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A joint matrix minimization 
approach for seismic wavefield 
recovery
Liping Wang1 & Yanfei Wang2,3

Reconstruction of the seismic wavefield from sub-sampled data is important and necessary in seismic 
image processing; this is partly due to limitations of the observations which usually yield incomplete 
data. To make the best of the observed seismic signals, we propose a joint matrix minimization model 
to recover the seismic wavefield. Employing matrix instead of vector as weight variable can express all 
the sub-sampled traces simultaneously. This scheme utilizes the collective representation rather than 
an individual one to recover a given set of sub-samples. The matrix model takes the interrelation of the 
multiple observations into account to facilitate recovery, for example, the similarity of the same seismic 
trace and distinctions of different ones. Hence an l2, p(0 < p ≤ 1)-regularized joint matrix minimization 
is formulated which has some computational challenges especially when p is in (0, 1). For solving the 
involved matrix optimization problem, a unified algorithm is developed and the convergence analysis 
is accordingly demonstrated for a range of parameters. Numerical experiments on synthetic and field 
data examples exhibit the efficient performance of the joint technique. Both reconstruction accuracy 
and computational cost indicate that the new strategy achieves good performance in seismic wavefield 
recovery and has potential for practical applications.

Reconstruction of the seismic wavefield has recently attracted increasing attentions in geophysical community. 
This is due to the fact that seismic acquisition often violates the Shannon sampling theorem because of the restric-
tions of investment, topography, noise, bad traces and so on. The under-sampled data will bring aliasing and 
artifacts which will influence results of migration1, de-noising2, multiple elimination3 and AVO analysis4. In addi-
tion, huge storage of the massive data is also a problem, lossless compression methods are desirable5. An impor-
tant branch of these methods is the sparse transform based method combined with a regularization strategy6,7. 
For this method, seismic interpolation is treated as an inverse problem, and seismic events are assumed to be 
sparse in some transformed domain, such as the Fourier transform1,8–11, or the linear Radon transform12. Usually 
the acquired geophysical data is subsampled due to the variations of landform1,13,14, hence the seismic wavefield 
recovery is an ill-posed inverse problem. Therefore, a key issue is how to invert the mathematical model using 
only incomplete, sub-sampled data1,13,14. Variety of regularization methods has been developed to improve the 
quality of image and seismic wavefield recovery6,15–17.

Previous methods for such a recovery problem are based on the lq-norm minimization, e.g., the basis pursuit 
denoising (BPDN) criterion using (orthogonal) matching pursuit method18,19 and the least absolute shrinkage 
and selection operator (LASSO)20 for l1-norm constrained minimization problems. Efficient optimization algo-
rithms include conjugate gradient methods with preconditioning techniques21 and gradient projection meth-
ods22–26. For solving the lq-norm minimization problem, people usually convert the matrix form of the wavefield 
into the vector form and solve the corresponding matrix-vector equations. We observed that the seismic wavefield 
can be represented using matrix instead of vector as weight variable to express all the signals simultaneously, 
which takes the interrelation of the sampled observations into account. This is more reasonable as the seismic 
signals are correlated transversely. Therefore, in this paper we propose a matrix optimization model for the seis-
mic wavefield recovery and study the related properties. The mixed matrix minimization models have been used 
in machine learning. Rakotomamonjy et al.27 proposed to use the mixed matrix norm lq, p (1 ≤ q < 2, 0 < p ≤ 1) in 
multi-kernel and multi-task learning. But the induced optimization problems in27 have to be solved separately by 
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different algorithms with respect to p = 1 and 0 < p < 1. For grouped feature selection, Suvrit28 addressed a fast 
projection technique onto l1, p-norm balls particularly for p = 2, ∞. But the derived method in28 does not match 
the proposed matrix optimization problem (11). Similar joint sparse representation has been used for robust 
multi-modal biometrics recognition in29. Sumit et al.29 employed the traditional alternating direction method 
of multipliers to solve the involved optimization problem. Wang et al.30 applied l2, 0 + -norm to semi-supervised 
robust dictionary learning, while the optimization algorithm has not displayed definite convergence analysis30.

Recently, matrix-minimization methods with nuclear norm have been developed for seismic wavefield recov-
ery31–34 which mainly considers the rank reduction as the sparse pattern in 2D cases. To avoid the expensive com-
putations in solving the involved matrix completion optimization problems, a matrix factorization strategy was 
developed in31,32. This paper proposes a different matrix minimization approach based on l2, q−l2, p norm which 
naturally generalizes the representative vector to matrix in joint distribution sense. A unified method is developed 
to solve the matrix optimization problem with mixed norm for any q = 2 and 0 < p ≤ 1. The innovations of this 
paper can be listed as follows:

 1) A jointly sparse matrix minimization model is developed for seismic wavefield recovery. This approach 
employs matrix to expresses multiple signals simultaneously. The measurement of matrix row coefficients 
are expected to exhibit the compact priori of multiple observations which is different from the existed 
methods based on matrix nuclear-norm minimization31–34.

