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The role of disease-linked residue 
glutamine-913 in support of the 
structure and function of the 
human electrogenic sodium/
bicarbonate cotransporter 
NBCe1-A
Evan J. Myers1,4, Aniko Marshall1 & Mark D. Parker  1,2,3

Mutations in the sodium bicarbonate cotransporter NBCe1 (SLC4A4) cause proximal renal tubular 
acidosis (pRTA). We recently described a novel pRTA mutation p.Gln913Arg (Q913R), inherited in 
compound heterozygous form with p.Arg510His (R510H). Q913R causes intracellular retention of 
NBCe1 and a ‘gain of function’ Cl− leak. To learn more about the importance of glutamine at position 
913, we substituted a variety of alternative amino-acid residues (Cys, Glu, Lys, Leu, Ser) at position 913. 
Studying cRNA-injected Xenopus oocytes by voltage clamp, we find that most de novo mutants exhibit 
close-to-normal NBCe1 activity; only Q913K expresses a Cl− leak. Studying transiently-transfected, 
polarised kidney cells by fluorescence microscopy we find that most de novo mutants (except Q913E) 
are intracellularly retained. A 3D homology model predicts that Gln913 is located in the gating domain 
of NBCe1 and neighbours the 3D space occupied by another pRTA-associated residue (Arg881), 
highlighting an important and conformationally-sensitive region of NBCe1. We conclude that the 
intracellular retention of Q913R is caused by the loss of Gln at position 913, but that the manifestation 
of the Cl− leak is related to the introduction of Arg at position 913. Our findings will inform future 
studies to elucidate the nature and the consequences of the leak.

Blood plasma pH is maintained at a value close to 7.4. Deviations outside of this range (±0.05) are clinically 
defined as acidemia (↓pH) or alkalemia (↑pH). Bicarbonate (HCO3

−) is an important physiological buffer. The 
ability of the CO2/HCO3

− buffer system to resist pH change hinges on the balance between the partial pressure of 
CO2 (PCO2) in the airspaces of the lungs and the concentration of HCO3

− in blood plasma.

+ ↔ +− +HCO H CO H O3 2 2

While respiration maintains a relatively constant arteriolar PCO2 (~40 mm.Hg), it is the action of the kidney that 
determines the concentration of bicarbonate in plasma (~24 mM). The majority of HCO3

− is generated in prox-
imal tubule (PT) epithelial cells of each nephron and exported across the basolateral membrane of those cells, 
into circulation, via the electrogenic Na+/HCO3

− cotransporter NBCe1-A1. NBCe1-A in PT cells is also a major 
contributor to the reabsorption of ~80% of the HCO3

− filtered at the glomerulus. NBCe1-A is one of three major 
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products of the SLC4A4 gene; the others, NBCe1-B and NBCe1-C, are expressed in a variety of excitable and 
epithelial cells throughout the body and are primary engaged in HCO3

− import into cells. Control of intracellular 
[HCO3

−], supports anion/fluid secretion and maintains neuronal excitability.
Recessively inherited mutations in NBCe1 cause proximal renal tubular acidosis (pRTA). pRTA is character-

ized by acidemia due to plasma HCO3
− insufficiency as well as a variety of disorders including developmental 

impairments, ocular abnormalities (band keratopathy, cataracts, and glaucoma), and neurological signs. Only 
fourteen such mutations have been described to date. These mutations (reported in the context of GenBank 
Accession NP_0037570) can be categorized as nonsense (p.Gln29X2 and p.Trp516X3), frame shift (p.Asn-
721ThrfsX304 and p.Ser982AsnfsX45), deletion (p.Leu738del.6) and missense (p.Arg298Ser7,8, p.Ser427Leu9, 
p.Thr485Ser10, p.Gly486Arg11, p.Arg510His5,7,12, p.Leu522Pro13, p.Ala799Val10, and p.Arg881Cys5,10). The four-
teenth and most recently described mutation p.Gln913Arg is inherited in compound heterozygous form with 
p.Arg510His14. All mutations result in the loss of functional NBCe1 expression by decreasing NBCe1 abundance 
in the plasma membrane and/or Na+/2HCO3

