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Oxidized Carbon Black: 
Preparation, Characterization and 
Application in Antibody Delivery 
across Cell Membrane
Kittima Amornwachirabodee1,2, Nattapol Tantimekin1, Porntip Pan-In1,3, Tanapat Palaga4, 
Prompong Pienpinijtham1, Chonlatip Pipattanaboon5, Thanyada Sukmanee1, Patcharee 
Ritprajak6, Promchat Charoenpat6, Pannamthip Pitaksajjakul7, Pongrama Ramasoota7 & 
Supason Wanichwecharungruang1,8

Modulating biomolecular networks in cells with peptides and proteins has become a promising 
therapeutic strategy and effective biological tools. A simple and effective reagent that can bring 
functional proteins into cells can increase efficacy and allow more investigations. Here we show 
that the relatively non-toxic and non-immunogenic oxidized carbon black particles (OCBs) prepared 
from commercially available carbon black can deliver a 300 kDa protein directly into cells, without an 
involvement of a cellular endocytosis. Experiments with cell-sized liposomes indicate that OCBs directly 
interact with phospholipids and induce membrane leakages. Delivery of human monoclonal antibodies 
(HuMAbs, 150 kDa) with specific affinity towards dengue viruses (DENV) into DENV-infected Vero cells 
by OCBs results in HuMAbs distribution all over cells’ interior and effective viral neutralization. An ability 
of OCBs to deliver big functional/therapeutic proteins into cells should open doors for more protein drug 
investigations and new levels of antibody therapies and biological studies.

Remarkable advances in an understanding of signaling networks of disease progression together with develop-
ments of affinitive macromolecules in the past two decades, have made the interfering of biomolecular networks 
one of the most exciting researches and therapeutic means1–3. Various specific affinitive macromolecules includ-
ing RNA/DNA aptamers, siRNA, peptides and proteins have been tested with positive results4–6. In addition to 
many therapeutic applications, synthetic antibodies have been tailored as tools for various intracellular targets 
(intrabodies)7, and have been successfully used for misfolded protein recognition8, sensing protein conforma-
tion9, and in vivo homing10. Many of these applications require the transport of proteins into cells. In addition 
to the use of cell penetrating peptides which require chemical coupling, and conventional liposomes which are 
unstable, a simple reagent that can effectively bring small peptides and big proteins into cells is, therefore, being 
needed11,12. Apart from minimal toxicity, ideal reagents should possess simplicity during usages, and should be 
effective in delivering cargoes into cells without being destroyed by the commonly encountered endosome/lyso-
some pathway13,14.

Our involvement in this area started from our preparation of the oxidized carbon nanospheres (OCNs) that 
possess excellent ability to bring macromolecules into cells15–17. Although the previously reported OCN can be 
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effectively used as a delivery reagent to bring matters into cells, there are many limitations on the OCN prepara-
tion. An average synthesis yield of OCNs from graphite or graphene is limited to 8%. Its synthesis is non-trivial 
regarding the generation of side-reaction products such as oxidized carbon nanotubes and graphene oxide sheets, 
thus extensive multi-step centrifugal purification process is needed. In order to minimize these drawbacks, we 
have been working on a better method to prepare the OCNs. Finally, instead of getting the exact OCNs by a dif-
ferent method, we have obtained the oxidized carbon black particles (OCBs). This new OCB material which can 
be easily derived from commercially available carbon black, is able to effectively deliver cargoes through the cell 
membrane. More importantly, the transport of macromolecules into cells by the OCBs can be achieved without 
an involvement of a cellular endocytic process. This paper shows the synthesis and characterization of OCBs. 
Their ability to induce leakages on phospholipid bilayer membranes of artificial cells (cell-sized liposomes) and 
real cells is demonstrated. We also show here an application of OCBs on the sending of therapeutic antibodies 
into cells to perform intracellular viral neutralization.

Results
Synthesis and characterization of OCBs.  The starting carbon black particles (CBs) do not disperse in 
water and their scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images show 
that they are aggregates of many spherical particles. (Fig. 1). Reacting the CBs with NaNO3, H2SO4 and KMnO4, 
resulted in a black suspension of the water dispersible oxidized carbon black nanoparticles (OCBs). The suspen-
sion showed no precipitation even after sitting for 1 year (Supplementary Information, Figure S1). Among the 
three weight ratios of CBs to KMnO4 (0.5:6, 0.3:6 and 0.1:6) experimented during the optimization of the prepa-
ration process, the reaction at 0.3:6 ratio gave the highest yield (18%) of water dispersible OCBs. SEM and TEM 
images reveal that the OCBs obtained from the oxidation at the 0.3:6 ratio possess less aggregation among parti-
cles than those obtained at the 0.5:6 ratio (Fig. 1, see also Table S1 in Supplementary Information). Hydrodynamic 
size (obtained from dynamic light scattering, Supplementary Information, Table S1) of OCBs obtained from the 
0.3:6 ratio (127 ± 0.51 nm, PDI 0.18) is smaller with narrower size distribution than that obtained from the 0.5:6 
ratio (255 ± 2.17 nm, PDI 0.33). The prepared OCBs possess the zeta potentials of −33 to −34 mV. In contrast, 
reaction at CB: KMnO4 of 0.1:6 gave a clear colorless solution with no particulate product.

