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Abnormal optical anisotropy in 
correlated disorder KTa1−xNbxO3:Cu 
with refractive index gradient
Xin Zhang1,2, Shan He1,2, Zhuan Zhao1,2, Pengfei Wu1,2, Xuping Wang3 & Hongliang Liu1,2

In this report, an abnormal optical anisotropy in KTa1−xNbxO3:Cu (Cu:KTN) crystals with refractive index 
gradient is presented. Contrary to general regulation in a cross-polarization setup, the transmitted 
intensity of both TE (horizontally polarized) and TM (vertically polarized) lasers aligned with the basic 
crystallographic directions can be modulated quasiperiodically. The mechanism is supposed to be based 
on the polarization induced by the temperature gradient and the refractive index gradient. Meanwhile, 
the correlated disorder property of the crystals in the range of the freezing temperature (Tf) and the 
intermediate temperature (T *) also plays an important role. With the results verified both theoretically 
and experimentally, we believe this work is not only beneficial for the development of the theory 
associated with the correlated disorder structures in relaxor ferroelectrics, but also significant for the 
exploitation of numerous optical functional devices.

Correlated disorder, a peculiarity of relaxor ferroelectrics, has received tremendous attention in the research 
of functional devices in recent years1–4. In particular, among the numerous studies, amazing giant piezoelec-
tric effect and excellent electro-optic (EO) effect have been extensively reported, which is significantly essential 
to practical applications5–8. The superior performances therein were mainly attributed to the microstructures 
associated with the correlated disorder state in the vicinity of the dielectric peak temperature (Tm) below T * and 
above Tf, defined as the PNDs by J. Toulouse9. However, the relationship between the unique nanostructures in 
these relaxors and the enormous predominant features has not been clearly explicated and remains to be a quite 
popular topic.

The optical anisotropy of single crystals deeply influences the polarization performance, which is of vital 
importance for the applications in kinds of optical elements and systems. KTa1−xNbxO3 (KTN) is the solid solu-
tion of KTaO3 and KNbO3 and can be in its cubic, tetragonal or orthogonal phase at room temperature depending 
on the value of x, making it highly adaptable for different kinds of device applications. With the temperature 
across Tm, Nb ions displace off from their original center sites, which induces spontaneous polarization with the 
anisotropy of the physical properties in certain direction9. Recently, the research on KTN crystals suffers a great 
explosion because of their strong EO and thermo-optic responses, showing impressive potential in beam scan-
ning, EO modulation and high-resolution imaging and microscopy10–19. Meanwhile, the optical anisotropy was 
mostly involved in these investigations. Generally speaking, for a normally incident beam, the optical anisotropy 
is in line with the basic crystallographic directions of single crystals, leading to unequal refractive indexes for the 
corresponding polarization components. Thus, we can modulate optical parameters in respect of polarization20. 
Nevertheless, in this report, we observe an abnormal optical anisotropy, which is inconsistent with common 
cases. Lasers with both TE and TM polarizations can still be modulated quasiperiodically, despite their align-
ment with the basic crystallographic directions. The mechanism of this novel phenomenon is supposed to lie 
in the conjunction of the polarization induced by the temperature gradient and the refractive index gradient. 
In addition, the correlated disorder structure of the crystals as well plays an important role. The content herein 
will enrich related theories and experiences of ferroelectric relaxors in association with the correlated disorder 
structures. Besides, the abnormal optical anisotropy, unlimited to basic crystallographic directions, will render 
more flexible designs and applications for KTN crystals and other relaxors in the exploitation of optical functional 
devices.
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Results and Discussions
Determination of Tf and T *. Connected to an LCR (Inductance, Capacitance, Resistance) meter, the tem-
perature-dependent relative dielectric constant (εr) of the prepared crystal sample is measured (see Methods). 
As exhibited in Fig. 1(a), the temperature is controlled both decreasingly and increasingly between the range 
of 7 °C and 30 °C. The obvious thermal hysteresis declares a complex solid phase21, presaging that the operating 
temperature range exceeds Tf. The dielectric peak temperatures are 12 °C and 15 °C for decreased and increased 
temperature circles, denoted as Tm1 and Tm2, respectively. Figure 1(b) demonstrates the relationship between the 
reciprocal of εr and the temperature from 7 °C to 45 °C, indicating that T* is around 30 °C, obtained through the 
Curie-Weiss law22. Based on the above analysis, the temperature range of 7 °C and 30 °C is determined to locate 
between Tf and T*, where the correlated disorder state typically exists9.