− cotransport activity.
Two of these mutants exhibit a unique gain-of-function molecular phenotype: A799V exhibits a 

HCO3
−-independent cation leak, while Q913R exhibits a Na+ and HCO3

−-independent Cl− leak. A homol-
ogy model of NBCe1, based on the crystal structure of the related protein AE1 (anion exchanger 1, encoded by 
SLC4A1), reveals that Ala799 is located in the substrate coordinating region in the core of the ion translocating 
domain15. We now extend our original study to investigate the potential functional importance of Gln913. In 
the present report, we study the electrophysiological and trafficking characteristics of a series of de novo NBCe1 
substitution mutants (Q913C, Q913E, Q913K, Q913L, and Q913S chosen to represent a diversity of chemical and 
structural characteristics, see Methods) in order to determine the extent to which the molecular defects associ-
ated with Q913R result from the loss of Gln or from the introduction of Arg at position 913. Also for the first 
time, we discuss the location of Gln913 in a 3D homology model of NBCe1 and its implications for our findings.

Results
Q913X mutants are capable of Na+/2HCO3

− cotransport. Figure 1A shows three I-V relationships 
gathered from a H2O-injected oocyte as it was sequentially superfused with ‘Na (0 HCO3)’, ‘Na, HCO3‘, and ‘(0 
Na) HCO3’ solutions. The conductance of the plasma membrane (Gm) described by the slope of these lines was not 
greatly affected by the solution changes, although the small changes that we did observe are statistically significant 
as shown by the data from a greater number of H2O-injected oocytes in Fig. 2. Figures 1B and 2 show equivalent 
data from oocytes expressing wild-type NBCe1-A-EGFP (WT). In contrast to the behaviour of H2O-injected 
cells, the presence of HCO3

− in the superfusate caused a large and significant increase in Gm for WT-expressing 
cells (white vs gray symbols) that was cancelled upon removal of Na+ from the perfusate (black symbols): a pat-
tern consistent with electrogenic Na+- and HCO3

−-dependent transport. Figure 1C–H show equivalent data from 
single oocytes expressing either the pRTA-associated mutant Q913R or any one of the de novo mutants Q913C, 
E, K, L, or S. All mutants exhibited the signature pattern of electrogenic Na+- and HCO3

−-dependent transport 
with varying levels of robustness (Fig. 2). We will consider the relative magnitude of these conductances among 
groups of oocytes in a later section.

Figure 3A–H show, for each group of oocytes, three I-V relationships gathered from single oocyte as they were 
sequentially superfused with ‘Na (0 HCO3)’, ‘Na, HCO3’, and ‘Na, HCO3+ DIDS’ (DIDS: 4,4’-Diisothiocyano-
2,2’-stilbenedisulfonic acid) solutions. 1 min exposure to 200-µM DIDS cancelled the HCO3

−-dependent increase 
in Gm for each NBCe1-expressing cell, as shown in the averaged data presented in Fig. 4A. The intersection of 
the I-V relationships gathered in ‘Na, HCO3’ solution ± DIDS reports the reversal potential (Erev) of the transport 
process, which is a proxy for the Na+:HCO3

− cotransport stoichiometry16. Figure 4B shows that Erev is statistically 
indistinguishable among the de novo mutants, WT, and Q913R. The calculated value of Erev is consistent with a 1 
Na+:2 HCO3

− cotransport stoichiometry16,17.

Q913X mutants exhibit close-to-normal per-molecule Na+/2HCO3
− cotransport activity.  

