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Uncovering hidden disease patterns 
by simulating clinical diagnostic 
processes
Abolfazl Ramezanpour  1,2 & Alireza Mashaghi1

Choosing a sequence of observations (often with stochastic outcomes) which maximizes the 
information gain from a system of interacting variables is essential for a wide range of problems in 
science and technology, such as clinical diagnostic problems. Here, we use a probabilistic model of 
diseases and signs/symptoms to simulate the effects of medical decisions on the quality of diagnosis 
by maximizing an appropriate objective function of the medical observations. The study provides a 
systematic way of proposing new medical tests, considering the significance of diseases and cost of the 
suggested observations. The efficacy of methods and role of the objective functions as well as initial 
signs/symptoms are examined by numerical simulations of the diagnostic process by exhaustive or 
Monte Carlo sampling algorithms.

Clinical diagnosis is typically made through a process that starts with identifying initial findings and noting the 
past medical history of the patient and ends with a diagnosis or unresolved differential diagnoses1,2. In practice, 
the sequence of steps one clinician follows may be very different from those taken by another clinician, and the 
same clinician may approach the problem differently in two nearly identical cases3. This variability in diagnostic 
approach has a complex source and is rooted in the limited and varied extent of knowledge of the clinicians, 
stochasticity of the decision-making process, and lack of solid risk and cost assessment strategies among others.

Since the classic paper by Ledley and Lusted4 where they first detailed on how logic and probabilistic reasoning 
form the backbone of medical reasoning, there has been much progress in the development of diagnostic decision 
support systems (DDSS)5–11. In recent decades, due to limited availability of appropriate clinical data, there has 
been growing interest in developing heuristic formal and rigorous mathematical models. These studies covered 
a wide range of approaches from simple Bayesian models to Bayesian belief networks and neural networks12–18.

Here, using simple and rigorous models, we look for determinants of the efficiency of a diagnostic approach, 
i.e. choice of a sequence of events that leads to a diagnosis. The study involves concepts and tools of machine 
learning and inference, as well as stochastic optimization, to deal with the model construction and the stochastic 
nature of the problem19–22. In ref.23 we used techniques from statistical physics of disordered systems to study 
this problem with more emphasis on the role of the interaction graph of signs (hereafter, we refer to symptoms 
or signs as “signs” for simplicity) and diseases in the quality of diagnosis24–28. Our models are indeed natural 
generalizations of the simpler probabilistic models studied in previous works13–15, which usually assume that 
only one disease is behind the findings (exclusive diseases assumption) or the diseases act independently on the 
signs (causal independence assumption). Moreover, for computational simplicity, it is usually assumed that there 
is no disease-disease and sign-sign interactions. We showed that such interactions can significantly improve the 
accuracy of diagnosis without resorting to the exclusive diseases or the causal independence assumption. In this 
paper, we extend our previous study by introducing new performance measures and optimization algorithms 
with more focus on the role of the objective function and initial number of observations in the performance of 
the diagnostics algorithms.

Given a model of disease and sign variables, we aim to propose an optimal sequence of medical tests maxi-
mizing an appropriate objective function of the observations (Fig. 1). Here, besides the nature of the model, the 
structure of the objective function and the initial number and quality of medical tests play a significant role. A 
reasonable objective function for these kind of problems is provided by the maximum value of the disease likeli-
hood29. To reduce the diagnosis time and the mortality and morbidity of diseases, we propose an objective func-
tion which gives more weight to the more polarizing observations and dangerous diseases. We see how the initial 

1Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Leiden, The Netherlands. 
2Department of Physics, University of Neyshabur, Neyshabur, Iran. Correspondence and requests for materials 
should be addressed to A.M. (email: a.mashaghi.tabari@lacdr.leidenuniv.nl)

Received: 31 May 2017

Accepted: 24 January 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-3650-7722
mailto:a.mashaghi.tabari@lacdr.leidenuniv.nl


www.nature.com/scientificreports/

2SCIeNTIFIC REPORts |  (2018) 8:2436  | DOI:10.1038/s41598-018-20826-y

number of observations and the cost of medical tests in the objective function affect the diagnosis performances 
in numerical simulations of the models. We also devise an approximate optimization algorithm based on the 
Monte Carlo sampling to construct an optimal sequence of medical tests for observation.