Investigation of the abnormal optical anisotropy. In this experiment, the sample is placed between 
a cross-polarization setup (see Methods) with its geometrical axes corresponding to the basic crystallographic 
directions. It should be noted here that the polarizer is along with either the x (vertical) or the y (horizontal) 
direction, instead of a 45° cross-polarization setup used in routine studies of optical anisotropy23. The signal of the 
transmitted light is collected by the detector and displayed in Fig. 2. As Fig. 2(a) shows, for TM-polarized lasers, 
the transmission suffers quasiperiodical oscillation when the temperature decreases across Tm1 or increases across 
Tm2, respectively. Besides, as Fig. 2(b) illuminated, TE-polarized lasers present a similar feature. Generally, the 
optical anisotropy should not arise for such a setup since the polarizer is located aligned with the basic crystallo-
graphic directions. However, extraordinary change of the transmission versus the temperature is observed in this 
work, which is named as the abnormal anisotropy.

Depolarization of the incident lasers caused by the temperature gradient and the refractive 
index gradient. According to previous reports24,25, the orientation of the PNDs has a close relationship with 
the refractive index in the temperature range of [Tf, T*]. Since the two orthogonally polarized beams are both 
responsive, there must be an orientation at a none-zero angle to either of the two crystallographic directions. In 
other words, a polarization field in the corresponding direction should exist to reorient the original randomly 

Figure 1. (a) The temperature-dependent relative dielectric constant for both slow cooling and heating 
(0.05 °C/s). (b) Curie-Weiss fitting of the 1/εr-T curve indicating T * is around 30 °C.

Figure 2. (a) The transmission for both decreased and increased temperature in the range of 9~30 °C with a 
3 °C/min rate for TM-polarized lasers. (b) The transmission for both decreased and increased temperature in 
the 9~20 °C range with a 3 °C/min rate for lasers at TE polarization.
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oriented PNDs. Thus, the depolarization of lasers appears in each crystallographic direction. As specified in the 
related report26, a pyroelectric field (PΔT) induced by the temperature gradient was observed to form a polariza-
tion field in KTN crystals, effectively driving the PNDs to reorient coincidently. However, this can only partially 
explain the depolarization of TE-polarized lasers rather than lasers at TM polarization.

In the measurement, a slight anomaly emerges that the transmitted beam deviates its original rectilinear path 
from O to O′, as shown in Fig. 3(a). Since we affirm the parallelism of the two faces is normal to the incident 
beam, a refractive index gradient, Δn, should be involved in the y-axis11,27. Correspondingly, the refractive index 
gradient implies an incremental concentration of Nb ions for a positive Δn28,29. According to the off-center the-
ory30–32, the potential where more Nb ions locate is deeper than that of less Nb ions. Thus, an unsymmetrical 
model of the minima of the Gibbs free energy (G) should be applicable in a micro local region with different Nb 
concentrations. Due to the compositional gradient of Nb ions, it is reasonable to consider a continuous deeper 
potential along the y-axis, delineated as Fig. 3(b). For a local region where the potential energy ΔG1 < ΔG2, the 
polarization is along the y-axis, following the direction of Δn. For amount of proximate local regions, where 
ΔG1 < ΔG2 < ΔG3 < ΔG4<…, a macroscopic polarization is rational to form in the corresponding direction. And 
then, a polarization field component PΔn is determined by the continuous gradient potential. Consequently, we 
illustrate the vector sum P of PΔT induced by the temperature gradient field and PΔn caused by the refractive index 
gradient under both conditions of the temperature increasing and decreasing, as depicted in Fig. 3(c) and (d),  
respectively. Whereas P orients to neither the x-axis nor the y-axis, lasers at both TM and TE polarization can 
respond to be depolarized. In Fig. 2, it should be noted that at temperatures a bit lower than T*, the correlation 
between nanostructures is rather weak, which means that the depolarization of incident beams is not obvious. At 
lower temperatures around Tm1 and Tm2, due to strengthened correlation, depolarization becomes more notable.

