results, female and male was 

Down-regulated Up-regulated

ID P. Value FC ID P. Value FC

hsa-mir-12497|RNAz 0.003394 0.0263887 hsa-mir-19790|RNAz 0.0026067 3.4836785

hsa-miR-424 0.0011322 0.079282 hsa-mir-27120|RNAz 0.0011101 3.9197762

hsa-mir-44608|RNAz 0.0026307 0.0920438 hsa-mir-35456|RNAz 0.0032355 3.9345788

hsa-miR-181c 0.0015209 0.1018621 hsa-miR-122a 0.0029606 4.0567087

hsa-miR-301 0.0012602 0.1034073 hsa-miR-134 0.003466 4.499232

hsa-miR-656 0.0013878 0.1617726 hsa-mir-10939|RNAz 0.001997 5.3955761

hsa-miR-186 0.0025921 0.1711834 hsa-mir-10912|RNAz 0.0012295 5.7425097

hsa-mir-20546|RNAz 0.0013675 0.1773218 hsa-miR-617 0.0003481 6.1780417

hsa-mir-02532|RNAz 0.0031668 0.2263602 hsa-mir-30184|RNAz 0.0000352 6.3673885

hsa-mir-42448|RNAz 0.002298 0.2375547 hsa-mir-03996|RNAz 0.0031868 7.653148

hsa-miR-101 0.000485 0.2680839 hsa-miR-188 0.0004821 12.61189

hsa-miR-551b 0.0013837 0.2809868 hsa-mir-06383|RNAz 0.0010481 16.090057

hsa-mir-08570|RNAz 0.0019679 0.2865049 hsa-mir-23974|RNAz 0.0018586 23.14629

hsa-miR-29b 0.0014182 0.3212273 hsa-mir-40796|RNAz 0.0001212 25.918338

hsa-miR-189 0.0016735 0.4098583 hsa-miR-601 0.0013881  39.057145

Table 2.  Top 30 DEmiRs obtained from microarray expression in AD patients. All the top miRNAs were 
ranked based on the P value. This table showed the miRNAs expression based on (≥ 1.23 fold-change) criteria 
and divided into Up- or Down-regulated miRNAs. FC: Fold Change.

Gene symbols Ave FC Meta-analysis score Gene symbols Ave FC Meta-analysis score

Down regulated Down regulated

CARTPT 0.615281653 4.06737E-06 DYNLL1 0.79243 0.000235

ATP5F1 0.77653477 4.03204E-05 TMEM189 0.760451 0.000258

RNFT2 0.65113094 6.13025E-05

USO1 0.698005449 9.30377E-05 Up-regulated

COL5A2 0.53826377 9.61705E-05 GFAP 1.856253 2.34E-06

CALM1 0.710120806 0.000113127 TGFB1I1 2.041183 2.05E-05

DZIP3 0.650845423 0.000127364 APLNR 1.912765 2.18E-05

PLK2 0.647124318 0.000137089 ATP10A 1.346906 3.42E-05

BEX4 0.69732923 0.000140728 AQP1 1.648286 0.000159

MDH1 0.694880723 0.000144727 WAS 1.323854 0.000162

ATP2B3 0.686082434 0.000156006 DOCK2 1.491173 0.000187

ATP6V1E1 0.721259284 0.000186009 LRRFIP1 1.420411 0.000192

PFKM 0.77010002 0.000211936 IGFBP5 1.399666 0.000198

RAN 0.640432884 0.000216575 NAV2 1.347951 0.000225

CRH 0.686953124 0.000220206 FDFT1 1.633492 0.000232

MEST 0.791186 0.000223 MAFF 1.4246 0.00027

Table 3.  Top 30 differentially expressed genes (DEGs) identified in the meta-analysis of AD studies. All the top 
genes were ranked based on meta-analysis scores (this score calculated according to the P value of each gene in 
their datasets with R). Ave FC: average Fold change.
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done; the outputs of statistical tests demonstrated that gender’s sub meta-analysis results do not have a significant 
difference in gene expression of the meta-analysis result (P value > 0.05). The top 30 DEGs in meta-analysis result 
which were common with female, male or either of them, based on LogFC have been visualized in Fig. 7b.

Investigating the gene expression profiles in AD with RNA-seq.  In this study, we tried to select data sets, which 
as much as possible were matched and comparable with microarray sampling brain regions. Hence, studying on 
differential gene expressions between AD vs Control in three RNA-seq data sets (GSE53697 sampling from part 
of the dorsolateral prefrontal cortex (BA9), GSE67333 sampling from hippocampi brain regions and GSE57152 
sampling from superior temporalis gyrus) have been analyzed11,12. The results demonstrated that the 1102 DEGs 
in GSE67333 (614 Up-regulated and 488 Down-regulated genes), 1032 DEGs in GSE53697 (324 Up-regulated 
genes and 708 Down-regulated genes) and 898 DEGs in GSE57152 (591 Up-regulated and 307 Down-regulated 
genes) with a threshold P value < 0.05 and FC ≥  1.23 that were categorized in supplementary Table S7. DEGs 
between RNA-seq and microarray data were analyzed. 95 common genes between the dorsolateral prefrontal 
cortex (BA9) and frontal cortex brain regions, 61 common genes on the hippocampus in RNA-seq and microar-
ray data sets; also, 240 genes between superior temporalis gyrus and medial temporalis gyrus in RNA-seq and 
microarray data sets respectively have been obtained (P value < 0.05). The highly significant common Up- and 
Down-regulated genes between RNA-seq and microarray have been categorized in Table 4.