Main definitions and problem statement
Models. Consider a set of ND binary variables D = {Da = 0, 1: a = 1, …, ND}, where Da = 0,1 shows the absence 
or presence of disease a. We have another set of NS binary variables S = {Si =± 1: i = 1, …, NS} to show the values 
of sign variables (clinical and laboratory findings). We take Wa for the weight or importance of disease a, and 
Ci for the cost of observing sign i. In the following, the weights Wa ∈ (0, 1) and costs Ci ∈ (0, 1) are independent 
and identically distributed random variables with a uniform probability distribution. The joint probability dis-
tribution of the sign and disease variables (i.e., the model) is identified by P(S; D) = P(S|D)P0(D). Here P0(D) is 
the prior probability distribution of diseases, which could depend on the patient’s characteristics such as gender 
and age and disease properties such as duration of a disease, mortality rate and transmission rate among others.

Let Ptrue(S|D) be the true probability distribution of sign variables given disease hypothesis D. In practice, we 
may have access only to a small subset of marginal probabilities of this true distribution. For instance, suppose we 
are given sign probabilities Ptrue(Si|nodisease), Ptrue(Si, Sj|onlyDa), and Ptrue(Si, Sj|onlyDa, Db) conditioned on the 
absence of any of the diseases, and the presence of only one and two diseases, respectively. Using the maximum 
entropy principle30, for the conditional probability distribution of signs we take23
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where the partition function Z(D) is obtained from normalization ∑SP(S|D) = 1. More precisely, the disease 
interaction factors (φ0, φa, φab), are given by

Figure 1. An illustration of the model definitions and the diagnostic processes. (a) A patient is represented with 
a disease pattern D (with 0 for the healthy state) and signs S. (b) A medical test changes an unobserved sign 
to an observed one with values ±1. (c) The probabilistic model is defined with the prior disease probabilities 
P0(D) and the conditional sign probabilities P(S|D). The leak probability P(S|0) takes into account the effects 
of unknown or ignored diseases. (d) The two diagnostic procedures (Diags-I and Diags-II) start from the 
same initial findings, but differ in the way the new observations are decided. In Diags-I, the true value of an 
observed sign is revealed by a medical test before going to the next observation. In Diags-II, the whole process is 
simulated with the sign values that are inferred from the probabilistic model.
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In principle, the above information from the true probability distribution is sufficient to determine the model 
parameters K K,i i

a ab0 , , and Kij
a ab, . Figure 2 shows the interaction graph of sign and disease variables related by the 

above interaction factors23. We use Ma and Mab for the number of one-disease and two-disease interaction factors, 
respectively. An interaction factor is connected to ka or kab signs depending on the number of involved diseases.

Simplifying Assumptions. For simplicity, in the main text, we ignore the sign-sign interactions in the interaction 
factors (K K 0ij

a
ij
ab= = ). That is, we consider the one-disease-one-sign (D1S1) model with parameters K K,i i

a0 , 
and two-disease-one-sign (D2S1) model with parameters K K K, ,i i

a
i
ab0 . This allows us to compute exactly the 

partition function for these models. Moreover, given the true marginals, the parameters K K,i i
a ab0 ,  of the D1S1 

and D2S1 models can be computed exactly. To be specific, in the main text we focus on the D2S1 model, which 
works well as long as the number of present diseases in the hypothesis, |D|, is less than or equal to two23. We shall 
briefly discuss the results obtained from the simpler D1S1 model and the more difficult D2S2 model (including 
the two-sign interactions) in Supplementary Information, Appendixes A and B, respectively.

In addition, we assume that the prior disease probability is factorized, P P DD( ) ( )a
N

a0 1 0D= ∏ = , with 
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= + . The parameters Ka
0 can be used to control the expected number of present diseases in 

the hypothesis. For instance, Ka
0 can be chosen such that NDP0(Da = 1) = |D|. Alternatively, we can fix the expected 

number of disease probabilities which are greater than a threshold value. As long as the number of signs and 
diseases is small (e.g., NS = 20, ND = 5), we work with a fully connected model of the variables, where all the 
one-disease and two-disease interaction factors (φa, φab) including the interactions with all the sign variables 
could be present in the model. The graph parameters defining the structure of a fully connected model are: 
Ma = ND, Mab = 0, ka = NS in the D1S1 model and Ma = ND, Mab = ND(ND − 1)/2, ka = kab = NS in the D2S1 model. 
For larger number of variables, we limit ourselves to sparsely connected graphs with smaller number of interac-
tion factors (Ma, Mab) and connectivities (ka, kab).