Figure 5A shows the combined HCO3
−-dependent Gm values (i.e., Gm in ‘Na,HCO3’ solution less the Gm in ‘Na (0 

HCO3)’ solution) pooled from the data in Figs 2 and 4A. ANOVA analysis reports that (1) cells expressing Q913E, 
Q913L, and Q913S exhibit a HCO3

−-dependent Gm that is indistinguishable from that of cells expressing WT, 
(2) cells expressing Q913C, Q913K, and Q913R exhibit a HCO3

− dependent Gm that is smaller than that of cells 
expressing WT, and (3) cells expressing the pRTA-associated mutant Q913R exhibit the smallest HCO3

− depend-
ent Gm. In order to relate these values to a ‘per-molecule’ activity, we need to determine the relative abundance of 
each transporter clone in the oocyte plasma membrane. Figure 5B shows a representative western blot of bioti-
nylated (i.e., plasma-membrane resident) NBCe1-A protein from H2O-injected oocytes as well as from oocytes 
expressing WT, Q913R, Q913C, Q913E, Q913K, Q913L, and Q913S. In all cells expressing NBCe1-A constructs, 
the protein migrated as two bands: a major band of ~ 168 kDa representing monomeric NBCe1-A-EGFP, and a 
minor band greater than 268 kDa consistent with the expected molecular weight of dimeric NBCe1-A-EGFP17. 
From a larger number of biological replicate samples probed on similar blots, we calculated the relative abun-
dance of each mutant (dimer plus monomer) in the plasma membrane versus WT (Fig. 5C, black bars). Reflecting 
the Gm data in Fig. 5A, Q913R exhibits the weakest expression. The gray bars in Fig. 5C reproduce the Gm data 
from Fig. 5A, normalized to the average Gm of WT-expressing cells. Statistical analysis (unpaired, two-tailed 
t-test with Bonferroni correction for multiple comparisons) reports no significant disparity between the rela-
tive plasma-membrane expression (black bars) and the relative HCO3

−-dependent Gm (gray bars) for any of the 
mutants.

Q913K, like Q913R, exhibits an additional anion leak. Prior to each of the experiments in Figs 1–4 
we measured the spontaneous membrane potential (Vm) of the cells at rest while bathed in ‘Na (0 HCO3)’ solution 
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(Fig. 6A).We found that the average Vm for cells expressing any of the NBCe1 constructs was significantly more 
depolarized than the Vm of H2O-injected oocytes (Fig. 6A). Among the cells expressing a mutant NBCe1 con-
struct, only those expressing Q913R exhibited a Vm that was statistically distinguishable (more depolarized) from 
the Vm of cells expressing WT (Fig. 6A).

The application of ‘Na, HCO3’ solution did not affect the Vm of H2O-injected cells (P = 0.68, paired, two-tailed 
t-test, not shown). The same maneuver caused a significant and substantial hyperpolarization of average Vm for all 
groups of cells expressing an NBCe1 construct (paired, one-tailed t-test with Bonferroni correction, not shown) 
as Vm tends towards Erev for NBCe1. The maximum extent of hyperpolarization (i.e., most negative Vm) observed 
upon exposure to ‘Na, HCO3’ solution is shown in Fig. 6B. ANOVA reports that cells expressing Q913C, Q913E, 
Q913L, and Q913S hyperpolarized to the same extent as cells expressing WT. However, cells expressing Q913R or 
Q913K did not hyperpolarize to the same extent as cells expressing WT.

We have previously shown that the hyperpolarization deficit exhibited by Q913R is reflective of the presence 
of a HCO3

−-independent anion leak that prevents electrogenic NBCe1 activity from dominating Vm. To deter-
mine whether any of the de novo mutants exhibit this unusual anion leak, we examined the effect of lowering 