Gene-miRNA regulatory network in AD.  Our results demonstrate the different expression value for each type 
of genes, so we could divide the Up- and Down-regulated genes. All of these meta-analysis results and miR-
NAs were transferred into the Cytoscape 3.2.1, and the network was constructed. The regulatory network con-
structed by cyTargetLinker13 using three databases (TargetScan, MicroCosm V5, mirTarbase). The regulatory 

Figure 3.  Top biological pathways and terms by ClueGo software in meta-analysis of Up- and Down-regulated 
genes in AD patients. The significant Up- and Down-regulated genes in AD patients were 672 and 732 different 
expression genes respectively that generated by meta-analysis and transferred into the ClueGO software 
(kappa score = 0.4). Pathways or terms of the associated genes were ranked based on the P value corrected with 
Bonferroni step down (*show the P value < 0.05).

Figure 4.  Alzheimer’s disease pathway and enriched gene ontology with Down-regulated genes. Among 10 
significant pathways of Down-regulated meta-analysis genes, Alzheimer’s disease pathway and enriched gene 
ontology with other top significant pathways in this study have been visualized in CluGO software (kappa 
score = 0.4). It demonstrated the genes that are common among Parkinson’s disease, Alzheimer’s disease, 
and Huntington’s disease; also, the genes that are only involved in Alzheimer’s disease and other significant 
pathways.
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miRNA-target genes network included 18189 genes, 181 miRNA, and 113796 edges. We mapped the expression 
data that included meta-analysis result and DEmiRs to the regulatory network; we filtered the target genes that 
were not included in our meta-analysis and did not have an expression data then based on expression value, the 
node size and color change. This regulatory network included 2438 genes, 181 miRNA and 16886 edges that were 
differentially expressed in AD (Fig. 8).

Construction of Gene Regulatory subnetwork for miRNA-target genes.  Surveys conducted by centiscape14 
showed our network hubs were miR-30a-5p and miR-335 which regulated most genes involved in AD in our 
meta-analysis results. Subsequently, hierarchical clustering analysis was done in order to find significant differ-
ences in both differentially expressed miRNAs and genes expression between the AD and Control groups for the 
hubs of our network - miR-30a-5p and miR-335 (Fig. 9a,b). Each hierarchical cluster for miR-30a-5p and miR-
335 demonstrated the expression profile of near neighbor target genes. Furthermore, Venn diagram by VENNY 
2.1 tool15 has been drawn for common genes between both miRNAs (Fig. 9c). The results showed that 71 genes 
are common target genes for both miRNAs.

Expression of miR-30a-5p (logFC −0.61128) and miR-335 (logFC −0.91861) decreased, but both have Up- 
and Down-regulated target genes. miR-30a-5p have 355 near neighbor target genes that 135 genes with positive 
logFC and 220 genes with negative logFC, for miR-335 among 396 near neighbor target genes have 213 positive 
logFC and 183 negative logFC genes in AD. The circulate subnetwork of miR-30a-5p and miR-335 with immedi-
ate neighbors had been constructed by Cytoscape 3.2.1, here we demonstrated the most important target genes. 
The node size and color (red-blue) represented the expression value of Down- and Up-regulated respectively. 
Also, the edges’ colors showed the source of prediction target genes (Fig. 10). The validated target genes of miR-
30a-5p and miR-335 vs the predicted ones have been categorized in supplementary Table S8.

Figure 5.  Enriched gene ontology and pathways that generated by Up-regulated genes in the meta-analysis. 
Enriched gene ontology and pathways have been visualized in CluGO software (kappa score = 0.4). Each node 
showed the biological process in their pathways. The color of each node represents the functional group that 
they belong to it. Edges demonstrate the gene-term and term-term interactions. Both significant pathways 
of Up-regulated meta-analysis genes, the ECM-receptor interaction and Cell adhesion molecules (CAMs) 
with involved genes have been shown in this pathway. The size of each node demonstrated its value in these 
pathways.
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KEGG pathway Analysis of miRNA-335 and miRNA-30a-5p target genes.  According to a KEGG pathway16–18 
analysis of ClueGo plugging software, we demonstrated the significant functions and pathways of near neighbor 
target genes of miR-30a-5p and miR-335. All of them sorted based on the Bonferroni step-down (Table 5). Also, 
visualized by CluGo in Fig. 11a and b. Our results represented the significant pathways of miR-30a-5p near 
neighbor is Long term potentiation (LTP), for miR-335 the near neighbor target genes interfered in the Steroid 
biosynthesis pathway but the role of this pathway was not significant.