 2) A unified algorithm is developed to solve the mixed matrix optimization problem (7) for any p ∈ (0, 1]. This 
algorithm needs only matrix-vector operations but not matrix factorization which can be easily adapted to 
large-scale cases. The convergence analysis is also demonstrated.

 3) Numerical experiments on synthetic and field data are carried out. The results on seismic wavefield recov-
ery exhibit the efficient recovery performance of the joint sparse expression strategy.

Modeling
Given a set of seismic signals (traces) x1, x2, …, xl in n-dimensional space, each signal xj(j = 1, 2, …, l) is sensed by 
m sensors to yield seismic wavefield records as

= = d A x i m, 1, 2, , , (1)ij
i

j

where Ai is a row vector representing the impulse response of the i-th sensor. Denote A = [(A1)T, (A2)T, …, 
(Am)T]T, then the seismic observations dj = [d1j, d2j, …, dmj]T ∈ Rm can be reformulated as dj = Axj(j = 1, 2, …, l). 
Sparse expression is a popular strategy to restore xj with m much less than n of the mapping operator A.

Suppose that the original seismic signal xj can be spanned by a series of orthogonal bases Ψ ={ }k k
K

1 such that

∑= Ψ
=

x t m( ) ,
(2)j

k

K

j
k

k
1

where = Ψm x( , )j
k

j k . Denote Ψ the orthogonal matrix constituted by the orthogonal bases, then we have a more 
compact transformation L = AΨ ∈ Rm × K. Consequently the systems (1) and (2) can be incorporated to

= = Lm d j l, 1, 2, , , (3)j j

where = Ψ ∗ = =m x m{ }j j j
k

k
K

1 is the coefficient vector (weighting factor) corresponding to the seismic signal xj. 
Usually, problem (3) is ill-posed due to the limitation of acquisition and violation of sampling requirements. 
Sparse regularization is preferred to restore the operation coefficients from the under-determined linear combi-
nation system (3). A general lq−lp(q > 0, p > 0) model was presented in [16]

α= − + > >α
   J m Lm d m q pmin ( ) , 0, 0,

(4)m
j j j j q

q
j j p

p( )

j

where = ∑ | |=m mj p

p
k
K

j
k p

1  is the stabilizer bearing prior information with respect to dj and αj > 0 is a regulariza-
tion parameter. When 0 < p ≤ 1, the minimization model (4) tries to find a sparse recovery coefficient mj with the 
least nonzero entries. However, the framework (4) recovers the weight factor mj only using the j-th seismic trace 
record dj independently which totally ignores the correlation with other sampled data ˆd j ( ≠ĵ j). Generally, mul-
tiple seismic wavefield traces are related to each other. The similarity and difference hidden in the given group of 
seismic traces are expected to improve the recovery performance. To detailedly demonstrate the correlationship 
among multiple seismic traces, we randomly choose three trace observations from a seismogram generated from 
a seven layers geologic velocity model (see Experimental Section for details). Two neighboring traces are denoted 
by d1 and d2 while the third one d3 is relatively far from them. We separately recover the representation coefficients 

=⁎m j, 1, 2, 3j  by solving

∑α= = − + = = .
∈ =

 

⁎m J m Lm d m j parg min ( ) ( ) , 1, 2, 3, 0 5,
(5)
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2
2
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where mj
k is k-th entry of mj. The weight values of recovered coefficients are plotted in Fig. 1(a–c). The horizontal 

axis denotes the coordinates of the representation vector while the vertical axis shows the weight quantities of 
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representation coefficients, namely = =

⁎m k j( ) , 1, 2, , 256; 1, 2, 3j
k . The curves clearly display the similar 

clustering and sparse pattern of three recovered coefficients. The correlations inspire us to assume that the multi-
ple traces coefficients share the same distribution. For comparison, we jointly recover three coefficients simulta-
neously from D1, 2, 3 = [d1, d2, d3] ∈ Rm × 3 by a matrix minimization problem

∑α= = − + = .
∈ =

×
   

⁎M J M LM D m parg min ( ) ( ) , 0 5,
(6)M R

F
k

K
k p

1,2,3 1,2,3 1,2,3 1,2,3
2

1
1,2,3 2K

1,2,3
3

where ∈ ×⁎M RK
1,2,3

3 and ∈m Rk
1,2,3

3 is the k-th row of M1, 2, 3. Since three vector minimizations as (5) are inte-
grated to a matrix one (6), each entry mj

k of representative vector is spanned to a row vector ∈m Rk
1,2,3

3. Hence the 
absolute values of weight entries in (5) are naturally generalized to l2 norm of row vector for its smoothness, that 
is →m mj

k k
1,2,3

2
. To illustrate the jointly recovered coefficient matrix ⁎M1,2,3 of (6) also follows the similar var-

iation as in Fig. 1(a–c), we measure the l2 norm of each row vector in the joint sense corresponding to ⁎m( )j
k ,

| | → = | | + | | + | | = .∗ ∗ ∗ ∗ ∗� � �m M m m m k( ) ( ) ( ( ) ( ) ( ) ) , 1, 2, , 256 (7)j
k k k k k

1,2,3 2 1,2,3 1
2

1,2,3 2
2

1,2,3 3
2 1

2

Clearly, the joint representation coefficients also exhibit similar sparse pattern and weight concentration to the 
individual models (see Fig. 1(d)).