The OCBs obtained from reaction with CB: KMnO4 of 0.3:6 were subjected to structural analysis. X-ray pho-
toelectronic spectra (XPS) show an increase in oxygen content upon the oxidation of CBs into OCBs (Figure S2a1 
and b1 in Supplementary Information); C1s and O1s spectra of CBs show minute amounts of C-O and C=O 
(Supplementary Information, Figure S2a1,2,3), C1s spectrum of OCBs shows high intensity peaks at the binding 
energy (BE) of 283.9, 285.3, 286.2, 287.5, and 289.7 eV which correlate well to the C−C, C=C, C−O (from C−
O−C and C−OH), C=O, and COOH functional groups, respectively (Supplementary Information, Figure S2b2); 
the O1s spectrum of the OCBs also shows high intensity peaks at the binding energy of 532.8, 531.6, and 530.9 eV 
which correspond to the C−O (from C−O−C and C−OH), C=O and COOH functional groups, respectively 
(Supplementary Information, Figure S2b3). The CHO elemental analysis (EA) detected only carbon in the start-
ing CBs, whereas C, H and O at the molar ratio of 1.0: 0.27: 0.64 could be detected in the OCBs. In short, elemen-
tal analyses show an increase in oxygen content upon the oxidation of CBs into OCBs, and the –COOH, -OH, 
C=C, C-O-C, C=O functionalities at the particle surface can be deduced from the XPS spectra of the OCBs.

Figure 1.  Morphology characterization of starting carbon black (CBs) and oxidized carbon black (OCBs). SEM 
(a,b and c) and TEM (d,e and f) images of the CBs (a and d) and the OCBs obtained from reactions at the CBs 
to KMnO4 weight ratios of 0.5:6 (b and e) and 0.3:6 (c and f).
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UV absorption spectrum of the OCBs (Supplementary Information, Figure S3a) shows maximum absorption 
at 244 nm (n → π* of C=O) with broad extension up to 600 nm (the π → π* transition of C=C conjugated carbon 
networks). FTIR spectrum of OCBs (Supplementary Information, Figure S3b) shows a broad O-H stretching at 
3338 cm−1, C=O stretching and C=C stretching at 1600–1800 cm−1, C-O stretching/C-H bending/O-H bending 
at 1100 cm−1–1410 cm−1. Raman spectrum of the starting CBs shows a typical G band (also called graphite peak) 
at ~1590 cm−1, D band (also known as sp2 carbon disorder-induced peak) at ~1360 cm−1, with almost undetect-
able 2D or G′ band (disordered sp2 planes) at 2500–3400 cm−1. A slightly blue shift of the D-band in the OCBs 
spectrum, as compared to that of the CBs, can be observed (Supplementary Information, Figure S3c). In addition, 
the D band to G band peak area ratio increases from 1.25 for the starting CBs to 1.56 for the OCBs. Multiple 
broad 2D bands are also obvious in the Raman spectrum of OCBs, but are undetectable in the CB spectrum.

Lastly, stability of the particles’ surface was analyzed through the monitoring of hydrodynamic size of the 
OCBs, and the result showed no size change during the 5 h monitoring period (Supplementary Information, 
Figure S3d), agreeing well to their never-settling aqueous colloidal nature described earlier.

Penetration of OCBs into cell-sized liposomes.  Penetration of OCBs into liposomes.  The 
fluorescein-labeled OCBs (flu-OCBs) were incubated with cell-sized liposomes and confocal laser fluorescence 
microscope (CLFM) was used to observe changes. Firstly, liposomes were incubated with fluorescein (flu) as a 
control, no fluorescence signal was observed at the inside of the liposomes (Fig. 2a, 0–60 min). Secondly, lipos-
omes were incubated with flu-OCBs (Fig. 2b). At the beginning, the fluorescence signal inside of liposome was 
undetectable (Fig. 2b, 0 min). However, after 30 min, the fluorescence signal at the inside of the liposome was 
obvious, and its intensity kept increasing along the incubation time (Fig. 2b and c).

Liposome leak induced by OCBs.  Liposomes filled with anthocyanin were prepared, then OCBs were introduced 
to the outside of the liposomes, and the fluorescence signals of anthocyanin at the inside and outside of lipos-
omes were monitored. At first, the fluorescence of anthocyanin at the outside of the liposomes was undetectable 
(Fig. 2e, 0 min). Further incubation resulted in a decrease of anthocyanin signal at the liposomes’ interior and 
an increase of that at the outside of the liposomes (Fig. 2e and f). At 30 min, fluorescence at the outside of the 
liposomes was very obvious. In the control experiment (no OCB), fluorescence signal was never observed at the 
outside of the liposomes (Fig. 2d and f). At the concentration of the OCB used in this experiment (100 mg/L), the 
numbers of liposomes left in the systems after 60 min incubation were the same for both the system with added 
OCBs and the system without OCB addition.