Discussion
Alzheimer’s disease is a general neurodegenerative disorder and its pathophysiological process mostly begins 
before clinical diagnosis. During the pre-clinical process most AD patients show no symptoms believed is19. 
Therefore, molecular study of AD could have an important role in detecting genes involved in the disease. On the 
other hand, a variety of researchers showed that miRNAs and expression of target genes were tightly associated 
with molecular events in neurodegenerative diseases such as AD4. The miRNAs in the central nervous system 
have been shown that contributes to the regulation of development, survival, function, and plasticity20. Moreover, 
any disruption and alterations in microRNAs and their expression in neurons, leading to neurodegenerative 
diseases such as Alzheimer’s disease (AD)20. It is noteworthy that miRNAs have a high abundance in the central 
nervous system, and mostly their expression patterns are brain-specific21. According to our results, the DEGs 
and DEmiRs both can be a potential candidate for biomarkers in AD. Other studies such as qRT-PCR can also be 
suggested for confirming them.

Differentially expressed genes and their relation to sex have been acknowledged in some publications22,23. 
Albeit, it is very important to know that there is a difference between male and female in the brain structure and 
function; but, sex-related differences in gene expression are depended on the brain tissues and age22. A large num-
ber of genes are varied in the developmental stages of the brain24; this is due to the majority of brain development 
and organization and the influence of gender occurring in adulthood25. The risk of AD is depended on age and 
gender that in women is higher than the men. Among the proposed reasons for this difference, the mitochondria 
and hormonal disfection26,27 could be mentioned, where, hormone therapy and estrogenic compounds worked as 
a protection in front of the amyloid-beta toxicity26. Based on our results there are more than one hundred genes 
which specifically expressed in male and female and the other possible mechanism for gender response against 

Figure 6.  The molecular function of region specific genes in AD. Molecular function (MF) of all region specific 
genes in each brain region based on cut off P value < 0.001 have been selected. The significant MF for Up and 
Down-regulated region specific genes were shown. HP: hippocampus, EC: Entorhinal cortex, MTG: Medial 
temporal gyrus, PC: Posterior singlet cortex, SFG: superior frontal gyrus, VCX: primary visual cortex, FC: 
frontal cortex. PL: parietal lobe.
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AD could be resulted from their associated pathways. Meanwhile, in this study, we found the significant pathways 
with female specific genes which are related to AD and indicated their role and function in this neurodegenerative 
disease. The statistical analysis on the common genes between male, female and meta-analysis demonstrated that 
there are no significant differences between the gender and meta-analysis results. Therefore, the common genes 
between meta-analysis, and sex could represent the new window of study in AD.

In our study on DE genes of brain regions, we analyzed eight brain regions (posterior singlet cortex, primary 
visual cortex, medial temporal gyrus, superior frontal gyrus, frontal cortex, entorhinal cortex, hippocampus, pari-
etal lobe) based on comparing the DEGs in each brain region and meta-analysis. The molecular function (MF) 
of top Up- and Down-regulated region specific genes showed that their function in some cases was in common 
among SFG, VCX, PC, and MTG. The most significant MF, among region specific genes were olfactory receptor 
activity and RNA binding (Fig. 6). Studies revealed that olfactory receptors (ORs) have been expressed in the 
human brain regions and the gene expression patterns have altered in several neurodegenerative diseases such as 
PD and AD. The differentially expressed OR genes (Up- or Down-regulated genes) have been reported in AD28. 
In our results, we demonstrated the expression of top genes which are related to these MF and played their func-
tion in each brain region. Also, aggregation of RNA binding proteins in the cytoplasm under stress conditions 
produced the stress granules (SGs). Accumulation of these SGs in the brain have a pathological impact in AD and 
other neurodegenerative diseases; due to altered the normal physiological activities of RNA binding proteins29,30.

As far as we are concerned, our research categorized the top and significant DEGs in the different brain regions 
and compared and analyzed the results using a meta-analysis output. Our findings can be helpful for understand-
ing the most important DEGs in AD and making a connection between the gene expression level and higher level 
information about their functions, interactions and pathways. In the further study, we would like to analyze the 
region specific genes by using more data sets with a high sample size that are specialized on each specific brain 
region. These will increase the accuracy and will avoid false positive data in the study.