Diagnosis. Let us assume that a subset i i iI { , , , }N0 1 2 O
= …  of the sign variables is observed with values So. The 

possible values for the remaining subset of unobserved signs are denoted by Su. At each time step t = 1, 2, …, T we 
use a strategy to choose one of the unobserved signs jt for observation. The sequence of observed signs at time step t 
is represented by O(t) = I0∪{j1, …, jt}. We use U(t) for the subset of unobserved signs.

At each step we have the disease and sign probabilities,
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Figure 2. The interaction graph of disease variables (left circles) and sign variables (right circles) related by Ma 
one-disease and Mab two-disease interaction factors (middle squares) in addition to interactions induced by the 
leak probability (right square) and the prior probability of diseases (left square). In general, an interaction factor 
α = a, ab is connected to kα signs and lα diseases23.
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which can be used to compute the disease marginal probabilities P(Da|So) and the sign marginal probabilities 
P(Si|So). The maximum likelihood (ML) hypothesis DML is obtained by maximizing the disease likelihood29,

∑| ≡ | . P PD S S D D( ) ( ) ( )
(7)
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At each step t we choose an unobserved sign for observation which maximizes an appropriate objective func-
tion of the chosen sign. A reasonable objective function is the maximum value of the disease likelihood,
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The average 〈⋅〉O in the above equations is taken over the probability distribution of observation outcomes. 
Note that before the medical observation we only know the marginal probability of the chosen sign P(Sj|So(t − 1)).  
And, after each observation (medical test), we obtain the true value of the observed sign.

We assume that the aim of the diagnostic process is to reach the correct diagnosis with the minimum number 
of medical tests. Obviously, a disease probability that is closer to zero or one could be more helpful to decide if the 
disease is absent or present. Therefore, we may at each step choose the sign that results to the largest polarization 
of the disease probabilities:
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Other measures of polarization, e.g., the root-mean-square of single-disease polarizations, may work as well23. 
Here we are taking into account also the importance or weight of the diseases Wa, which could be high for exam-
ple for life threatening diseases. The P(Da = 1|So(t)) give the disease probabilities after the t-th observation. The 
marginal probabilities are obtained from the reconstructed models of the true probability distribution.

In this paper, however, we are interested in simulation of the above sequential process of decisions and obser-
vation for T steps, without asking for any real medical test to reveal the true sign values. In other words, we are 
interested in extrapolation or prediction of the diagnostic process starting from a small subset I0 of the observed 
signs and a simple model of the sign and disease variables. Here, an observed sign j in the process is treated as a 
stochastic variable with a value that is sampled from the associated marginal probability P(Sj|So(t − 1)) at that 
time step. For brevity, we call this type of diagnosis Diags-II, and Diags-I is used to refer the diagnostic process in 
which the true sign value is known (by medical test) just after choosing the sign for observation.

More precisely, in the case of Diags-I, at each time step t we choose an unobserved sign jt, which maximizes 
the following objective function

λ λ≡ + − . t t t SC t( ) ML( ) DP( ) ( ) (10)P C

Then we do the medical test to find out the true value of the chosen sign, and go to the next step of the diag-
nostic process. We have included also the sign cost ≡SC t C( ) jt

 into the objective function. The λP and λC are 
parameters to control the degree of disease polarization and cost of the observations, respectively. In the case of 
Diags-II, we choose an optimal sequence of decisions O(T), which maximizes the following objective functional 
of the candidate observations:
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Simplifying Assumptions. A greedy approximation of Diags-II is obtained by splitting the whole process into T 
independent steps; this is very similar to Diags-I except the fact that here we do not know the true sign values. 
But, we have an estimate of the marginal sign probabilities P(Sj|So), which can be utilized to assign a good value 
to the “observed” sign. The time complexity of the optimization algorithm is then of order (NS − NO)T times the 
complexity of computing the marginal sign/disease probabilities and the maximum likelihood. These computa-
tions can be done by approximate inference and optimization algorithms based on the Monte Carlo sampling. 
For sparse interaction graphs of sign and disease variables, the time complexity of such an algorithm would be 
proportional to NS.