Figure 2.  Liposome leakage. Penetration of flu-OCBs into liposomes (a,b and c): (a) Fluorescence images of 
liposomes after being incubated with flu (free dye molecules, in green) for 0, 30 and 60 min (left) accompanied 
with plots of fluorescence intensity (F.I.) along the dotted line of the corresponding liposomes (right), (b) 
Fluorescence images of liposomes after being incubated with flu-OCBs (in green) for 0, 30 and 60 min (left) 
accompanied with plots of F.I. along the dotted line of the corresponding liposomes (right), (c) Plots of F.I. at 
the inside and outside of the liposomes, as a function of incubation time (shown as mean ± SD). Anthocyanin 
leak from liposomes (d,e and f): (d) Fluorescence images of anthocyanin (pseudo-color, yellow) filled liposomes 
after being incubated with water for 0, 30 and 60 min (left) accompanied with plots of F.I. along the dotted line 
of the corresponding liposomes (right), (e) Fluorescence images of anthocyanin (pseudo-color, yellow) filled 
liposomes after being incubated with OCBs for 0, 30 and 60 min (left) accompanied with plots of F.I. along the 
dotted line of the corresponding liposomes (right), (f) Plots of anthocyanin F.I. at the inside and outside of the 
liposomes after water addition (without OCB) or OCBs addition (with OCBs), as a function of incubation time 
(shown as mean ± SD).
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Adsorption of materials onto OCBs.  Adsorptions of various molecules onto OCBs were monitored 
through the change of OCB size. Among the cholesterol, bovine serum albumin (BSA) protein, dioleoyl 
L-α-phosphatidylcholine (DOPC), egg phospholipids and antibody (HuMAbs), the egg phospholipids gave the 
highest size change to the particles whereas antibody showed no significant effect on OCB’s size (Supplementary 
Information, Figure S4).

In vitro cytotoxicity and immunogenicity of OCBs.  The cytotoxicity of OCBs was investigated by an 
MTT method on macrophage-like cell line (RAW 264.7, purchased from ATCC), human epidermoid cervical 
carcinoma cell line (CaSki, purchased from ATCC) and African green monkey kidney cell line (Vero, purchased 
from ATCC) at cell density of 1 × 104 cells in culture medium. Cells were cultured in the presence of OCBs at 
concentrations of 0–100 mg/L for 48 h, and cell viabilities of more than 80% were observed in the presence of 
≤3.2, 10 and 25 mg/L of OCBs for RAW 264.7, CaSki and Vero cells, respectively (Supplementary Information, 
Figure S5a). We further monitored the viability of RAW 264.7 cells after being incubated with various concentra-
tions of OCBs for 1 week (here the starting cell density was 1 × 103 cells), and the cell viability of more than 80% 
was observed at concentration of OCBs of ≤1.0 mg/L (Supplementary Information, Figure S5b).

The cytotoxicity of OCBs was also tested in a primary dendritic cell, a murine bone marrow-derived dendritic 
cell (BM-DC), using an apoptosis detection assay. The living cells were negative for Annexin V and 7AAD stain-
ing, while the apoptotic cells were positive for both staining. OCBs demonstrated the non-toxicity in BM-DCs as 
the percentages of the living and apoptotic cells exposed to OCBs (at 0–100 mg/L) was approximately 80% and 
20%, respectively (Supplementary Information, Figure S5c).

We also investigated the immunogenicity of OCBs with the BM-DCs by performing flow cytometric analysis 
of the expression of CD80, CD86 and MHC class II activation markers (Supplementary Information, Figure S6a 
and b). OCBs, at all concentrations (1–100 mg/L), did not activate BM-DCs as there was no increased expression 
of all the monitored activation markers.

Cellular uptake of OCBs and protein delivery.  Monitoring of cellular uptake in living cells.  We inves-
tigated abilities of the OCBs to deliver hen egg white lysozyme protein into living CaSki cells (Fig. 3). First 
fluorescein-labeled lysozyme protein (flu-lysozyme) and coumarin-labeled OCBs (cou-OCBs) were prepared 
through coupling reactions using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDCI) as coupling agent. 
Cell images under phase contrast mode (column 1) and fluorescence signals of the CaSki cells (detected by 
CLFM) after being incubated with the cou-OCBs (magenta color (pseudo color), column 2) and flu-lysozyme 
(green color, column 3) for 15, 30 and 45 min, are shown in row a, b and c, respectively. It should be noted here 
that the fluorescence dyes specific to early endosomes (red color, column 4) and lysosomes (blue (pseudo color), 
column 5) were also used in the experiment. Fluorescence image of control cells (no flu-lysozyme protein, no 
cou-OCB) are shown in row d, and that of CaSki cells after being incubated with only flu-lysozyme protein (no 
cou-OCB, and no fluorescence dyes specific to early endosomes and lysosomes) are shown in row e. Noted that 
when only flu-lysozyme protein was used, endosome and lysosome tracker dyes were not used.