Figure 7.  Comparing the gene expression pattern of top 30 genes from meta-analysis (a) in different brain 
regions (b) with Female and Male. (a) The heat map panel showed the top 30 differentially expressed genes 
in meta-analysis results versus different brain regions (posterior singlet cortex, primary visual cortex, medial 
temporal gyrus, superior frontal gyrus, frontal cortex, entorhinal cortex, hippocampus, parietal lobe vs DEGs in 
meta-analysis results). This panel compared the gene expression pattern in each type of brain regions between 
AD and control patients in six data sets (GSE12685, GSE4757, GSE5281, GSE1297, GSE28146, and GSE16759). 
The red color showed the low expression value, and blue color showed higher expression value. (b) This figure 
compares the LogFC of each gene among female, male and meta-analysis result. The Y-axis shows a selected 
top 30 gene names and the X-axis features black, light gray and gray bars which represent the LogFC by meta-
analysis, Female and Male.
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Studying on the RNA-seq data in AD and on the three parts of brain regions (part of the dorsolateral prefron-
tal cortex, hippocampus and superior temporalis gyrus) demonstrated the most important DEGs. The differ-
ence in brain regions sampling and low replication on the RNA-seq data rather than the microarray results can 
be a contributing factor in reducing the common genes between these two techniques. Although, microarray 
meta-analysis is still a widely used method in the context of gene expression, but the analysis of RNA-seq data 
beside to the microarray results can lead to heighten the accuracy of these results31. Due to the lack of sufficient 
RNA-seq data for all brain regions on Alzheimer’s disease, we did our study on three brain regions and compared 
the outputs with hippocampus submeta analysis, the expression profiles of frontal cortex and medial temporal 
gyrus. Eventually, the genes which were Up-or Down-regulated in this brain regions have been reported.

Our analysis reports have shown the significant pathways between Up-regulated genes already linked to AD: 
i) The ECM-receptors and their ligands as a molecular function, play a significant role in neuronal development 
and synaptic activity25. The ECM receptors and cell adhesion molecules (CAMs) participate in cellular interac-
tions, which are involved in major neurodegenerative diseases such as AD. Also, ECM proteins were up-regulated 
in AD and during the aging32; hence, we demonstrated these pathways with their related DE genes which are 
Up-regulated in AD. ii) The CAM pathway, which has a central role in the neuronal cell adhesion and has a crit-
ical function for the synaptic formation and blood-brain barrier integrity for neurotransmission. In AD, loss of 
the synaptic pathway is the strongest impairment that has been done. In addition, a different expression of cell 
adhesion genes mainly seen in AD and Parkinson disease33,34.

The significant pathway results between Down-regulated meta-analysis genes have demonstrated which 
Down-regulated genes are involved in AD i.e.: Oxidative phosphorylation (OXPHOS), Parkinson’s disease, 

Up-regulated Down-regulated

Gene Symbol

RNA-seq microarray

Gene Symbol

RNA-seq microarray

logFC P value logFC P value logFC P value logFC P value

Common genes 
in FC and BA9 of 
DL-PFC

NRN1 2.2334 0.0198 0.8070 0.0213 PRELP −3.9582 0.00005 −0.3136175 0.0099

GPRASP1 1.5928 0.0209 0.9407 0.0354 EPAS1 −2.1622 0.000205 −0.39160792 0.0159

ESRRG 1.3135 0.0250 0.2804 0.0228 KIF1C −3.0637 0.001339 −0.44908542 0.0246

TPBG 1.6981 0.0252 0.5743 0.0011 FKBP10 −1.9021 0.001747 −0.29188125 0.0483

KCNK1 1.4959 0.0252 0.6657 0.0004 KLF4 −3.3412 0.002665 −0.3612275 0.0067

HTR2A 1.9082 0.0253 1.3014 0.0007 NQO1 −3.7408 0.003207 −0.31109333 0.0476

GSTO1 1.7010 0.0261 0.6422 0.0087 ELN −2.1514 0.003593 −0.3799525 0.0417

TOMM20 1.7740 0.0301 0.6976 0.0026 FBLN1 −1.8663 0.007021 −0.33266417 0.0118

GABRA1 2.4678 0.0303 1.2669 0.0001 SOX21 −1.9109 0.012743 −0.39442583 0.0059

OXR1 1.7054 0.0308 0.6058 0.0051 SMOX −1.4258 0.015775 −0.41022292 0.0495

Common genes in 
Hippocampus

PRKCQ-AS1 3.6348 0.00005 0.4930 0.0337 GLS2 −2.4687 0.00005 −0.4732 0.0467

TRIM16L 0.9125 0.00005 0.7303 0.0295 SLC22A24 −2.4552 0.0006 −0.3981 0.0043

PLK5 1.8366 0.0001 0.9223 0.0271 PDXDC1 −4.8043 0.001 −0.2931 0.0144

CNOT1 2.4604 0.0007 0.3935 0.0049 MYH16 −0.7303 0.0010 −0.7485 0.0449

LINC00648 3.7324 0.001 0.3031 0.0224 ZNF704 −3.4464 0.0011 −0.3069 0.0272

APOL4 1.6363 0.0010 0.4707 0.0166 DEFB108B −1.9448 0.0045 −0.7843 0.0343

APBB1IP 2.6487 0.0011 1.0084 0.0081 CDC42SE2 −1.8370 0.0083 −0.4003 0.0001

LINC00700 1.9264 0.0014 0.5462 0.0453 DNAH14 −0.5588 0.019 −0.6766 0.0079

STRAP 2.3408 0.0018 1.0526 0.0248 DNAJC13 −2.1886 0.0205 −0.4092 0.0464

NUMA1 2.1248 0.0020 0.7587 0.0088 KCNK10 −0.4884 0.0226 −1.1787 0.0216

Common genes in 
STG and MTG

C9orf3 4.61003 0.00005 1.364899 0.01602 CRYBB2P1 −4.42879 0.00005 −0.81855005 0.03695