Under the assumption that multiple seismic wavefield traces jointly share the similar weight parameter pat-
tern, we propose to express all the sub-sampled observations over the same bases simultaneously as

=LM D, (8)

where D = [d1, d2, …, dl] is composed of l seismic observations and M = [m1, m2, …, ml] denotes the corre-
sponding coefficient matrix. As far as the columns are concerned, the equation (8) is an easy consequence of the 
equation (3). Figure 1 has demonstrated that the multiple seismic traces are related to each other, especially when 
the samples are obtained in the similar fields. We reasonably measure the joint compactness and correlation of 
the multiple observations in row sense. By reviewing lq−lp(q > 0, p > 0) model (4), we notice that the expression 
errors ej = Lmj−dj, j = 1, 2, …, l and the priori of representation coefficients are assumed to submit to the inde-
pendent identically distribution,

Figure 1. (a–d) denote the weight values of recovered coefficients of different traces.



www.nature.com/scientificreports/

4Scientific RepoRts |  (2018) 8:2188  | DOI:10.1038/s41598-018-20556-1

α α| ∝ Π




−






∝ Π




−






>
= =

P e m e P m m( ) exp , ( ) exp , 0
(9)j j

k

K

j
k q

j
k

K

k j
k p

k
1 1

where mj
k is the k-th entry of representation vector mj ∈ RK. The solution ⁎mj  to (4) can be rewritten as the maxi-

mum likelihood estimation

= | = | +
∈ ∈
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Because each coefficient component mj
k in (3) is spanned to a row vector in the joint expression system (8), the 

absolute value of the scalar component is naturally replaced by a vector norm. Euclidean norm is preferred for its 
smoothness and easiness. Based on the analysis (9) and (10), the joint sparse priori of coefficient matrix M and 
fidelity error matrix E = LM−D can be considered
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where mk, ek are the k-th row vectors of M ∈ Rk × l and E ∈ Rm × l respectively.αk > 0 is a constant and . 2 stands for 
the Euclidean norm. In the similar relationship between (4) and (9), the joint matrix minimization approach for 
the ill-posed linear system (8) can be generally formulated as

= − + Λ > >J M LM D M q pmin ( ) , 0, 0,
(11)M q

q

p

p

2, 2,

where the l2, p norm of the priori matrix M is defined as

∑= ∈ .
=

 M m p, (0, 1]
(12)p
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k
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Here − >LM D q( 0)
q2,

 denotes the l2, q matrix norm of LM−D, αΛ = =diag{ }k k
K

1 is a regularization matrix 
and its diagonal entry αk > 0 is the regularization parameter for the k-th row of M. Especially, if M contains only 
one column mj, each mk

2
 is reduced to | |mj

k  while M
p2,
 is equivalent to mj p

. When Λ takes scalar identity, 
the joint system (11) is exactly reduced to (4).

There are different choices of the parameter pair q > 0 and p > 0. Here we are interested in q = 2 and p ∈ (0, 1] 
for the practical purpose. Extensive studies have illustrated that the fractional norm lp (p ∈ (0, 1)) has better spar-
sity than l1 norm35–39. But the lp norm is neither Lipschitz nor convex which brings computational challenge. This 
paper presents a unified algorithm to solve the mixed l2, p regularized matrix minimization problem (11) for any 
p ∈ (0, 1]. The computational results in seismic wavefield recovery validate the efficient performance of the joint 
matrix minimization approach. The convergence properties of our new algorithm are also analyzed.

Algorithms
In this section, a unified method will be developed to solve the l2, q−l2, p matrix minimization problem for any 
q = 2 and 0 < p ≤ 1. Especially when p is fractional, (11) is neither convex nor Lipschitz continuous which brings 
many computational difficulties. Actually the unconstrained lq-lp minimization is strongly NP-hard for any 0 < q 
or p < 140. Reweighed minimization algorithm35,41,42 is an efficient algorithm for solving the l2-lp (0 < p < 1) vector 
minimization problem which has been extended by Wang et al.43 to solve matrix minimization problem. Even the 
problem considered in43 is the special case of (11) with q = p ∈ (0, 1], the idea motivates us to develop an iteratively 
quadratic algorithm for the generalized l2, p matrix minimization for p ∈ (0, 1]. Moreover, the convergence analysis 
will be uniformly demonstrated.