Figure 1. Effect of Na+ and HCO3
− replacement on currents mediated by WT or Q913X mutants in Xenopus 

oocytes. (A) Representative current-voltage (I–V) relationship from a H2O-injected oocyte as it was sequentially 
exposed to ‘Na (0 HCO3)’, ‘Na, HCO3’, and ‘(0 Na) HCO3’ solutions. (B–H) Equivalent data from oocytes 
expressing WT, Q913R, Q913C, Q913E, Q913K, Q913L, or Q913S.
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extracellular [Cl−] on the HCO3
−-independent currents associated with NBCe1 expression. Figure 7A–H shows 

representative I-V relationships obtained from single oocytes during a set of experiments in which oocytes were 
superfused with ‘Na (0 HCO3)’ solution (containing 113 mM Cl−) followed by a reduced-Cl version of the same 
solution that contains only 13 mM Cl−. This maneuver is anticipated to reduce the magnitude of the outward 
currents (i.e., those above the x-axis) that represent Cl− influx. Figure 8 shows the average reduction in current at 
+120 mV (I+120) from a greater number of these experiments. ANOVA discloses that (1) cells expressing Q913R, 
Q913K, or Q913L exhibit Cl-sensitive currents that are significantly greater than those endogenously expressed 
by H2O-injected oocytes and (2) only cells expressing Q913R or Q913K exhibit Cl-sensitive currents that are 
significantly greater than those exhibited by cells expressing WT.

Q913X mutants—except Q913E—are withheld from the basolateral membrane of polarised 
renal epithelia. Figure 9A–G shows example fluorescence micrographs and z-axis projections of polarised 
MDCK-II cells (MDCK: Madin Derby Canine Kidney cell line) that were transiently transfected either with 
WT, Q913R, or one of the de novo Q913X mutants. Figure 9A shows that WT (disclosed by EGFP immunore-
activity, green) exhibits a peripheral distribution that substantially overlaps (yellow) with that of the basolateral 
marker Na+/K+-ATPase (red), consistent with lateral expression of WT. Figure 9B shows that the distribution of 
Q913R does not substantially overlap with the location of Na+/K+-ATPase, consistent with the previous report of 
enhanced intracellular retention for Q913R14. Of the de novo mutants (Fig. 9C–G) Q913C, Q913K, Q913L, and 
Q913S exhibit a distribution pattern that is similar to that exhibited by Q913R, while Q913E exhibits an expres-
sion pattern that is similar to that exhibited by WT (Fig. 9D). Figure 9H shows a quantitation of the co-incidence 
of EGFP and Na+/K+-ATPase immunoreactivity from a larger number of cells in each group, for which a Pearson’s 
coefficient of 1.0 denotes perfect co-incidence of EGFP immunofluorescence with immunofluorescence of our 
basolateral marker (Na+,K+-ATPase). The analysis shows that the distribution of Q913C, Q913K, Q913L, and 
Q913S is not significantly different from that of Q913R (i.e., predominantly intracellular) and that the distribution 
of Q913E is not significantly different from that of WT.

Gln913 is located in the gating domain of NBCe1. In order to place our observations into a structural 
context, we generated a homology model of NBCe1 based upon the recently published 3.5-Å AE1 crystal struc-
ture18. Figure 10A and B show two elevations of NBCe1 colored to show the putative locations of the gating domain 
(yellow), the substrate-translocating core domain (white) and the substrate-interacting region (green). Gln913 
(purple) is situated at the cytoplasmic end of transmembrane span 13 (TM13), in the periphery of the gating 
domain. The side chain of Gln913 is predicted to have no direct interaction with the substrate-translocating core 
domain or the dimer interface (which is at the left-hand side of Fig. 10). The Gln913 side-chain group faces the 
cytoplasmic end of TM5 as well as hydrophilic helix 4 (H4) in the structured loop between TMs 12 and 13: a similar 
space to that occupied by Arg881 (red). Arg881 is predicted to form a hydrogen bond with Thr910 (cyan), as their 
equivalents do in the AE1 structure. Although the AE1-equivalents of Gln913 and Arg881 do not form a hydrogen 
bond in the AE1 crystal structure, some Gln913 rotamers can hydrogen bond with Arg881 in the NBCe1 homol-
ogy model (e.g., Fig. 10C: the length of the bond between Arg881 and Gln913 is 2.9 Å which is sufficiently close to 
constitute an energetically significant interaction19). When the substitutions considered in the present study are 
introduced into the model, only p.Q913E conserves the H-bond without introducing a steric clash (not shown). 
Also notable in Fig. 10 is the location of Asp555 in TM5 (pink): the de novo mutant D555E is also leaky to Cl− 20.