Intracellular localization.  OCBs were first labeled with tetramethylrhodamine (TAMRA) to obtain 
TAMRA-OCBs. Cells (RAW 264.7 and CaSki cell lines) were then incubated with the TAMRA-OCBs for 4 h 
and then thoroughly washed before being subjected to the fixation process to stain cells’ nuclei with DAPI. Then 
the fixed cells were subjected to CLFM analysis. The fluorescence signal of the TAMRA-OCBs could be clearly 
detected in both cytoplasm and nucleus of the two cells (Fig. 4b for RAW 264.7 and 4d for CaSki cells). Next, 
we incubated the flu-lysozyme and OCBs with the CaSki cells for 4 h and subjected the cells to washing and 
nuclear staining processes, then the fixed cells were observed under a CLFM. The result shows no signal of the 
flu-lysozyme in the cells when OCB was not used (Fig. 4e). In contrast, with OCBs, obvious fluorescence signals 
of the flu-lysozyme could be seen in both cytoplasm and nucleus the cells (Fig. 4f).

Delivery of dengue-HuMAbs into Vero cells.  We investigated an ability of OCBs to deliver the Human 
monoclonal antibodies (HuMAbs) with a specific affinity towards the four DENV serotypes, into Vero cells. 
The HuMAbs were produced from Human hybridoma cells as described in the method section. We prepared 
fluorescein-labeled HuMAbs (flu-HuMAbs) using EDCI coupling reaction. The flu-HuMAbs (with and with-
out OCBs) were then incubated with Vero cells. Without OCBs, no fluorescence signal of flu-HuMAbs could 
be observed inside the cells even after 4 h incubation (Fig. 5a, top row). In the presence of OCBs, flu-HuMAbs 
fluorescence signals could be clearly observed inside the cells after 1–2 h incubation (Fig. 5a, column 2 of bottom 
row).

Viral Neutralization.  Serotype 1 and serotype 4 of the DENVs were separately experimented. Vero cells 
were infected with the viruses and the cells were carefully and thoroughly washed to remove extracellular viruses. 
Then, immediately HuMAbs alone or HuMAbs mixed with OCBs were incubated with the cells. The indirect 
immunofluorescence assay was executed to evaluate focus-forming units (FFU). Percentages of viral inhibition 
were calculated from the obtained FFU18. Responses to the HuMAbs were different among different DENV sero-
types (Fig. 5b,c). Nevertheless, neutralizations of the two serotypes were dose dependent and more pronounced 
in the presence of the OCBs.

Discussion
The non-water dispersible nature of CBs implies their hydrophobic surface. SEM and TEM images indicate that 
the CBs are aggregates of 100 nm sized spherical particles (Fig. 1). This information agrees with the previously 
suggested structure of the CBs which are clusters of many spherical carbon particles linked among one another 
through covalent bonds or van der Waal’s forces19,20. By oxidizing the CBs with an appropriate amount of the 



www.nature.com/scientificreports/

5SCientifiC RePOrTS |  (2018) 8:2489  | DOI:10.1038/s41598-018-20650-4

oxidizing agents, we could obtain the water dispersible OCBs with acceptable yield of 18%. Too much KMnO4 in 
the oxidation process resulted in the total oxidation of CBs into CO2, as only clear solution with no particulate was 
obtained. However, too little KMnO4 resulted in a bigger and wider size ranged OCBs. Here the 127 ± 0.51 nm 
OCBs obtained from the 0.3:6 weight ratio of CB to KMnO4 were used for further investigation. Data from XPS, 
FTIR, UV and Raman spectroscopy indicate that the OCBs consist of π-conjugated networks of carbon atoms 
with some disordered planar carbon planes, and some epoxide, carboxyl and hydroxyl functionalities at the sur-
face. The structural deformation of the planar carbon (sp2 carbon) upon the oxidation of CBs into OCBs can be 
confirmed with the increase of the D band as compared to the G band and the appearance of multiple broad 2D 
bands in the Raman spectrum of OCBs as compared to that of the CB.

It should be noted here that, comparing to the previously reported membrane penetrating agent OCNs15–17, 
which can be synthesized from graphite and graphene, the preparation of OCBs demonstrated here not only gives 
more than double the yield but also produces neither tube nor sheet by products, thus the multi-step centrifu-
gation process is not needed. With such a simpler OCB preparation process, we investigated whether this newly 
prepared material would have an ability to bring macromolecules across lipid bilayer membrane.

To eliminate any influences from trans-membrane proteins and other active transport processes in real cells, 
here we investigated the penetration of OCBs across lipid bilayer membrane using cell-sized liposomes con-
structed from the phospholipid commonly found in membranes of living cells (DOPC)21,22. The result that the 
fluorescence intensity of flu-OCBs at the inside of the liposomes increased with the incubation time with the 
flu-OCBs, implies that the OCBs can penetrate across the lipid bilayer membrane into the liposomes’ interior and 
the extent of the penetration varies with time. Since the shape of the liposome did not significantly change after 

Figure 3.  Uptake of flu-lysozyme protein and cou-OCBs into CaSki cells. CLFM images of living CaSki cells 
after being incubated with flu-lysozyme protein plus cou-OCBs for 15 (row a), 30 (row b) and 45 (row c) min. 
Control cells (no flu-lysozyme protein, no cou-OCB) are shown in row (d). CaSki cells after being incubated 
with only flu-lysozyme protein (no cou-OCB) are shown in row (e). Cell images under phase contrast mode 
are shown in column 1. Signals from cou-OCBs in magenta (pseudo-color, column 2), flu-lysozyme protein in 
green (column 3), early endosome in red (column 4) and lysosome in blue (pseudo-color, column 5).
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the OCB penetration, we have concluded that the penetration occurred without significant deformation of the 
lipid bilayer wall of the liposomes. It should be noted here that the free dye molecules (flu), could not penetrate 
the liposomes.