After simple transformation, ΛM
p

p

2,
 can be rewritten as

Λ =M Tr M HM( ),
(13)p

p T
2,

where ⋅Tr( ) stands for the trace operation and

α α α
=















− − −
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m m m
diag , , , ,

(14)
p p

K
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where mk (k = 1, 2, …, K) is the k-th row vector of M.
Hence the objective function of (11) for q = 2, p ∈ (0, 1] can be reformulated as

= − + Λ
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J M LM D M
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It is well known that the KKT point of the unconstrained optimization problem (11) is also the stationary 
point of J(M)44. Compute the derivative of J(M) with respect to matrix M and set it to zero, we get the KKT equa-
tion of the problem (11) as follows

∂
∂

= − + = .
J M

M
L LM D pHM( ) 2 ( ) 0 (16)

T

Thus solving (11) is reduced to finding the solution of the nonlinear equation (16). If H is fixed and the matrix 
= +N L L HT p

2
 is invertible, equation (16) can be solved by

=


 +



 .
−

M L L pH L D
2 (17)

T T
1

We notice that if some row of M is zero, the diagonal entries of H cannot be generated, nor can N. Then the 
iteration breaks down. In view of the seismic wavefield recovery, the zero row means the corresponding basis 
function has no contribution to reconstruct all the observed seismic traces. For example, if mk = 0, then Lk (the 
k-th column of transformation matrix L) is nothing with the observations D in the representation system (8). To 
avoid the possible breakdown of the matrix N in (17) and reasonably explain this numerical behavior, we apply 
the Sherman-Morrison-Woodbury formula45 to N−1. Denote

α α α
=
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− − − −

G pH
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m m m
2
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then the formula (17) can be rewritten as

= = − +− −M N L D G GL I LGL LG L D[ ( ) ] , (19)T T
m

T T1 1

where Im is m-dimensional identity operator. If matrices G and M are computed alternatively corresponding to 
equations (18) and (19) respectively, then an iterative procedure can be naturally developed
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The iterative algorithm is outlined in Algorithm 1.

Algorithm 1. An iterative procedure for solving problem (16)
Step 1. Input L ∈ Rm ×  K, D ∈ Rm ×  l. Set the sparse parameter p ∈ (0, 1] and diagonal matrix 

α α αΛ = � �diag{ , , , } 0K1 2  (here  refers to the positive definite). Given the stopping criterion  > 0.
Step 2. Set t = 1 and initialize M1 ∈ RK × l.
Step 3. For t = 1, 2, … until ρ ≤t  do:

α α α
=















− − −

G
p

diag
m m m2 , , , ;t

t
p

t
p

t
K p

K

1
2
2

1

2
2
2

2

2
2

= − ++
−M G G L I LG L LG L D[ ( ) ] ;t t t

T
m t

T
t

T
1

1

ρ =
−

.+M M
Mt

t t F

t F

1

The mt
k (k = 1, 2, …, K) means the k-th row vector of Mt. Algorithm 1 aims to solve the fixed-point system (16) 

which is the stationary equation of the matrix function (15). Based on the iterative procedure of Algorithm 1, the 
iterative point Mk is the solution of the nonlinear equation (16) if and only if Mt = [Gt−GtLT(Im + LGtLT)−1LGt]LTD 
which is equivalent to Mk = Mk + 1. From this iteration on, the iteration point will not update which indicates that 
a stationary point has been found. Hence the stopping criterion of Algorithm 1 can be chosen as 
ρ = ≤

−+:t
M M

M
t t F

t F

1 , where · F stands for the Frobenius norm46.
Based on the definition (12) of M

p2,
, the sparse parameter p ∈ (0, 1] aims to find a solution with many zero 

row vectors of the l2, p-regularized matrix minimization problem (11). This means that many basis functions have 
no contribution to reconstruct the seismic wavefields which accords with the prior knowledge. Therefore (mt)k = 0 
might frequently occur during the iterations of Algorithm 1. We may formulate the following statement.

Remark. In Algorithm 1, if =m 0t
k
0

 happens for some iteration Mt0
, then =m 0t

k  for t ≥ t0.
We give explanations of the above remark as follow. If =m 0t

k
0

 in the t0-th iteration, then the diagonal entry of 
Gt0

 is zero, namely =G( ) 0t kk0
. From the update formula = − ++

−M G I L I LG L LG L D[ ( ) ]t t K
T

m t
T

t
T

1
1

0 0 0 0
, we know 
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that =+m 0t
k

10
 holds, so does =m 0t

k  for t ≥ t0. After t0 iterations with =m 0t
k
0

, the k-th column of the matrix L is 
unnecessary in the linear system (8) and the variational function J(M) in (15). So we can discard the k-th column 
of the matrix L to reduce the system without any loss. The improvement of Algorithm 1 can be concluded as 
Algorithm 2.