Discussion
Gln913 of NBCe1-A is mutated in pRTA so we set out to investigate the importance of Gln913 by investigating the 
amino-acid substitution tolerance at this position. Note that to distinguish discussion of the mutants (mutant pro-
teins) and the mutations (mutated amino acids) the discussion, we refer to the mutants as ‘Q913C’, ‘Q913E’, ‘Q913K’, 
‘Q913L’, and ‘Q913S’ and we will refer to the mutations as ‘p.Q913C’, ‘p.Q913E’, ‘p.Q913K’, ‘p.Q913L’, and ‘p.Q913S’.

Figure 2. Membrane conductance (Gm) of oocytes expressing WT or Q913X mutants ±NaHCO3. Bar chart 
shows the average Gm values, measured between −20 mV and +20 mV, calculated from a larger set of I-V 
relationships such as those shown in Fig. 1. ‘*’denotes statistical significance between bars according to a paired 
one-tailed t-test (P < 0.006, accounting for Bonferroni correction for eight comparisons). ‘ns’ demotes no 
significance between bars by the same analysis.
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The importance of Gln913 for electrogenic Na+/2HCO3
− cotransport. Like WT and Q913R, all 

five of the de novo mutants that we generated for this study are capable of mediating a Na+ and HCO3
− depend-

ent conductance that is blocked by 200 µM DIDS. Furthermore, Erev is not altered by the de novo substitutions 
indicating that the Na+/2HCO3

− stoichiometry is unchanged by these mutations. Although the magnitude of 
the HCO3

−-dependent conductances varied among mutants, we found that these variations closely reflected 
differences in plasma-membrane expression among the mutants. These data are consistent with the hypothe-
sis that the per-molecule Na+/2HCO3

− cotransport activity is unaffected by these substitutions, as we had pre-
viously described for Q913R. Because such a variety of substitutions (nonpolar-aliphatic, polar-uncharged, 
positively-charged, and negatively-charged R-groups) are tolerated at this position, we conclude that Gln913 plays 
no discernable role in support of the electrogenic Na+/2HCO3

− cotransport action of NBCe1.

The importance of Gln913 for basolateral presentation of NBCe1-A. We have previously shown 
that the Q913R (as well as the R510H) mutant is retained from the plasma membrane in polarised MDCK-II cells 
and concluded that NBCe1 mis-targeting is the underlying cause of pRTA in the individual with the compound 

Figure 3. Effect of DIDS on currents mediated by WT or Q913X mutants in Xenopus oocytes. (A) 
Representative current-voltage (I–V) relationship from a H2O-injected oocyte as it was sequentially exposed 
to ‘Na (0 HCO3)’, ‘Na, HCO3’, and ‘Na, HCO3, +200 µM DIDS’ solutions. (B–H) Equivalent data from oocytes 
expressing WT, Q913R, Q913C, Q913E, Q913K, Q913L, or Q913S.
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heterozygous mutations p.Q913R/p.R510H. However we did not determine whether (1) it is the presence of 
Gln913 that is required for normal trafficking of NBCe1-A or (2) it is the aberrant presence of Arg913 that causes 
the defect. In the present study we find that four of the five de novo substitutions (p.Q913C, p.Q913K, p.Q913L, 
p.Q913S) result in enhanced intracellular retention of NBCe1-A: only Q913E appears to accumulate normally 
in the basolateral membrane. It is likely that p.Q913E is well tolerated because Gln and Glu are very similar in 
size and differ only in the substitution of an amine for a hydroxyl group. Because less conservative substitutions 
are poorly tolerated at this position, we conclude that Gln913 (or at least the features that it shares with Glu) is 
required for the plasma membrane accumulation of NBCe1. It is unclear whether non-conservative substitutions 
at 913 disrupt a specific localization signal, although we note that none has been described at this location for 
SLC4 members. It seems more likely that mutations cause a localized misfolding that is sufficient to be recognized 
by the cell’s protein sorting quality control machinery but that is not sufficient to interfere with NBCe1 transport 
action.