CPNE3 3.3581 0.00005 1.1969213 0.0243 FAM208A −4.10653 0.00005 −0.4882346 0.00118

GLUL 2.82662 0.00005 1.393713 0.0218 KNTC1 −3.7896 0.00005 −1.6199 0.0109

IKBKB 2.82657 0.00005 1.240875 0.0020 NAT9 −4.2662 0.00005 −0.6446 0.0109

PFKFB3 3.89407 0.00005 2.198218 4.49E-07 NRG4 −5.5145 0.00005 −1.1152 0.0405

SLC11A2 2.16711 0.00005 1.957787 0.000037 SETD5 −2.676 0.00005 −0.8030 0.0046

SPP1 3.2241 0.00005 0.9801302 0.0206 TMCC1 −2.63472 0.00005 −1.098779 0.008445

USP40 2.10273 0.00005 1.4242945 0.00124 TNKS −2.05614 0.0002 −0.8721588 0.027795

ZCCHC7 5.67435 0.00005 1.0294421 0.00326 ZBTB45 −4.02681 0.0003 −1.16852 0.024

ZNF528 3.51179 0.00005 0.8404265 0.0287 NAA38 −3.54314 0.00035 −0.92694 0.0019665

Table 4.  The top significant common genes between RNA-seq and microarray. According to cut off P 
value < 0.05 and FC ≥  1.23. The common and top significant Up- and Down-regulated genes in GSE53697 
(sampling from BA9 which part of the dorsolateral prefrontal cortex (DL-PFC)), GSE67333 (sampling from 
hippocampi) and GSE57152 (sampling from superior temporalis gyrus) with microarray results which consist 
of submeta analysis of hippocampus, expression profile of frontal cortex and medial temporal gyrus, have been 
shown.
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Synaptic vesicle cycle (SVC), Alzheimer’s disease, Epithelial cell signaling in Helicobacter pylori (HPI) infection 
and Huntington’s disease were the top involved pathways. In recent studies, this subject has been confirmed that 
alterations in the function of Oxidative phosphorylation (OXPHOS) have involved in the pathogenesis of AD. 
Also, the toxic effect of Aβ and tau protein on the OXPHOS cause the decreased neuronal survival35. Therefore, 
alterations in function OXPHOS can increase the risk of AD.

The Epithelial cell signaling in Helicobacter pylori infection are other pathways associated with AD. Based 
on AD different subtypes-levels of Aβ, tau hyperphosphorylation, ubiquitination and etc.,- inflammation and 
immune processes has displayed the different roles since Alzheimer disease patients which use the nonsteroidal 
anti-inflammatory drugs (NSAIDs) reduce the risk of Alzheimer disease36. Therefore, immune and inflammatory 
pathways play an important role in modulators of AD36. It can also be inferred that epithelial cell signaling in 
Helicobacter pylori infection has an effect on AD development it is noteworthy that hyperphosphorylation of tau 
protein is associated with defects in neurons or the loss them37. Infection with Helicobacter pylori (H. Pylori) 
which is a gram negative bacterium, is related to the AD37. Hyperphosphorylation of tau protein is one of the 
events seen in the AD patient’s brains37. Studies on the AD patients and normal people showed the significant H. 
Pylori and anti-H. Pylori IgG antibodies have been observed in cerebrospinal fluid (CSF) and their serum38,39. 
H. Pylori induced the tau phosphorylation in the AD special sites36 so, it is effective in occurring AD. Here we 
showed the involvement genes in each pathway with the expression value.

Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD) are important neurode-
generative disorders, and their involved genes mostly overlap. It is noteworthy that there are factors in common 
between AD and PD. A common and major neuropathological alteration, for instance, a decline in locus coeruleus 
(LC) noradrenergic neurons occur in AD and PD, that leads to progression of both of these disorders40. In addi-
tion, AD and PD have different clinical and pathological features but display the overlap molecular mechanisms41. 
Huntington’s disease (HD) is dominantly inherited and occurs in the 4th to 5th decade of life, but the AD is an aging 
disease and happens in older age. Albeit, it is mentioned that HD increases the risk of AD among elderly HD patients 
and demonstrated the co-occurrence of both of them42. The role of SVC in neurodegenerative diseases is specified 
and any changes in this pathway contributed in the development of diseases43,44. In about the TCA cycle pathway, 
any alteration in (TCA) cycle enzymes of mitochondria and changes in its activity may be critical to increase the 
risk of AD. Therefore, studying on TCA cycle will improve our understanding the mechanisms and will be effective 
for AD patients45. Therefore, our results categorized the genes that are specific or common for each or both of them. 
likewise, For all of the significant pathways, we categorized the involvement genes (Up- and Down-regulated) that 
will be crucial for continuous researchers and other types of detection or diagnose in AD patients. In the second 
part of our analysis, we focused on the miRNAs and target genes that are most important in AD. Centiscape results 
according to the degree and betweenness of our network were miR-335 and miR-30a-5p which had the most score 
and were the regulators in AD network. The expression of both of them decreased so, subnetworks were constructed 
with near neighbor nodes of miR-30a-5p and miR-335, which were the hubs of AD network analysis. miR-30a-5p 
with 356 and miR-335 with 397 neighbor nodes were the most interacted nodes respectively.