To simplify the study and reduce the computation time, we shall replace the average over the possible realiza-
tions of the observation outcome with the most probable value. Suppose that we are to observe sign j at time step 
t. Then, we assume that the outcome of each observation is given by the value which maximizes the correspond-
ing marginal probability at that time step, i.e., Sj = arg max P(Sj|So).

Diagnostic Performance Measures. The main question of this study is: How close are the predictions 
obtained by Diags-II to the (more expensive) Diags-I? And, when we can trust the outcome of such a diagnos-
tic process? More precisely, given the model of sign and disease variables, we shall see how predictions of the 
Diags-II improve by increasing the number of initial observations. This of course depends on the quality of the 
reconstructed models, the structure of the objective function and performance of the optimization algorithm 
which is used in the study of Diags-II, and the number of initial observed signs.

To check the quality of our extrapolation, we shall take a simple benchmark model for the true probability 
distribution Ptrue(S|D). Given, any disease hypothesis Dtrue, the associated signs Strue can then be obtained by 
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taking the most probable signs from the true probability distribution. To be specific, for the true model we take 
the following exponential distribution:
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where the Hamming distance H(S, S′) = ∑i(Si − S′i)2/4 gives the number of different signs in the two sign config-
urations. Here S(D) defines the signs attributed to D. We will choose these signs randomly and uniformly from 
the configuration space of sign variables.

Consider the diagnostic process for a patient with true disease values Dtrue. At any time step t, we compute the 
overlap of the disease probabilities with the true disease hypothesis,
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This shows how well the inferred disease probabilities are close to the true disease values. Obviously, DL(t) 
always increases (on average) with the number of observations in the Diags-I. But this quantity can decrease or 
increase with t depending on number of initial observations NO(0).

Another interesting quantity is the first diagnosis time for a specific subset of diseases A; we define the first 
right diagnosis time TR as the first time at which we find:

P(Da = 1|So(t)) ≥ Pth for at least one of the diseases a ∈ A.
In the same way we define the first wrong diagnosis time TW as the first time at which:
P(Da = 1|So(t)) ≥ Pth for at least one of the diseases a ∉ A.
Then, the probability of having right or wrong diagnosis after t observations would critically depend for exam-

ple on the initial number of observations.

Simplifying Assumptions. To obtain an upper bound for the critical number of initial observations, we use a 
random strategy for suggesting the observations in the diagnostic process. By the random strategy we mean that 
at each step we choose randomly an unobserved sign for the next observation. Then, in the Diags-I (random), we 
do a real observation to find out the true value of the chosen sign. Instead, in the Diags-II (random), we assign 
the most probable value of the sign to the suggested sign for observation and go ahead without doing any real 
observation.

Approximation Algorithms
A (zero-temperature) Monte Carlo algorithm. In the following, we shall work with the sequence con-
figuration I1 → T ≡ {j1, …, jT} instead of the whole set of observations O(T) = I0∪{j1, …, jT}. For any such configu-
ration, we can compute the marginal probabilities P(Sj|So(t)) and P(Da|So(t)), and the objective function  →I[ ]T1 , 
by an exact algorithm (for small number of variables) or an approximate algorithm (for larger number of varia-
bles). In either case, we have to run the algorithm for T times to compute the disease probabilities conditioned on 
the values of the observed signs in the previous steps. Thus, the time complexity of the algorithm is proportional 
to T times the time complexity of computing the objective function31. The main steps of the optimization algo-
rithm are:

•	 Input: the model P(S; D), the weights Wa and costs Ci, the parameters λP,C, initial set of observed signs I0, time 
steps T

•	 Start from an initial (random) sequence of observations I1→T = {j1, …, jT}:
•	 compute the objective function → I[ ]T1
•	 For n n1, 2, , max= … :

•	 suggest a new configuration I′1→T
•	 compute the change ′∆ = −→ →  I I[ ] [ ]T T1 1  in the objective function
•	 accept the new configuration if ∆ > 0

•	 Output: the (local) optimal configuration I T
opt
1→

Computing the objective function and generating a new sequence configuration I′1 →T from I1→T are the main 
parts of the algorithm. In a previous study23, we found that a good heuristic strategy is to choose at each step the 
most positive unobserved sign for the next observation. The most positive sign is the one with the maximum 
probability of being positive, that is = = + |∈i P S Sarg max ( 1 )MP i U i

o . It is important that the assigned values are 
as close as possible to the true values. By choosing the most positive signs we indeed try to reduce the error in 
prediction of the values of the observed signs in the simulation process. Note that a wrong assignment at the early 
stages of the process can significantly affect the whole process, consequently affecting the diagnosis.