One hypothesis on the penetration of the OCBs into liposomes is that OCBs probably induce local disruption 
of the phospholipid bilayer and create a transient leak of the membrane. We tested this transient leak hypothe-
sis by introducing OCBs to the outside of the anthocyanin-filled liposomes, and monitoring the anthocyanin 
leak from the liposomes. At first, the fluorescence of anthocyanin at the outside the liposomes was undetectable 

Figure 4.  Cell membrane and nuclear membrane penetration of OCBs. CLFM images of RAW 264.7 (row a 
and b) and CaSki (row c, d, e and f) cells after being incubated for 240 min with media (control cells, row a and 
c), TAMRA-OCBs (row b and d), flu-lysozyme (row e), and flu-lysozyme plus OCBs (row f).
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(Fig. 2d, 0 min), confirming that anthocyanin molecules were initially confined at the liposomes’ interior. Further 
incubation with OCBs resulted in a decrease of anthocyanin signal at the liposomes’ interior and an increase of 
the anthocyanin signal at the outside of the liposomes (Fig. 2d and e), thus indicating some leakages of antho-
cyanin from the liposomes. No leak could be observed in control experiment where there was no OCB (Fig. 2c). 
The data thus confirm our hypothesis that OCBs can induce transient leak of the phospholipid bilayer membrane. 
Since the numbers of liposomes left in the systems were not affected by the OCB addition, we have also concluded 
that the OCB, although can induce the liposome leak, does not induce the liposome break.

We hypothesized that some adsorption of phospholipids onto OCBs was responsible for the local disruption 
of phospholipid organization which led to the transient leak. To investigate on this hypothesis, we have moni-
tored the adsorptions of proteins (BSA and antibody), cholesterol and two types of phospholipids onto the OCBs. 
The phospholipids show better adsorption to OCBs, comparing to the protein (Supplementary Information, 
Figure S4). Moreover, different lipids show different adsorption ability onto the OCBs, e.g., phospholipids are 
better adsorbed than cholesterol. This result, although cannot confirm that the transient leak is induced by the 
adsorption of phospholipids onto the OCBs, indicates that phospholipids possess good adsorption to OCBs. 
The good affinity of phospholipids towards OCBs agrees well to our observation under CLFM that when the 
fluorescence-labeled OCBs were introduced into the liposome suspension, the OCBs always moved rapidly to 
adhere to the liposomes’ wall and later on some would migrate to the liposomes’ interior. The result here partly 
supports our speculation that the transient leak of the membrane might be related to the temporary disruption of 
the lipid bilayer organization caused by some adsorption of the phospholipids on OCBs.

It has been known that an electroporation is a method used to bring macromolecules into cells by inducing 
transient pore on the cell membrane using high electrical voltage23. With the same rationality, it is possible that 
the transient leakage of lipid bilayer membrane induced by OCBs could also lead to the delivery of macromole-
cules into cells. Prior to the exploration of such ability, we investigated the cytotoxicity of OCBs on RAW 264.7, 
CaSki and Vero cells, using MTT method, to obtain concentrations of OCBs which each cell type can tolerate 
(≥80% survival). Different cell types showed different tolerances against OCBs (Supplementary Information, 
Figure S5). RAW 264.7 cells were the most sensitive among the three tested cell types. Nevertheless, at 48 h incu-
bation, up to 3.2 mg/L of OCBs was well tolerated by the RAW 254.7 cells. In contrast to a short term incubation 
(48 h or less), incubation of RAW 264.7 and OCBs of various concentrations for 7 days showed negative effect on 
cell viability at the concentration of 3.2 mg/L or higher. The lower OCB concentrations (≤1 mg/L) were well tol-
erated by the RAW 264.7 cells even at 7 day exposure. This result suggests that OCBs may exhibit chronic negative 
impact on cell viability when used at a high concentration with longer exposure time in macrophages.