Algorithm 2. Solving problem (16) for any p ∈ (0, 1]
Step 1. Input L ∈ Rm × K, D ∈ Rm × l. Set the sparse parameter p ∈ (0, 1] and the diagonal matrix 

α α αΛ = � �diag{ , , , } 0K1 2 . Given stopping criterion > 0 .
Step 2. Set t = 1 and initialize ∈ ×M̂ RK l

1 . Let Ω0 = {1, 2, …, K}.
Step 3. For t = 1, 2, … until ρ ≤t  do:

Ω = Ω =− ˆk m{ : 0};t t t
k

1 2
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t t F

t F

1

In Algorithm 2, = ΩˆM M ( ; :)t t t  means to keep the rows of M̂t corresponding to the index set Ωt while 
Lt = L(:;Ωt) keeps the column of L corresponding to Ωt. Compared with Algorithm 1, Algorithm 2 removes the 
zero rows of the approximation solution in each iteration and the corresponding columns of the bases matrix L. 
This technique iteratively reduces the inactive set of data.

Based on the procedure of Algorithm 2, = +N L L Ht t
T

t
p

t2
 is well defined and +M̂t 1 is the solution of the linear 

system =N M L Dt t
T . Since Nt is symmetric and positive definite, +M̂t 1 is also the optimal matrix solution of the 

following quadratic subproblem

= − − + .Q M Tr L M D L M D Tr M HMmin ( ): (( ) ( )) ( ) (21)M
t t

T
t

T

We would have ≤+
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It is noticed that = − + ΛJ M L M D M( )t t t F t t p

p2

2,
 and =+ +

ˆJ M J M( ) ( )t t1 1 . Using inequalities (A-2) (see 
the Appendix A) and (22), we can derive that

= ≤ ∈+ +
ˆJ M J M J M p( ) ( ) ( ), (0, 1], (23)t t t1 1

which means {J(Mt)} will decrease with respect to iterations for any p ∈ (0, 1].
Once J(Mt + 1) = J(Mt) happens for some t, the equalities in (A-2) (see the Appendix A) and (22) hold simultane-

ously. From Proposition 2 of the Appendix A, we obtain =+m̂ mt
k

t
k

1 2 2
 for all k ∈ Ωt. Thus Gt + 1 = Gt and Ht + 1 = Ht, 

which implies that +M̂t 1 is a solution of the equation (17). Since the objective function sequence {J(Mt)} for all t is 
strictly decreasing and lower bounded, any accumulation of the set {Mt} is a stationary point of the equation (11). At the 
same time, the descending quantity of {J(Mt)} measures the convergence precision of the matrix sequence {Mt}.

Once the nonzero set of the t-th iteration has been fixed, the subproblem (21) can be solved in a variety of 
ways such as preconditioned conjugate gradient methods46, nonmonotone gradient descent methods47,48, and so 
on. The framework can be concluded as Algorithm 3.

Methods

No noise Noise level 0.001 Noise level 0.01

errrel SNR CPU(s) errrel SNR CPU(s) errrel SNR CPU(s)

Alg.3 (p = 0.5) 2.56e-4 71.83 4.56e-2 3.54e-4 69.02 1.7e-2 2.09e-2 33.62 3.25e-2

Alg.3 (p = 1) 5.08e-4 65.89 3.18e-2 6.67e-4 63.51 1.81e-2 2.48e-2 32.12 3.09e-2

SPG (p = 1) 2.62e-4 71.07 5.56e-2 3.75e-4 68.96 4.22e-2 2.54e-2 31.89 6.54e-2

Table 1. The experimental results of one-dimensional seismic wavefield reconstruction.
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Algorithm 3. A unified algorithm for solving problem (16) for any p ∈ (0, 1]
Step 1. Input L ∈ Rm × K, D α α αΛ = � �diag{ , , , } 0K1 2  ∈ Rm × l. Set the sparse parameter p ∈ (0, 1] and the 

diagonal matrix . Given stopping criterion  > 0.
Step 2. Set t = 1 and initialize ∈ ×M̂ RK l

1 . Let Ω0 = {1, 2, …, K}.
Step 3. For t = 1, 2, … until ρ ≤t  do:

Ω = Ω | =− ˆk m{ 0};t t t
k

1 2

= Ω = ΩˆM M L L( ; :); (: ; );t t t t t

α
=















−

∈Ω

H
m

diag ;t
k

t
k p

k2
2

t

= +N L L pH
2

;t t
T

t t

Solve =N M L Dt t
T  for the solution +M̂t 1;

Figure 2. One-dimensional experimental results via model (11) with q = 2 and =p 1/2 for noisy data: (a) 
comparison of the original and the recovered signal; (b) difference between the recovered signal and the original 
signal.

Methods

No noise Noise level 0.001

errrel SNR CPU(s) errrel SNR CPU(s)

Alg.3 (p = 0.1) 0.0063 44.0585 0.326 0.0098 40.2009 0.5056

Alg.3 (p = 0.2) 0.0075 42.5209 0.3277 0.0092 40.7235 0.36

Alg.3 (p = 0.5) 0.0112 39.049 0.4796 0.0122 38.308 0.5044

Alg.3 (p = 1) 0.0115 38.7591 0.135 0.0121 38.3405 0.0973

SPG (p = 1) 0.0711 22.9599 13.121 0.0726 22.7818 12.9125

Table 2. Two-dimensional seismic wavefield reconstruction on 10% missing data.