Here we use this finding to guide the updating step of the optimization algorithm. More specifically, we use the 
following rules to update a sequence configuration I1→T:

•	 choose randomly a time step 1 ≤ τ ≤ T
•	 for t = τ,…T, suggest an unobserved sign jt′ with a probability proportional to P S tS( 1 ( 1))j

o
t

= + | −
′
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The above process suggests the new sequence I′1→T = {j1, …, jτ−1, jτ′, …, j′T} which is accepted only if the new 
sequence increases the objective function. The success probability of a candidate sequence suggested in this way 
is about 0.57 (in 660 trials) for the Diags-II, with NS = 500, ND = 50, NO(0) = 50, and T = 50. Details of computing 
the objective function is given in Methods Section. Very briefly, to compute the objective function we need the 
sign and disease marginal probabilities (for DP(t)), which are estimated by a standard Monte Carlo algorithm, 
and the maximum likelihood value (for ML(t)), which is estimated by a Simulated Annealing algorithm25. The 
latter computation can again be done by a zero-temperature Monte Carlo algorithm, but since it determines the 
objective function we prefer to employ a more accurate optimization algorithm. The time complexity of these 
algorithms in a sparse D2S1 model is proportional to the number of diseases.

Results
In this section, we present the results obtained by the numerical simulations of the Diags-I and Diags-II for 
different parameters in the objective function (λP, λC) and different number of initial observations NO(0). In 
Fig. 3 we report the overlap of the disease probabilities with the true disease values, DL(t), as the number of 
observations t increases starting from an initial number of observations. Here, we observe the impact of dis-
ease polarization and initial observations on DL(t) using the greedy strategy. Figure 4 displays the joint proba-
bility distribution of the first diagnosis times P(TR,TW) in the D2S1 model with the Diags-II (greedy). To see 
better the effects of (λP, λC) and NO(0) on the first diagnosis times, in Figs 5 and 6 we show the cumulative 
probability distributions P(TR ≤ t) and P(TW ≤ t). It is important to know how much the parameter λC reduces 
the cost of observations SC(t). Figure 7 displays the cumulative cost SC t( )t

t
1∑ ′′=  for two values of λC we used in 

the numerical simulations. The number of variables in these figures is sufficiently small (NS = 20, ND = 5), 
which allows us to compute exactly the marginal sign/disease probabilities by an exhaustive sampling algo-
rithm. To check the results for larger problem sizes, we have to resort to the Monte Carlo algorithms intro-
duced in the previous sections. Figures 8–10 show the behavior of the first diagnosis times for the D2S1 model 
using the Diags-II. Here, we compare the results obtained by a random strategy with those that are obtained by 
maximizing the objective function.

Main points of this study are:

Figure 3. Dependence of DL(t) on the initial number of observed signs NO(0) and the parameters λP, λC. The 
results have been obtained from the D2S1 model by (a)–(b) the Diags-I (greedy), and (c)–(d) the Diags-II 
(greedy) with the prior probabilities P0(Da = 1) = 2/ND. The model parameters of the (fully connected) D2S1 
model are obtained exactly from the conditional marginals of the true exponential model. A disease hypothesis 
is chosen randomly for the simulation with a probability proportional to the weights of the present diseases. All 
the marginal probabilities have been computed exactly for a small number of sign and disease variables (NS = 20 
and ND = 5). The data are results of averaging over at least 500 independent realizations of the models and 
simulation process.
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•	 Figs 3–6 show that adding a measure of disease polarization to the standard objective function (the maximum 
value of the log-likelihood) improves the diagnostic performance.