Figure 5.  Delivery of HuMAbs into cells by OCBs and intracellular viral neutralization. (a) CLFM images 
of HuMAbs inside Vero cells: Vero cells incubated with flu-HuMAbs alone (top row), and flu-HuMAbs plus 
OCBs (bottom row), for 2 h; fluorescence signals from DAPI (blue, indicating nuclei) and flu-HuMAbs (green) 
are shown in column 1 and 2, respectively; cell images in phase contrast mode are shown in column 3. (b,c) 
Neutralization of viruses in Vero cells that have been infected with DENV serotype 1 (b) and serotype 4 (c) by 
incubating the DENV-infected cells with various concentrations of HuMAbs (alone or with 15 mg/L OCBs).  
(d) Proposed mechanisms of the intracellular neutralization of DENVs by HuMAbs; (1) HuMAbs bind to 
the viral envelope proteins before the proteins are assembled into viruses or (2) HuMAbs bind to the already 
assembled viruses before the viruses get out of the cells.
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Furthermore, we also tested the cytotoxicity of OCBs in BM-DC. Since the cellular metabolism of dendritic 
cell is highly changed after the cell interacts with stimuli24,25, MTT assay may not be a reliable method to detect 
OCB toxicity in this cell type, an apoptosis detection assay thus was used. The result indicates relatively low cyto-
toxicity of the OCBs at the tested concentrations of 1–100 mg/L (Supplementary Information, Figure S5a,b and c).

A dendritic cell is an innate immune cell capable of antigen presentation and induction of adaptive immune 
responses26. To investigate the immunogenicity of OCBs, the BM-DCs were incubated with OCBs. Then CD80, 
CD86 and MHC class II activation marker expression were monitored (Supplementary Information, Figure S6a 
and b). OCBs, at all tested concentrations (1–100 mg/L), did not activate BM-DCs, indicating that the material is 
non-immunogenic. This relatively low in vitro cytotoxicity and non-immunogenicity of OCBs indicate the mate-
rial’s biocompatibility when used at low concentrations.

We used the OCB to bring hen egg white lysozyme protein (MW of 300 kDa, a representative macromolecule) 
into CaSki cells. The CLFM observation of the cellular penetration was carried out in living cells. The fluorescence 
signals observed under CLFM after incubating the flu-lysozyme and cou-OCBs with CaSki cells (Fig. 3) visibly 
indicate that the protein (purple color, column 2) and the OCBs (green color, column 3) were taken up into 
the cells. Locations of endosomes and lysosomes are clearly unrelated to the locations of OCBs and lysozymes, 
implying that OCBs and lysozymes were not confined in these two subcellular organelles. These results imply 
that endocytosis was not involved with the cellular penetration of the two materials. In contrast, without OCB, 
the lysozyme could not penetrate the cells (column 3, row e). We, thus, have concluded that the OCBs can deliver 
protein into cells and the delivery mechanism is non-endocytic.

Because the above CLFM observation was done on living cells, nuclear staining could not be carried out. This 
makes the obtained cell images a little hard to understand. Therefore, we further performed the cellular penetra-
tion study on more cell types, but with CLFM observation on fixed cells. After 4 h incubation of TAMRA-OCBs 
with the cells, the fluorescence signal of the TAMRA-OCBs could clearly be detected in both cytoplasm and 
nucleus of RAW 264.7 and CaSki cells (Fig. 4b and d), indicating that the particles could penetrate both cell 
and nuclear membranes. Incubating the flu-lysozyme with the CaSki cells for 4 h, resulted in no signal of the 
flu-lysozyme in the cells when OCB was absent (Fig. 4e), and obvious fluorescence signals of the flu-lysozyme at 
the nucleus of the cells when OCBs were presence (Fig. 4f). We conclude that the OCBs can effectively deliver the 
300 kDa hen egg lysozyme protein into the cytoplasm and nucleus of cells.

The important question to be addressed is whether the proteins delivered into cells by OCBs still possess 
active configuration and thus are able to perform biological function. Therefore, we selected a challenging protein 
delivery application; the delivery of an antibody with affinity towards a disease bearing virus, into virus-infected 
cells, to perform viral neutralization intracellularly. This experiment should allow us to know whether the con-
formation and binding affinity of the proteins are still preserved after being delivered into cells by OCBs. Another 
reason for selecting this application is that there is currently no report on intracellular antibody therapeutics 
regardless of the facts that antibodies can be engineered to catch desired viruses. In addition, antibodies can be 
made to specifically block various protein-protein interactions that small molecules cannot block27–29. Therefore, 
an ability to deliver therapeutic antibodies into cells will bring antibody drug therapy into a new level that would 
have a significant impact on human health. With the use of the relatively non-toxic and non-immunogenic OCBs, 
delivery of HuMAbs, with a specific affinity towards DENV, into Vero cells could be achieved, and the delivered 
antibodies distributed well all over the interior of the cells (Fig. 5a). The protein configuration and binding affinity 
of the delivered HuMAbs were preserved as effective viral neutralization could be achieved (Fig. 5b,c). In addi-
tion, improved viral neutralization could be obtained when HuMAbs were used with OCBs, comparing to when 
they were used alone. To the best of our knowledge, this is the first report on intracellular therapeutic function 
of antibody against viruses. As it has been known that once infected by DENVs, the released single-stranded 
RNAs (ssRNAs) will be replicated by the host cell machinery. Viral proteins are then synthesized by the host cells 
using the viral ssRNAs as templates. One possible anti-viral mechanism of the intracellular HuMAbs is that these 
affinitive proteins bind to the being translated viral proteins, the envelope protein domain III or domain II for this 
case30, thus halting an assembling of protein components into complete viruses (Fig. 5d mechanism 1). Another 
possible mechanism is that after viruses have fully been assembled inside the cells, intracellular antibodies bind 
to them in the similar fashion to the binding when they are outside of the cells (Fig. 5d mechanism 2). Viral inhi-
bition is more effective when HuMAbs are confined inside the infected cells because the viral production site is 
being blocked. When HuMAbs are limited to only the outside of the infected cells, more viruses can always be 
produced and secreted out from the infected cells. As a result, ability to bring functional antibody into cells to 
perform viral neutralization intracellularly, gave a better viral neutralization efficacy.