To further confirm the impact of PΔn on the experimental results, the comparison of the transmitted light 
intensity is made between two different placements of the crystal as shown in the insets of Fig. 4. The incident 
points are chosen in the horizontal direction for each placement, named as 1, 2, 3 and 4, respectively. The inci-
dent beam used is TM-polarized with the crystal temperature controlled decreasingly. For lasers with the same 
incident power (~5 mW), the performances are significantly different for these two setups. For the case of points 
1 and 2, which are located along the direction of Δn, it shows obvious depolarization consistent with the results 
displayed in Fig. 2. Nevertheless, for the case of points 3 and 4, for which the locations are orthogonal to the Δn 
direction, the PΔn and PΔT are both in the vertical direction. Thus, the depolarization is rather weaker compared 
with that of points 1 and 2. For the case of points 3 and 4, the weak peaks should be caused by little deviation of 
the direction of Δn from the vertical direction.

Quasiperiodic intensity oscillation induced by the temperature-dependent refractive index.  
Theoretically, a quasiperiodic changing of the direction of P in Fig. 3 should be inferred to result in a regular oscil-
lation. Nevertheless, as have been discussed above, PΔT and PΔn are both in association with the correlated disor-
der state. With the temperature decreasing, the correlation between the nanostructures will strengthen, making 
both PΔT and PΔn lager in value. Thus, it is inconceivable to consider a quasiperiodic changing direction of P. 
Hence, we focus to another possible factor, namely the temperature-dependent concentration of the PNDs, which 
is responsible for the polarization modulation in the previous report regarding the EO effect of KTN crystals23.

For simplicity, the direction of P is taken as a permanent θ angle to PΔT, as shown in Fig. 5(a). It describes 
locally the polarization of the nanostructures under correlated disorder state in x-y plane. In the range of [Tf, T *], 
some PNRs will combine into the PNDs. The PNRs fluctuate randomly activated by thermal motion, presenting 

Figure 3. (a) A normally incident beam deviates from its original path, indicating a refractive index gradient 
△n along the y-axis; (b) Free energy G for local regions and the polarization P△n in association with Nb ions 
concentration. The temperature and refractive index gradient of the crystal and the corresponding polarization 
directions (in the x-y plane) for (c) increased and (d) decreased temperature.
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zero polarization in time and space, while the PNDs exhibit none zero polarization in long time scale9. When 
an induced field P is involved, the PNDs will respond to align with it, but the PNRs stay in random fluctuation 
due to thermal activation. Thus, regions constituted by the PNDs will show anisotropy along P and its normal 
direction, with different refractive indexes for certain polarization components. In Fig. 5(b), the sample is divided 
along z-axis into N local regions in length of ΔL with different refractive indexes (i.e., ne and no), representing the 
regions of PNDs and PNRs, respectively. As the PNDs and the PNRs are both in submicron scale or even smaller, 
it is logical that N = l/ΔL ≫ 1. In addition, due to their random distribution, we assign ρ(ne) and ρ(no) to the con-
centration of the PNDs and the PNRs, where ρ(ne) + ρ(no) = 1. At a particular temperature, the optical paths are 
neNρ(ne)ΔL + noN[1 − ρ(ne)]ΔL and nol for the polarization components parallel and normal to P respectively, 
whereupon the phase difference between the two polarizations can be formulated as:
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Since ρ(ne) and T are negatively correlated in the range of [Tf, T*], the intensity oscillation can be explained 
accordingly. At T* = 30 °C, there only exists PNRs rather than PNDs, which means that ρ(ne) and I are both 
equal to 0, and the crystal shows no anisotropy. At a lower temperature such as 17 °C, with more PNDs emerging 
and ρ(ne) increasing, Δϕ ceases to be 0 and I increases. When the temperature keeps lowering to 14.2 °C, Δϕ 
increases to its first integer multiple of π/2 with further increment of the PNDs concentration, and the transmit-
ted intensity reaches its first peak value. The explanation is schematically delineated in Fig. 5(b) and (c). For the 
peaks getting increasingly weaker during the oscillation at lower temperatures, it can be attributed to the more 
and more serious scattering when ρ(ne) increases.