•	 We find that the cost of observations can considerably be decreased without seriously affecting the diagnostic 
performance. As Figs 3–7 show, the overlap of the disease probabilities with the true disease values does not 
significantly change by considering a small penalty for the cost of observations in the objective function. This 
is the case specially for intermediate values of t, where the optimized cumulative cost displays the largest 
deviation from the unoptimized one.

•	 The diagnostic performance of the Diags-I process always increases with the number of observations, because 
any observation (even if suggested randomly) reveals the true value of a previously unobserved sign. How-
ever, we see in Figs 3 and 6 that the performance of the Diags-II depends critically on the initial number of the 
observed signs. In particular, for ⁎<N N(0)O O the Diags-II process more likely results in a wrong diagnosis, 
with P(TR ≤ T) − P(TW ≤ T) < 0 for a sufficiently large number of observations T. On the other hand, the 
probability of a right diagnosis in the Diags-II process is greater than the wrong one for ⁎>N N(0)O O. We 
obtain an upper bound for this critical value of NO

⁎ for a sparse model of sign and disease variables, with 
ND = 50, NS = 500, Ma = 50, Mab = 100, ka = kab = 150, see Figs 8 and 9. The upper bound is obtained by the 
random strategy where at each step we choose randomly and uniformly an unobserved sign for observation. 
In general, we expect that such a critical value to be proportional to the total number of signs in the model, 
and of course dependent on the model structure. Here, the marginal sign/disease probabilities are computed 
by a standard Monte Carlo algorithm.

•	 Moreover, even for ⁎<N N(0)O O, there exists a characteristic number of observations t*, where for t < t* the 
probability of inferring the right diseases in the Diags-II is still larger than that of the wrong diagnosis (Fig. 9). 
The characteristic time t* of course increases with the number of initial observations. In other words, t* gives 
the maximum number of observation tests (in the Diags-II) we can choose randomly before missing the use-
ful information provided by the initial observations.

•	 We use the marginal sign probabilities P(Sj = + 1|So) to guide the updating step of a (zero-temperature) 
Monte Carlo algorithm for optimizing the objective functional of the observations. This algorithm was used 

Figure 4. The joint probability of the first diagnosis times, P(TR, TW), for different numbers of initial 
observations NO(0) and the parameters λP, λC. The panels display the cases: (a)–(c) NO(0) = 4 and (d–f) 
NO(0) = 2 for (λP = λC = 0), (λP = 1, λC = 0), (λP = 1, λC = 0.1), respectively. The results have been obtained 
from the D2S1 model by the Diags-II (greedy) with the prior probabilities P0(Da = 1) = 2/ND, and the threshold 
probability Pth = 0.9. The last values of TR and TW are reserved for the case in which the corresponding disease 
probabilities remain less than the threshold value during the whole process. The model parameters of the (fully 
connected) D2S1 model are obtained exactly from the conditional marginals of the true exponential model. 
A disease hypothesis is chosen randomly for the simulation with a probability proportional to the weights of 
the present diseases. The number of present diseases in the hypothesis is |D| = 2. All the marginal probabilities 
have been computed exactly for a small number of sign and disease variables (NS = 20 and ND = 5). The data are 
results of at least 500 independent realizations of the model and simulation process.
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to uncover a small number (one or two) of hidden diseases in sparsely interacting models of signs and dis-
eases, by simulating the Digas-II process. Figure 10 compares the first diagnosis times (TR, TW) obtained by 
the above algorithm with the ones predicted by the random strategy. Here, the marginal sign/disease proba-
bilities and the maximum of the log-likelihood in the objective function are computed by the standard Monte 
Carlo and Simulated Annealing algorithms.

Discussions and Conclusions
In this article, using novel, simple and rigorous models, we studied the efficiency determinants of a diagnostic 
approach, i.e. choice of a sequence of steps that leads to a diagnosis. We assessed the tradeoff between the num-
ber of steps (tests) and the cost (financial cost and biological risk) involved. We compared the efficiency of a 
sequential step-by-step diagnostic approach (i.e. a medical test is ordered and then the next test is decided) with 
an approach that orders a batch of tests at once during a clinical session. We recommend a combination of the 
two approaches, i.e. starting with the step-by-step approach and then switching to the batch approach would be 
optimal. The timing of when to switch is then dependent on the collected mass of information. At a certain criti-
cal point, switching the strategy would allow for faster clinical management. Moreover, we defined and reflected 
on an inherent property of a test, termed as disease polarization, that needs to be considered in constructing an 
efficient diagnostic flowchart. Our model includes interactions between diseases (and signs) which are typically 
neglected in the literature, but are emerging as important ingredients in omics analyses of human physiology and 
diseases32.