On a technical note, a failure of NBCe1 mutants to accumulate in the oocyte plasma membrane typically 
presages intracellular retention of those mutants in polarised MDCK cells, as has been previously described for 
R510H, A799I, A799V, R881C, and Q913R14,17,21 and is presently described for Q913C and Q913K. However in 
the present study Q913L and Q913S are intracellularly retained in MDCK cells yet accumulate normally in the 
oocyte plasma membrane. Thus, contrary to previous indications, plasma membrane accumulation in oocytes is 
not a reliable indicator of the behaviours of that protein in polarised mammalian cells.

The influence of the residue at position 913 on expression of a Cl− leak. Beyond intracellular retention,  
a second unusual feature of Q913R is a HCO3

−-independent Cl− leak. As previously described, this leak manifests 
in several ways: (1) In the absence of HCO3

−, Q913R-expressing cells are more depolarized than WT-expressing 
cells, (2) In the presence of HCO3

−, the Vm of Q913R-expressing cells is not dominated by Na+/2HCO3
− cotrans-

port activity, despite expression of adequate HCO3
−-dependent conductance, and (3) Q913R-expressing cells 

exhibit a greater Cl−-dependent current than WT-expressing cells. In the present, only cells expressing Q913R 
exhibited the first trait and only cells expressing Q913R or Q913K exhibited the latter two traits. When we take 
into account the magnitude of the Cl−-dependent currents and the plasma-membrane abundance of the mutants 
in oocytes, it is clear that the per-molecule Cl−-leak through Q913K is less than 50% of that through Q913R, 
which may contribute towards the lack of influence of Q913K upon Vm in HCO3

−-free solution. Although 
Q913C, Q913L, and Q913S show no significant indications of being leaky, we note that cells expressing Q913L 
did on average display a tendency to hyperpolarize less than WT-expressing cells in HCO3

−-solution and to 
exhibit larger Cl−-dependent currents than WT-expressing cells. Again, taking the plasma-membrane abun-
dance of Q913L vs Q913R into account, it is likely that if Q913L did express a leak, it would be an order of 

Figure 4. Membrane conductance (Gm) of oocytes expressing WT or Q913X mutants ± DIDS. (A) Bar chart 
shows the average Gm values, measured between −20 mV and + 20 mV, calculated from a larger set of I-V 
relationships such as those shown in Fig. 3. ‘*’ denotes statistical significance between bars according to a paired 
one-tailed t-test (P < 0.006, accounting for Bonferroni correction for eight comparisons). ‘ns’ demotes no 
significance between bars by the same analysis. (B) Reversal potential of the DIDS-sensitive transport process as 
reported by the intersection of the I-V plots ± DIDS in data such as that in Fig. 3. ‘a’ denotes that all groups were 
statistically indistinguishable by ANOVA with post hoc Tukey analysis, 95% confidence limit.
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magnitude smaller than that exhibited by Q913R and consequently difficult to reliably detect. These data indicate 
that it is the specific introduction of a bulky and/or positively-charged residue at 913 that causes the exhibi-
tion of the leak, although we cannot determine which of those two factors are critical due to the limitations of 
naturally-occurring amino-acid residues with which to substitute. Thus is seems unlikely that the leak pathway is 
a cryptic feature of WT that could be unveiled in response to pathophysiological stimuli such as cell swelling, as 
has been described for a Cl− leak that is native to trout AE122,23.