Repeatability of the experiment. Considering that the correlated disorder state of the crystal 
involves a random process, it is necessary to double-confirm the experimental consistency. Therefore, the 
temperature-dependent experiment is repeated for several times when the temperature decreases from 20 °C 
to 9 °C, as presented in Fig. 6. With comparison of the three curves, the peaks and troughs can be observed to 

Figure 4. Polarization modulation under different placements of the crystal with utilizing a 5-mW laser at TM 
polarization.
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correspond perfectly, which is a solid evidence that the anisotropy of the crystal is determined at certain temper-
ature, despite that the correlated disorder presents a random characteristic. This is crucial for both practical use 
and theoretical research.

Conclusion
We report an abnormal optical anisotropy in Cu:KTN crystals. The origin of this unique phenomenon is 
attributed to the cooperation between the temperature gradient field and the refractive index gradient field. 
Microscopically, it is a result of the correlated disorder characteristic of KTN crystals in the range of [Tf, T*]. Since 
the refractive index gradient is responsible for P△n, the tunable P△n is accessible by a tuned refractive index gra-
dient. This will lead to a controllable optical anisotropy in KTN crystals or other relaxors, which is meaningful to 
the development of a wide range of functional devices. In addition, the mechanism reported in this paper will be 
also beneficial for completing the correlated disorder theory of ferroelectric relaxors.

Methods
Preparation of the sample and dielectric constant measurement. The Cu:KTN crystals used in 
the experiment have been achieved through the top-seeded solution growth method35, with 0.1% mole Cu-ions 
doped. The doping of Cu ions will enables the single crystal owning higher dielectric property than pure KTN 
with decreasing the resistance of the grain36. It is cut into a cuboid shape in the size of 1.89(h) × 3.38(w) × 5.73(l) 
mm3 along the basic crystallographic directions with faces optical-polished. In the measurement of the 
T-dependent εr, the two faces (w × l) are coated with silver electrodes. Then, it is connected to an LCR meter with 
a 1 kHz, 1 V sinusoidal signal. The temperature of the crystal is set by a Peltier which is linked to a temperature 
controller (TEC Source 5300) with 0.01 °C precision.

Figure 5. (a) Diagram of correlated disorder nanostructures of the crystal and the polarization fields induced 
by the temperature gradient and the refractive index gradient in the range of [Tf, T*]. (b) Divided regions with 
different refractive indexes, ne and no. (c) Transmission change with the temperature decreasing from 30 °C to 
13 °C.

Figure 6. Repeated experiments regarding the abnormal optical anisotropy, with a 3 °C/min decreasing rate 
from 20 °C to 9 °C with TM-polarized lasers (the red, the black and the blue curves respectively represent results 
at the same experimental conditions).
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The cross-polarization setup used in the experiment. As shown in Fig. 7, a polarized 532 nm laser is 
focused into the Cu:KTN sample. Then, it is defocused by a lens and traverses an analyzer. A photodetector is set 
to probe the transmitted intensity signals. During the testing process, the crystal is positioned with its geometrical 
axes according to the basic crystallographic directions. The light beam is normally incident to the x-y face. The 
polarizer is along with either the x or the y direction, instead of a 45° cross-polarization setup used in routine 
studies of optical anisotropy.
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