Finally, it should be mentioned that the typical diagnostic problems may involve many differentials (e.g. a few 
hundreds or thousands of diseases and signs)13. Monte Carlo is a computationally extensive algorithm to deal 
with large-scale problems. However, it works well independent of the model structure, if provided with adequate 
time. In our previous work, we proposed an approximate algorithm that is based on the Bethe approximation, but 
it works well for very sparse interaction graphs23. In a recent work, we are going to use the mean-field approxima-
tion, which again works well in fully-connected interaction graphs (unpublished data). Of course, the algorithms 
that are based on Bethe and mean-field approximations are more efficient than Monte Carlo. But, as mentioned 
earlier, their performance is limited by the structure of the model.

Figure 5. The cumulative probabilities P(TR ≤ t) and P(TW ≤ t) of the first diagnosis times for different numbers 
of the initial observations NO(0) and the parameters λP, λC. The results have been obtained from the D2S1 
model by the Diags-II (greedy) with the prior probabilities P0(Da = 1) = 2/ND, and the threshold probability 
Pth = 0.9. The model parameters of the (fully connected) D2S1 model are obtained exactly from the conditional 
marginals of the true exponential model. A disease hypothesis is chosen randomly for the simulation with a 
probability proportional to the weights of the present diseases. The number of present diseases in the hypothesis 
is |D| = 2. All the marginal probabilities have been computed exactly for a small number of sign and disease 
variables (NS = 20 and ND = 5). The data are results of at least 500 independent realizations of the model and 
simulation process.



www.nature.com/scientificreports/

9SCIeNTIFIC REPORts |  (2018) 8:2436  | DOI:10.1038/s41598-018-20826-y

Figure 6. The difference δP(t) ≡ P(TR ≤ t) − P(TW ≤ t) in the cumulative probabilities of the first diagnosis 
times for different numbers of the initial observations NO(0) and the parameters λP, λC. The results have been 
obtained from the D2S1 model by (a),(b) the Diags-I (greedy), and (c)–(d) Diags-II (greedy) with the prior 
probabilities P0(Da = 1) = 2/ND, and the threshold probability Pth = 0.9. The model parameters of the (fully 
connected) D2S1 model are obtained exactly from the conditional marginals of the true exponential model. 
A disease hypothesis is chosen randomly for the simulation with a probability proportional to the weights of 
the present diseases. The number of present diseases in the hypothesis is |D| = 2. All the marginal probabilities 
have been computed exactly for a small number of sign and disease variables (NS = 20 and ND = 5). The data are 
results of at least 500 independent realizations of the model and simulation process.

Figure 7. Cumulative cost of the diagnosis for two different values of λC. The results have been obtained from 
the D2S1 model by the Diags-II (greedy) with the prior probabilities P0(Da = 1) = 2/ND. The model parameters 
of the (fully connected) D2S1 model are obtained exactly from the conditional marginals of the true exponential 
model. A disease hypothesis is chosen randomly for the simulation with a probability proportional to the 
weights of the present diseases. All the marginal probabilities have been computed exactly for a small number of 
sign and disease variables (NS = 20 and ND = 5). The data are results of averaging over at least 500 independent 
realizations of the model and simulation process.
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Figure 8. The cumulative probabilities P(TR ≤ t) and P(TW ≤ t) of the first diagnosis times for different 
numbers of the initial observations NO(0). The results have been obtained from a sparse D2S1 model by the 
Diags-II (random) with the prior probabilities P0(Da = 1) = 2/ND, and the threshold probability Pth = 0.9. The 
model parameters of the (sparse) D2S1 model are obtained exactly from the conditional marginals of the true 
exponential model. The interaction graph and model parameters are: NS = 500, ND = 50, Ma = 50, Mab = 100, 
ka = 150, kab = 150. A disease hypothesis is chosen randomly for the simulation with a probability proportional 
to the weights of the present diseases. The number of present diseases in the hypothesis is |D| = 2. The marginal 
probabilities have been computed approximately by the Monte Carlo algorithm. The data are results of at least 
200 independent realizations of the model and simulation process.