Methods

No noise Noise level 0.001

errrel SNR CPU(s) errrel SNR CPU(s)

Alg.3 (p = 0.1) 0.0204 33.8269 0.2916 0.0209 33.5817 0.2451

Alg.3 (p = 0.2) 0.0179 34.9441 0.4101 0.0252 31.9641 0.4695

Alg.3 (p = 0.5) 0.0219 33.2043 0.3775 0.0283 30.9583 0.4783

Alg.3 (p = 1) 0.0314 30.075 0.0962 0.0346 29.228 0.0894

SPG (p = 1) 0.0953 20.4223 25.7615 0.0953 20.4138 21.894

Table 3. Two-dimensional seismic wavefield reconstruction on 25% missing data.
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ρ =
−

.+M̂ M
Mt

t t F

t F

1

Experimental results
To validate the efficiency of the joint matrix minimization approach and the unified algorithm for the problem 
(11), we perform three tests: (1) restoration of the input one-dimensional random signal with the randomly 

Figure 3. Seismic data results via model (11) with q = 2 and p = 0.5: (a) the real data; (b) the data with missing 
traces; (c) the recovered data; (d) error between the original and the recovered signals.

Figure 4. Seismic data results via SPG for l1-regularized least square minimization: (a) the recovered data; (b) 
error between the original and the recovered signals.
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generated matrix L; (2) restoration of the synthetic seismic data with random loss of traces; (3) restoration of the 
field data.

One-dimensional signal reconstruction. We randomly take samples to generate the matrix L. For imple-
mentation, we try to restore the signal by the model (11) with q = 2 and p ∈ (0, 1].

Figure 5. Seismic data results in noisy case via model (11) with q = 2 and p = 0.5: (a) the recovered data; (b) 
error between the original and the recovered signals.

Figure 6. Seismic data results via model (11) with q = 2 and p = 0.5: (a) the real data; (b) the data with missing 
traces; (c) the recovered data; (d) error between the original and the recovered signals.
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The stopping precision in Algorithm 3 is set to = −10 3 . The sparse parameter p and regularization parameter 
αk are typically chosen in (0, 1]. Results for other values of p are similar. The relative error of the recovered signal 
Mrec to the true (given) signal Mtrue is defined by

=
−

.
M M

M
errrel

rec true 2

true 2

To quantify the results, we define the signal-to-noise ratio (SNR) as =
−

SNR 10log
d

d d10
org 2

2

org rec 2

2
, where dorg 

refers to the original data and drec is the restored data.
For the one-dimensional case, the matrix M is reduced to a vector, hence the unified Algorithm 3 can be used for 

solving (11). For comparison, we also apply spectral projected gradient (SPG) method49 to solve the l1-regularization 
problem. The code of SPG is downloaded from http://www.cs.ubc.ca/~mpf/spgl1/index.html. Two algorithms are car-
ried out in the same environment and choose their best regularization parameters. The comparison items include errrel 
value, SNR and CPU running time (second). Each experiment is repeated five times and the average values are reported 
in Table 1. It indicates that both methods perform well for one-dimensional signal reconstruction problem.

Apart from the regular data, we also consider the noisy cases to show the robustness of two methods. Different 
noise levels are added to the simulated data. Noise level 0.001 means the noise is randomly generated with zero mean 
and 0.001 variance. The results of Algorithm 3 with sparse parameters p = 1 and p = 0.5 are displayed in Table 1. 
Compared with the l1-regularized minimization model, the half-norm regularized minimization behaves better in 

Figure 7. Frequency information: (a) frequency of the original data; (b) frequency of the sub-sampled data; (c) 
frequency of the restored data.

http://www.cs.ubc.ca/~mpf/spgl1/index.html
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reconstruction. Figure 2 plots the recovery performance of the Algorithm 3 with p = 0.5 on noisy data. Figure 2(a) is 
the comparison of the real signal and the recovered signal, Fig. 2(b) illustrates the difference between the recovered 
signal and the input (true) signal. The recovery images of other cases are similar. The figures reveal that our model 
and algorithm perform well for one-dimensional seismic wavefield reconstruction problem even in noisy cases.

Reconstruction of seismograms from a layered model. Now we consider a seismogram generated 
from a seven layers geologic velocity model where the spatial sampling interval is 15 meters and the time 
sampling interval is 0.002 second. The velocity varies from 2500 m/s to 5500 m/s. The seismogram is generated 
using a source function given by a Ricker wavelet with central-frequency of 25 Hz. The dataset contains 256 
traces with 256 time samples in each trace. Different percentages of missing traces in original data, 10%, 25% 
and 50%, are used to test the limitation of recovery methods. The joint matrix model (11) with Algorithm 3 
is applied to reconstruct the seismic wavefield. Since the spectral projected gradient method only solves an 
l1-regularized vector minimization problem, we decompose the matrix representation system (11) into the 
l1-regularized vector minimization problem. Each column is considered as a subproblem to reconstruct its 
weight vector separately. Then all the solutions of the subproblems are sequentially aligned into a weighted 
matrix to evaluate the reconstruction performance. The experimental results on missing percentages 10% and 
25% can be seen in Tables 2 and 3.