Methods
Synthesis of oxidized carbon black particles (OCBs).  OCBs were prepared by directly oxidizing com-
mercially available carbon black15. Briefly, CB (0.1, 0.3 or 0.5 g, Denka Company, Denki Kagaku Kogyo Kabushiki 
Kaisha, Japan) was mixed with 1.0 g of NaNO3 and 50 mL of 18 M H2SO4, and the mixture was sonicated at 40 kHz 
at room temperature for 1 h. Next, KMnO4 (6.0 g) was slowly added into the mixture with stirring for 90 min 
(extreme caution must be paid at this step to avoid over heating). After that, 100 mL of water was added and 
stirred for 30 min. Then, 300 mL of water was added and the mixture was stirred for 10 min. The reaction was 
stopped by adding 5% (w/v) H2O2 (50 mL) under stirring at room temperature for 30 min. Finally, the obtained 
mixture was washed with water under high speed centrifugation (20,000 rpm, for 20 min, 3 times), and the pellet 
was collected. The pellet was re-suspended in water and dialyzed against water until pH 5.5 (using CelluSep T4, 
MWCO of 12,000−14,000 Da, Membrane Filtration Products, USA).

Penetration of OCBs into cell-sized liposome.  DOPC (Avanti Polar Lipid, Alabama, USA) solution in 
chloroform (2 mM, 200 µL) was mixed with glucose solution in methanol (10 mM, 120 µL) in a glass test tube. 
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Then, the mixed solution was dried under nitrogen gas flow to make a thin film. The dried film was kept under 
vacuum for at least 3 h. After that, 2 mL of water was added and the solution was kept at 37 °C for 3 h in order to 
hydrate the film and allow the formation of cell-sized liposomes. To start the experiment, the obtained liposome 
suspension in water was mixed with flu-OCBs. The final concentration of liposomes was controlled at 0.25 mM 
of lipids. The final concentration of flu-OCBs was at 100 µg/mL OCBs with 30 µg/mL of flu moiety. In the control 
experiment, liposome suspension in water was mixed with flu solution (in 5% of DMF and 95% water) at the final 
concentration of 30 mg/mL. After mixing, the suspension was dropped onto the glass slide with a silicon chamber. 
Then the liposomes in the suspension were observed by CLFM at the λex/λem of 488/520 nm16,17.

To prepare cell-sized liposomes filled with anthocyanin, thin film of DOPC was prepared by the same method 
as the unfilled liposome preparation (above), however, instead of adding water to hydrate the lipoid film, 2 mL 
of 1000 μg/mL anthocyanin solution in water was added and the solution was kept at 37 °C for 2–3 h to hydrate 
the film and allow the formation of cell-sized liposomes containing anthocyanin inside the vesicle. In order to 
eliminate anthocyanin at the outside of the liposomes, the liposome suspension was left undisturbed at 37 °C 
for overnight to allow sedimentation. Then, the aqueous solution above the settled down liposomes was care-
fully removed, followed by an addition of the same volume of water16. Experiment was started by adding OCBs 
suspension to the anthocyanin-filled liposomes to give the final concentration of lipids and OCBs of 0.25 mM 
and 100 µg/mL, respectively. The liposome suspension was immediately observed using CLFM at the λex/λem 
of 488/525 nm. Similar observation was carried out on the control anthocyanin-filled liposomes with no OCB 
(water was added in place of OCBs suspension). Observation was carried out as a function of incubation time.

Cellular delivery of protein by OCBs.  CaSki cell was maintained in Roswell Park Memorial Institute 
medium 1640 (RPMI 1640 medium) with 2.05 mM L-glutamine (Hyclone Laboratory, Inc., Logan, UT, USA). 
Cells were incubated at 37 °C for 24 h in humidified atmosphere (5% CO2). CaSki cells, at the density of 2 × 106 
cells per well, were seeded in 6-well plates on cover slips and incubated at 37 °C for 24 h in humidified atmos-
phere (5% CO2). Each sample which included PBS (negative control), flu-lysozyme, flu-lysozyme mixed with, 
was added to cells, to give a lysozyme protein final concentration of 10 ppm and OCBs final concentration of 
10 ppm. The plate was left for 4 h at 37 °C in a humidified atmosphere (5% CO2). After that, cells were fixed by 4% 
paraformaldehyde and nucleus-stained with DAPI before being subjected to CLFM analysis. Control experiment 
in which neither flu-lysozyme nor cou-OCBs was added, was also carried out.