Based on our expression analysis on miR-30a-5p and miRNA-335 they have been decreased. The expression 
of miRNAs are different in each part of a brain. Mark N. Ziats et al. demonstrated in 2014 that miRNAs in the 
dorsolateral prefrontal cortex differentially expressed rather than other parts of the brain, such as the cerebel-
lum, hippocampus and other regions of the prefrontal cortex46. On the other hand, in our study, the miRNA 
microarray data set had been sampling from the parietal lobe of postmortem of Alzheimerian patient’s brains47 so 
the different types of expression are perhaps because of the sampling regions. miR-30a-5p and miR-335 are one 
of the miRNAs that are involved in the AD, and their expression decreased in this brain region of AD patients. 
Wang-Xia Wang et al. at 2011 studied the miRNA expression profile in gray and white matter showed miR-335 
and miR-30a-5p have been Down-regulated in a gray matter of AD patient48. Also, it is worthwhile to say miRNA 

Figure 8.  The regulatory subnetwork in AD that showed the DEmiRs and their target genes. The differential 
expression has been shown by node color gradient. The pink nodes represent miRNAs, but a gradient red to 
blue colors showed Down-regulated and Up-regulated target genes respectively.
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often could be co-expressed with its targets21. In AD the main cause of the synaptic disfunction is the aggregation 
of amyloid-β (Aβ) peptides in the neuronal system which leads to a disarrangement, and cell loss49. The KEGG 
pathway analysis of miRNA30a-5p and its first neighboring nodes have been sorted by the Term P value corrected 
with step down showed that Long-term potentiation (LTP) is the significant pathway for all the near neighbor 
targets but about miR-335 we could not find any significant pathway.

Figure 9.  The cluster heat map of miR-30a-5p and miR-335 with their Venn diagram. Differentially expressed 
microRNAs (DEmiRs) hub in network and genes that were targeted of it. The red color showed the low 
expression value, and the blue color showed higher expression value. (a) The miR-30a-5p with expression 
profile of its target genes. (b) The miR-335 with expression profiles of its target genes. (c) This panel showed the 
overlap between miR-30a-5p and miR-335 target genes; 71 genes are common between both miRNAs.
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The KEGG pathway analysis on the miRNA 30a-5p near neighbor target genes demonstrated that among 
all of them, CAMK2B, CAMK4, GRIA1, GRIA2, MAPK1, PPP3CB, PPP3R1, RPS6KA2 genes are significantly 
involved in LTP. Studying in the hippocampal LTP demonstrated its association with learning and memory. So, 
in AD LTP is flawed because of accumulation of Aβ and other fragments50.In neuroscience, LTP is the chemical 
transmission function and synaptic activity between two neurons51. The expression of CAMK2B and RPS6KA2 
genes increased, but CAMK4, GRIA1, GRIA2, MAPK1, PPP3CB, PPP3R1 genes decreased in our meta-analysis 
study on AD.

The present study prepared and categorized genes and miRNAs in AD based on available microarray and 
RNA-seq data sets. Therefore, the reliable sources, which have been proposed in this study, are the most important 
ones. Hence, we faced with some inevitable technical limitation. Some of these limitations which are mentioned 
here: Microarray is one of the most powerful technique for analysis of gene or protein expression simultane-
ously; but, this technology has several limitations. The hybridization of probes to bind to a target sequence and 
specificity of them with great importance, but cross-hybridization in this context will diminish the specificity. 
Albeit, determining the four levels of hybridization specificity in the context of microarray hybridization could 
be effective but low hybridization specificity in each of which four level might be occurred. Therefore, specificity 
of hybridization in microarray is one of the critical limitations of this technique52,53. Using microarray data sets, 
which were obtained from multiple studies in different conditions, increased the heterogeneity in our study. In 
addition, the low sample size and unknown characteristic details (for instance, gender, ethnic, age, etc.), different 
quality and amount of RNA are the major challenge in microarray analysis. However, we tried to minimize the 
effects of this limitation where we doing late integration meta-analysis and utilizing appropriate methods for 
analyzing data. Quality control and normalization is the critical content in microarray analysis and will decrease 
the false data in microarray analysis. As already, mentioned microarray is one of the most powerful techniques 
to evaluate the gene or protein expression. Also, according to differentially expressed genes in the microarray, 