As for the data without noise but missing 50% traces, the reconstruction performance of joint matrix model 
with Algorithm 3 is much worse than missing percentages of 10% and 25%. The errrel value is 0.5414 and SNR is 
around 5.1904dB, almost the same for any p ∈ (0, 1]. These results mean that our method may not completely 
recover the seismic wavefield well if the missing trace signals are more than 50%. Actually, the sub-sampled data 
missing 50% itself is a failed collection of seismic recodes.

The original shot gathers are shown in Fig. 3(a). The data with 25% traces missing are shown in Fig. 3(b). In 
forming the under-determined matrix L, a Haar wavelet orthogonal base is used to form the transform matrix Ψ. 
The unified Algorithm 3 is applied to solve the joint matrix minimization problems (11) with q = 2 and typical 
parameters p ∈ (0, 1]. Good recovery performance is observed and the result is demonstrated in Fig. 3(c). The 
error of the original and the recovered data shown in Fig. 3(d) illustrates the efficient recovery performance of 
joint matrix minimization approach. In displaying the results, the amplitude scale of the error map is the same as 

Figure 8. Seismic data results via model (11) with q = 2 and p = 0.5: (a) the real data, (b) the data with missing 
traces, (c) the recovered data and (d) error between the original and the recovered signals.
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the amplitude scale of the data. Of course, other values of the sparse parameter p can be chosen, the results in 
visualization are similar. So, we only list the quantitative results in Tables 2 and 3.

Comparatively, the recovery image of the SPG algorithm for the case of 25% traces missing is presented in 
Fig. 4. Figure 4(a) is the reconstruction and Fig. 4(b) displays the difference between the original and recon-
structed seismic signals. It is noticed that SPG algorithm for the l1-regularization vector minimization restores 
the seismic wavefield as accurate as the joint matrix approach with Algorithm 3. These results are obtained using 
the same code from http://www.cs.ubc.ca/~mpf/spgl1/index.html.

To show the anti-noise property of our algorithm, we add random noise with noise level 0.001 to the simulated 
data. The unified Algorithm 3 is applied to solve the joint matrix minimization problems. The errrel value, SNR 
and CPU running time (second) are listed in Table 2 for 3 sparse parameters. The recovery image and the error of 
the original and the recovered data are shown in Fig. 5(a and b) respectively. The low relative error and high SNR 
indicate that our algorithm is stable for seismic data restoration.

To save memory requirement of large-scale data, we have observed the restoration behavior of our method on 
patch of the input synthetic data. We evenly partition the collection of trace signals D into several blocks, such as 
D = [D1, D2, …, Df], where ∈ ×D Rg

m l g and ∑ == l lg
f

g1 . Each Dg is input separately to recover the seismic signals 
by system (11). Then all the sub-solutions Mg, g = 1, 2, …, f are combined into M = [M1, M2, …, Mf]. When the 
number of segments is two or three, the recovered errrel values and SNR are almost the same as the integral case. 
When each column is considered as a segment, the joint matrix model is reduced to a sequence of vector recover-
ies, the recovery errrel values and SNR are similar to the integral case but the computational time is around 50 
times more.

Reconstruction of seismograms from a heterogeneous model. Next we consider a seismogram 
generated from a velocity model varying both vertically and transversely (Wang et al.5). The original seismic 
wavefield, sub-sampled data (37% traces are randomly removed) and recovered data are shown in Fig. 6(a–c), 
respectively. The difference of the original data and the recovered data is illustrated in Fig. 6(d). In displaying the 
results, the amplitude scale of the error map is the same as the amplitude scale of the data. It illustrates that all 
the initial seismic energy is recovered with minor errors. Though the reconstruction is not perfect, most of the 
details of the wavefield are preserved. Again, to test the quality of our algorithm in seismic data restoration for 
complex structure, we calculate the signal-to-noise ratio and the relative error. From our calculation, for p = 0.5, 
the values of SNR and errrel are 26.9792 and 0.0448, respectively; for p = 1, the values of SNR and errrel are 25.6940 
and 0.0519, respectively. The high value of SNR and low value of errrel indicate our algorithm works for seismic 
data restoration even with complex structure.

To show the robustness of our algorithm to interference, we add random noise with level 0.001 and 0.01 to the 
simulated data respectively. The unified Algorithm 3 with p = 0.5 is applied to solve the joint matrix minimization 
problems. The values of SNR and errrel for noise level equaling 0.001 are 26.9074 and 0.0451, and for noise level 
equaling 0.001 are 18.0355 and 0.1254, respectively.