Figure 9. The difference δP(t) ≡ P(TR ≤  t) − P(TW ≤ t) in the cumulative probabilities of the first diagnosis 
times: (a) vs the number of observations t for different numbers of the initial observations NO(0), and (b) δP(50) 
vs NO(0) for a sufficiently large value of t. The results have been obtained from a sparse D2S1 model by the 
Diags-II (random) with the prior probabilities P0(Da = 1) = 2/ND, and the threshold probability Pth = 0.9. The 
model parameters of the (sparse) D2S1 model are obtained exactly from the conditional marginals of the true 
exponential model. The interaction graph and the model parameters are: NS = 500, ND = 50, Ma = 50, Mab = 100, 
ka = 150, kab = 150. A disease hypothesis is chosen randomly for the simulation with a probability proportional 
to the weights of the present diseases. The number of present diseases in the hypothesis is |D| = 2. The marginal 
probabilities have been computed approximately by the Monte Carlo algorithm. The data are results of at least 
200 independent realizations of the model and simulation process.
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Method
Computing the objective function. Here we consider only the D1S1 and D2S1 models, where we can 
exactly compute the partition function
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For these models, we can also exactly compute the model parameters given the probabilities Ptrue(Si|nodisease), 
Ptrue(Si|only Da), and Ptrue(Si|only Da, Db),
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For a given subset O of observed signs with values So, the disease probabilities are obtained from
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Figure 10. (a),(b) The difference TW − TR in the first diagnosis times, and (c),(d) TW vs TR for some 
independent realizations of the problem. The results have been obtained from a sparse D2S1 model by the 
Diags-II (zero-temperature MC) in panels (a)–(c), and the Diags-II (random) in panels (b)–(d). The prior 
probabilities are P0(Da = 1) = 2/ND, and the threshold probability is Pth = 0.9. The model parameters of the 
(sparse) D2S1 model are obtained exactly from the conditional marginals of the true exponential model. The 
interaction graph and the model parameters are: NS = 500, ND = 50, Ma = 50, Mab = 100, ka = 150, kab = 150. 
The algorithms are given NO(0) = 50 initial observations to suggest a sequence of T = 30 other observations for 
diagnosis. Here we take λP = 1 and λC = 0. A disease hypothesis is chosen randomly for the simulation with a 
probability proportional to the weights of the present diseases. The number of present diseases in the hypothesis 
is |D| = 2. The marginal probabilities have been computed approximately by the Monte Carlo algorithm.
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For brevity, here we defined the local field experienced by sign i as
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It is easy to show that the marginal probability of an unobserved sign is given by:
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Now, we can use the standard Monte Carlo algorithm with the energy function |D S( )o , to compute the mar-
ginal probabilities which are needed for the objective function. More precisely, we need to sample the disease 
configurations with a probability proportional to β− |D Sexp( ( ))o . Here the inverse temperature parameter is 
β = 1. In addition, we need to compute the maximum log-likelihood function29, | D Smax log ( )o

D . This can be 
obtained by slowly increasing the inverse temperature parameter β in the above Monte Carlo algorithm. Note that 
in this way we obtain approximate values for the marginal probabilities and the maximum log-likelihood. The 
quality of these approximations of course depends on the computation time we spend for equilibration of the 
system in the Monte Carlo algorithm and the annealing process.

In practice, for a sparse D2S1 model with ND = 50 diseases, NS = 500 signs, and graph parameters Ma = 50, 
Mab = 100, ka = kab = 150, we run the algorithm for  = 20000total  iterations (Monte Carlo sweeps) with 

2000eq =  iterations for equilibration of the system, and extract the sample configurations after any = 20sample  
iterations. To compute the maximum log-likelihood with the annealing algorithm, we increase linearly the inverse 
temperature parameter β from 1 to 10 in 5000annealing =  iterations. Altogether, computing all the necessary 
marginal probabilities and the objective function for a given sequence of T = 20 observations with the above 
parameters takes about 20 minutes of CPU time in a standard computer.
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