Intra cellular trafficking of lysozyme protein in the presence of OCBs was monitored in CaSki cells. CaSki cells 
were seeded in 8-well chamber (Lab-Tek II Chambered Cover glass, NUNC, NY, USA) at the density of 2 × 106 
cells per well, then 50 µl of early endosome fluorescent dye reagent (cellLight™ early endosome-RFP, Bacmam 
2.0, Invitrogen, USA) was added and the mixture was incubated overnight at 37 °C in humidified atmosphere (5% 
CO2), after that, 50 µL of lysotracker deep red reagent (in anhydrous DMSO, Lysotracker and Lysosensor probe, 
Invitrogen, USA) was added (final concentration of lysotracker was 200 nM) and the mixture was incubated 
for another 2 h at 37 °C. Then, 25 µL sample (flu-lysozyme mixed with cou-OCB), at the same concentrations of 
lysozyme protein and OCBs of 100 ppm) was added directly to each well (to give the final concentration of the 
lysozyme protein and OCBs in the cell suspension of 10 ppm). After that the live-cells were immediately moni-
tored for 4 h (pictures recorded every 15 min) under CLSM (FV10i-LIV with universal Plan Super Apochomat 
60× phase contrast water immersion objective Lens, Olympus, Tokyo, Japan). Excitation was carried out at 405, 
473, 559 and 635 nm (MellesGriot Laser, Carlsbad, CA, USA) and emission was monitored at 450, 520, 584 and 
668 nm for cou-OCBs, flu-lysozyme, early endosome specific RFP dye and lysosome specific deep red dye, respec-
tively, using two PMTs that automatically optimized for the detection bandwidth of the four fluorophores. The 
control cells were prepared in two conditions by the same protocol as mention above. The first control condition, 
the cells were incubated with endosome fluorescent dye and lysotracker deep red reagents (without cou-OCB and 
flu-lysozyme). In the second control condition, the cells were incubated with only flu-lysozyme (final concen-
tration of flu-lysozyme in the cell suspension of 10 ppm, no endosome fluorescent dye and lysotracker deep red 
reagents). Data were processed with FLUOVIEW 3.0 software.

Antibody delivery.  The HuMAbs were produced from Human hybridoma cells which have been prepared 
through the fusion of human Peripheral Blood Mononuclear cell (PBMC) with SPYMEG myeloma cells, as pre-
viously described31. flu-HuMAbs was prepared as follows. Fluorescein-5-isothiocyanate (1 mg) was dissolved in 
0.1 M Na2HPO4 solution (2 mL). HuMAbs (50 µL of 2 mg/mL) was mixed with 12.5 µL of 0.2 M Na2HPO4 solution 
and 60 µL of the prepared fluorescein solution. Then pH of the mixture was measured and the pH was adjusted 
to pH 9.5 by adding 0.1 M Na3PO4 solution. Finally, flu-HuMAbs were dialyzed against phosphate buffered saline 
(PBS).

Vero cells were maintained in minimum essential medium with Earle’s balanced salts with L-glutamine 
(MEM/EBSS) and 10% fetal bovine serum (FBS). Vero cells were seeded at the density of 7.5 × 104 cells per well, 
in the 8 well-chamber slide and allowed to attach for 16–24 h. Next, cells were washed with PBS and then added 
flu-HuMAbs (final concentration of 64 µg/mL) with or without OCBs (final concentration of 15 μg/mL) in MEM/
EBSS with 1% FBS (250 µL). After incubation at 37 °C for appropriate time, cells were washed twice with PBS and 
then fixed in a 4% paraformaldehyde in PBS. Cells were stained with DAPI. Finally, cells were observed under 
CLFM.

Virus neutralization assessment.  Vero cells were seeded at the density of 2.5 × 104 cells per well in 
96-well-microplate and allowed to attach for 16–24 h. Then, cells were washed with PBS and then infected with 
100 FFU of individual DENV serotypes in MEM/EBSS (50 µL). After incubation at 37 °C for 1 h, culture media 
was removed and HuMAbs with or without OCB (final concentration of 15 ppm) in MEM/EBSS with 1% FBS 
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(50 µL) were added. After incubation at 37 °C for 2 h, 100 µL of a mixture of 2X minimum essential medium: 2% 
carboxymethyl cellulose (1:1) with 2.5% FBS were added. And then, cells were incubated at 37 °C for 2 or 3 days.

Indirect immunofluorescence (IF) assay was successively conducted on the cells from neutralization assay. 
Cells were fixed with 3.7% formaldehyde in PBS and permeabilized with 0.1% Triton X-100 in PBS. After that, 
cells were incubated with hybridoma culture fluids (primary antibody, for HuMAbs blocked DENVs). Finally the 
bound antibody was visualized by further reaction with an Alexa Fluor 488 goat anti-human IgG (H + L), for a 
cross-adsorbed secondary antibody (1:1,000). These assays were performed in triplicated (see ‘Supplementary 
Information’ for more information)19.

Data Availability.  All data generated or analyzed during this study are included in this published article and 
its Supplementary Information files.
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