In the noisy case, e.g., noise level equaling 0.01, the frequency information of the original data, sub-sampled 
data and the recovered data are shown in Fig. 7(a–c), respectively. Again, the aliasing of the sub-sampled data is 
reduced greatly in the recovered data.

Field data. Finally, we examine the efficiency of the new method with field data. The seismic data is a 
marine shot gather shown in Fig. 8(a) which consists of 256 traces with spacing 25 m and time sampling 
interval 2 ms. There are damaged traces in the original gather. The subsampled gather is shown in Fig. 8(b) 
with 42% of the original traces randomly removed. This sub-sampled gather was used to restore the original 
gather with suitable solution methods. Again, the unified Algorithm 3 is applied to solve the joint matrix 
minimization problems (11) with q = 2 and p = 0.5. The recovery result is demonstrated in Fig. 8(c). The 
error of the original and the recovered data shown in Fig. 8(d) illustrates the efficient recovery performance 
of joint matrix minimization approach. In displaying the results, the amplitude scale of the error map is 
the same as the amplitude scale of the data. Comparing the subsampled image with the original image, the 
restored image can reconstruct most of the details. In addition the damaged trace in the original gather was 
restored as a good trace. Using the same definition of SNR as above, for p = 0.5, the value of SNR equals 
19.7301; for p = 1 the value of SNR equals 19.7919. We only show figures for p = 1, since in visualization the 
results are similar for p = 0.5.

The frequency information of the original data, sub-sampled data and the recovered data are shown in 
Fig. 9(a–c), respectively. It indicates that the aliasing of the sub-sampled data is reduced greatly in the recovered 
data.

Conclusion
Sparse optimization has broad applications in seismic data processing. In this paper we focus on data resto-
ration problem. Noticing that the seismic wavefield can be represented using matrix instead of vector as 
weight variable to express all the signals simultaneously, in this paper we propose a matrix optimization 
model to the seismic wavefield recovery. We first reformulate the data restoration problem using an l2, 

p-norm constrained matrix minimization model for any p ∈ (0, 1], which is a nonconvex and non-Lipschitz 
continuous minimization problem. Then we develop a unified algorithm to solve the mixed matrix optimi-
zation problem for any p ∈ (0, 1]. Convergence analysis of the new algorithm is also addressed. Numerical 
results on synthetic problems and the field data example indicate potential usage of our method for practical 
applications.

http://www.cs.ubc.ca/~mpf/spgl1/index.html
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Appendix Properties of the new algorithms. In this section, we will analyze the convergence property 
of the Algorithm 2. The main result is that the objective function J(Mt) strictly decreases with respect to iterations 
until the matrix sequence {Mt} converges to a stationary point of J(M).

Proposition 1. Let ϕ τ τ τ= − a( ) a
1

 be a function of the variable τ, where a ∈ (0, 1). Then for any τ > 0, 
ϕ(τ) ≤ 1−a, and τ = 1 is the unique maximizer.

To verify the above statements, let us take the derivative of ϕ(τ) and set it to be zero, that is

ϕ τ τ′ = − =−( ) 1 0,a
1 1

then ϕ′(τ) = 0 has the unique solution τ = 1 for any a ∈ (0, 1) which is just the maximizer of ϕ(τ) in (0,  +∞).
Based on Proposition 1, for a given a ∈ (0, 1),

-τ τ− ≤ −a a1 (A 1)a
1

holds for τ ∈ (0,  +∞) and “=’’ is active if and only if τ = 1. Let a takes special values such as = ∈a p( (0, 1])p
2

, 
the inequality (A-1) will result in the following formula associated with || || < ≤M p(0 1)p

p
2, .

Proposition 2. Suppose that Mt and +M̂t 1 are generated in the t-th iteration by Algorithm 2, the following 
inequality holds,

Figure 9. Frequency information: (a) frequency of the original data; (b) frequency of the sub-sampled data; (c) 
frequency of the restored data.
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Summing up k ∈ Ωt in formula (A-4}), we can derive at (A-2).
Based on Proposition 1, τ = 1 is the unique minimizers for ϕ(τ) in (0,  +∞) when =a p

2
. Namely, 

= ∈ Ω+m̂ m k( )t
k

t
k

t1 2 2
 is necessary and sufficient for equality holding in (A-4). Now, we can establish the 

following convergence property of the Algorithm 2.

Proposition 3. Suppose that {Mt} is the matrix sequence generated by Algorithm 2. Then J(Mt) strictly 
decreases with respect to t for any 0 < p ≤ 1 until {Mt} converges to a stationary point of J(M).

Proposition 4. Based on the derivation of Proposition 3, so long as the subproblem (16) is solved with 
≤+

ˆQ M Q M( ) ( )t t t t1 , the convergence of Algorithm 3 will be guaranteed for any p ∈ (0, 1].
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