Figure 10.  The near neighbor nodes subnetwork of miR-30a-5p and miR-335. This subnetwork represented 
the near neighbor target genes of miR-30a-5p and miR-335 with their common genes. The node size and color 
showed the expression value (blue color; big node showed the higher expression value and red color; small node 
showed the low expression value), and the edges color demonstrated the source of each target gene prediction. 
TargetScan: indigo, MicroCosm V5: green, mirTarbase: Violet.

miRNA-30a-5p near neighbor nodes

GO ID GO Term
Term P value Corrected 
with Bonferroni step down Associated Genes Found

KEGG:04720 Long-term potentiation 0.00756605 CAMK2B, CAMK4, GRIA1, GRIA2, 
MAPK1, PPP3CB, PPP3R1, RPS6KA2

miRNA-335 near neighbor nodes

KEGG:00100 Steroid biosynthesis 0.105889168 CEL, FDFT1, HSD17B7, SQLE

Table 5.  The significant pathways of miR-30a-5p and miR-335 near the neighbor target genes in AD. For 
miR-30a-5p, Long-term potentiation is the pathway that near neighbor target genes interfered in that with the 
significant P value. But for miR-335, it is not a significant pathway. Here we showed the target genes are involved 
in each pathway.
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usually we have a widespread differentially expressed genes, for instance, gene expression with very low expres-
sion value but insignificant or modest DEGs with significant values. Filtering microarray data is an essential 
factor are mostly assigned to cut off. In about RNA sequencing technique, we have a limitation in the context of 
the depth of sequencing and the number of replications that are important factors for demonstrating the reliable 
DEGs. Meanwhile, due to the cost of this method, considering the depth of sequencing and the number of repli-
cations in the appropriate condition is very difficult and usually, one of them is being investigated. On the other 
hands, the different sequencing methods in RNA-seq analyzing produced various DEGs output. Thus, All of them 

Figure 11.  Functional analysis of target genes (a) miR-30a-5p (b) miR-335 in KEGG pathway by ClueGo 
software in Cytoscape 3.2.1. The results of centiscape analysis elicited from the gene regulatory network and 
then the target genes of those hub nodes transferred into CluGo and were grouped with it as a functional 
cluster. Each node represents a KEGG pathways process, and their associated genes are represented as dots. All 
the nodes and their colors showed the functional group to which they belong. Edge of this functional analysis 
demonstrated the term-term interactions or term-genes interactions. The enrichment significant term showed 
by the size of each node.
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should be considered54. Nevertheless, RNA-Seq is a new technique and under development and despite the cost, 
widely used in the context of gene expression55 and when it studied with microarray, they can be complemented 
with each other56.

In conclusion, our finding suggests that the different expressions of genes and miRNAs are one of the most 
important variables in AD. Bioinformatic Analysis could help us to find the most important genes, miRNA, 
miRNA-mRNA interactions and their related pathways. Hence, these should be probed in further studies for 
better understanding of the gene regulatory network, molecular mechanisms of AD, developing new therapeutic 
approaches, future studying of miRNA function and regulation and their potential as diagnostic biomarkers for 
AD. However, this project is a bioinformatics analysis study based on the high throughput data and is not derived 
in our laboratory, but a large number of experimental studies confirm that the pathways and genes which were 
involved in AD are supported.

Methods
We have detected miRNA and their target genes in AD as well as the Gene Ontology and their signaling pathways. 
First, we detected differentially expressed genes (DEGs) by meta-analyzing six gene microarray data sets, for 
the differentially expressed miRNAs (DEmiRs), a miRNA expression profile could be detected. Then using the 
Cytoscape 3.2.157 software, DEGs and DEmiRs in order to visualize and draw the miRNA-gene interaction net-
work. Furthermore, we calculated the active hubs and their immediate neighbors in our miRNA-gene network; 
we obtained the potential active miRNAs and target genes in AD. Last but not least, using the ClueGO v2.2.5 
plugin58 in Cytoscape 3.2.1, we detected the pathways of our top miRNA-target genes and therefore, the signifi-
cant pathways involved in AD (Fig. 2) were revealed. The summary of the overall study process has been shown 
in the diagram supplementary Figure S1.

Microarray analysis and availability.  Seven microarray data sets of human AD up to 31 December 
2016 according to our criteria (Fig. 1) have been selected that are available in the public repository: NCBI 
Gene Expression Omnibus (GEO): GSE1297, GSE4757, GSE5281, GSE12685, GSE28146, GSE16759, in which 
GSE16759 was used for its miRNA expression profile47,59–64 and totally 264 samples (113 control and 151 cases) 
were analyzed in this study which their details have been mentioned in Table 1. Brain samples of each data sets 
were collected from Research Institute of Alzheimer’s disease in the USA; so, descriptions and categorization 
of the donor samples details, including the mean age, gender, and brain regions were listed in supplementary 
Table S9. These seven data sets were independently generated using different protocols. The quality control and 
normalization of our array data have been done with affy, plier and piano packages in R65–67. Their output has 
been reported in supplementary Figure S2. Analyzing AD has been done in two groups control and AD patients 
using the GEO2R tool, to detect differentially expressed genes (DEGs) and differentially expressed miRNAs 
(DEmiRs)68.

Differentially expressed miRNAs in AD.  High-throughput techniques to investigate miRNA expression 
in AD have thus far rarely been used; we found only one miRNA microarray data set in GEO (GSE16759), that 
studied both miRNA and mRNA expression in AD patients and controls47.

Meta-analysis.  Different gene expression profiles may demonstrate the varied differentially expressed (DE) 
genes to obtain accurate gene expressions69; hence, we used a meta-analysis in our study. In this study, we implemented  
the meta-analysis by using the R package RobustRankAggreg70. The scores based on the P value were calculated 
for all seven data sets, genes and miRNA with P-values less than 0.05 and fold change ≥  1.23 were considered as 
DEGs. In our study, we performed a sub meta-analysis on Male and Female with four GSEs (GSE16759 because 
of the low sample size and GSE4757 because the unknown gender have been excluded). On the other hand, the 
expression profile of six brain regions and sub meta-analysis on the hippocampus and entorhinal cortex have 
been done to comprise the effect of brain regions on DEGs. Then region specific genes for each brain region in 
AD have analyzed.

Studying of RNA-seq data.  According to our inclusion and exclusion criteria, by searching the GEO and 
SRA (https://www.ncbi.nlm.nih.gov/sra), all available gene expression data in the context of AD have been col-
lected (supplementary Figure S3). The GSE53697 by the Illumina HiSeq. 2500, GSE67333 by the Illumina HiSeq. 
2000 platforms and GSE57152 by AB 5500xl Genetic Analyzer platforms respectively have been selected for fur-
ther analysis. The quality control (FastQC) on the RNA-seq (GSE53697, GSE67333, and GSE57152) short reads 
have been done (supplementary Figure S4)71,72; hence, samples with low quality, even after trimming were omit-
ted. Totally 20 control samples and 21 patient samples have been selected for RNA-seq data analysis. The whole 
descriptions of each RNA-seq donor sample detail were categorized in supplementary Table S10. Therefore, for 
comparing the expression profile of RNA-seq (GSE67333 and GSE57152), TopHat2 (version 2.0.8)73 was utilized 
to align the RNA short reads to the reference human genome (hg38). Then individual transcripts were assembled 
with cufflinks and for generating the RNA-seq DEGs, Cuffdiff, which calculates the expression and finds signifi-
cant changes in samples have been done74,75. Also, the available analyzed expression profile of GSE53697 was used 
which is in the supplementary files12.

Identification of miRNA-target genes.  To construct the Gene Regulatory network (GRN) for 
miRNA-target genes based on gene expression and DEmiRs, all of them were integrated and visualized in 
Cytoscape 3.2.1. In this regard, we used cyTargetLinker plugging in Cytoscape 3.2.1 to draw the miRNA-target 
genes network13. After that, an organic layout was applied on the network, all of them except Homo sapiens fil-
tered. Furthermore, node size and color have been done on the miRNA-target genes network based on logFC for 
all of them.

https://www.ncbi.nlm.nih.gov/sra
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Identification of potential active miRNA-target genes in AD.  Traced networks often have a com-
plex structure, even if it is distilled into the smaller network. For solving these problems and analyzing the net-
work easily, Cytoscape 3.2.1 conspicuously helps us. By centiscape plugging in that we could find the hub nodes 
in miRNA- target genes network. In this analysis, we calculate degree-closeness and degree-betwenness for all 
nodes, edges and detected the potential active miRNA node. Then we continued the study14. In order to deter-
mine the validated miRNA target genes as compared to predicted ones that were studied in this analysis, miRTar-
Base76, TarBase v.8 77and miRWalk 2.078,79 databases have been utilized.

Enriched gene ontology and pathways analysis.  To identify the biological processes and their path-
ways in the miRNA-target genes and gender specific genes; also, molecular function of each region specific genes, 
the ClueGO v2.2.5 plugin of Cytoscape 3.2.1 was used58. In the advanced statistical option in ClueGo v2.2.5 
plugin, Two-sided hypergeometric test to calculate the importance of each term was selected and Bonferroni 
step-down, and Kappa score = 0.4 were used for P value correction. In this part of our study, we detect the KEGG 
pathways of all genes that were interacted by hub node. In our previous study in the context of network biology, 
we utilized ClueGO v2.2.4 plugin for visualizing the functionally related gene by network and showed the signif-
icant results based on Bonferroni step down correction and kappa score threshold80.

Clustering gene expression data.  Clustering of DEGs was done using the R packages gplots, 
RcolorBrewer which we have visualized it81,82. In this part of our study, we used hierarchical clustering, which is 
a powerful method for analyzing high throughput expression data. R calculated the similarity between genes in 
each data sets and showed the expression value by colors then clustering them.
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