Structural predictions regarding position 913. The peripheral location of Gln913 in the gating domain 
of NBCe1, away from the putative determinants of substrate translocation and the gating/core domain interface, 
is consistent with the lack of influence of Gln913 substitution on substrate translocation. The Gln913 side-chain 
is buried within the structure making its replacement likely to affect local structure; with larger substituents 
presumed to be most disruptive. Only Glu can be substituted in its place without defect, or without disrupting 
the putative hydrogen bond with Arg881, suggesting the size and carboxyl group of Gln913 are more important 
than its amine group (which is replaced by a hydroxyl group in Glu). The similar location of, and perhaps even 
interaction between, Arg881 and Gln913 suggests that a common structural derangement underlies the presently 
described mistargeting of Q913X mutants and the previously described mistargeting of R881C in mammalian 
cells21. Like Q913X, R881C also exhibits apparently normal per-molecule Na+/2HCO3

− cotransport activity21. 
The model does not permit us to determine a pathway for the Cl− leak associated with Q913R but we can consider 
three possibilities (1) local misfolding (such as might occur due to steric clashes or charge repulsions between 
Arg913 and neighboring residues such as Arg881) transfers to the ion translocation core domain allowing Cl− to 

Figure 5. Functional expression of WT or Q913X mutants in Xenopus oocytes. (A) HCO3
−-dependent Gm 

defined as Gm in ‘Na, HCO3’ solution less the Gm in ‘Na (0 HCO3)’ solution, pooled from Figs 2 and 4A. Groups 
that do not share the same annotated letter are deemed significantly different by ANOVA with post hoc Tukey 
analysis, 95% confident limit. (B) A representative anti-EGFP western blot of isolated membrane (biotinylated) 
fractions from Xenopus oocytes injected with H2O, or cRNA encoding WT or a Q913X mutant. (C) Bar chart of 
average EGFP intensity signal from western blot of biotinylated fractions of Q913X-expressing oocytes (black 
bars), such as that in Fig. 5B, normalized to the signal from WT-expressing oocytes from each blot. Data are 
plotted alongside a similarly normalized version of the data presented in Fig. 5A (gray bars). ‘ns’ denotes no 
significance between bars (P > 0.007, accounting for Bonferroni correction for seven comparisons).
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slip through the substrate translocation gate. This seems least likely as ion translocation is not detectably altered. 
(2) Local misfolding allows Cl− to leak between the core and gating domains, similar to the pathological gating 
pore currents that arise in voltage-gated Na+ channels mutated in periodic paralysis24. (3) Local misfolding opens 
a conduit at the monomer-monomer interface within the NBCe1 dimer. Interestingly, a similar voltage-dependent 
anion leak is exhibited by a conservative de novo mutation p.D555E in TM5 of NBCe1-A20. It is intriguing to spec-
ulate that the introduction of Arg/Lys at position-913, into a tightly-constrained space that faces TM5, causes a 
relocation of D555, resulting in the opening of the same or similar anion conduit that is a feature of D555E.

Conclusion
Gln913 is a critical structural component of NBCe1 that is required for the optimal folding of NBCe1, but Gln913 
is not required for the Na+/2HCO3

− cotransport action of NBCe1. Most substitutions at this site would be 
expected to cause pRTA by virtue of intracellular retention of NBCe1, but manifestation of the Cl− leak is specific 
to the pRTA mutant Q913R and the similar de novo mutant Q913K. The variety of Q913X molecular phenotypes 
identified in this study and the identified commonalities between Gln913, Arg881, Asp555 and their mutants will 
allow a better understanding of the nature, path, and consequences of the anion-leak pathway in future transgenic 
animal and molecular dynamic simulation studies.

Methods
cDNA Clones. The construction of the plasmids for expression of wild-type NBCe1-A with a carboxy-termi-
nal enhanced green fluorescent protein (EGFP) tag in mammalian cells (NBCe1-A-EGFP.pcDNA3.1) and EGFP-
tagged NBCe1-A in Xenopus oocytes (NBCe1-A-EGFP.pGH19), and the introduction to each of the Q913R 
mutation, has been described previously14. Other codon substitutions at position 913 (underlined below, col-
lectively referred to as Q913X, where X is any amino acid:)25 were introduced using a QuikChange site-directed 
mutagenesis kit (Agilent Technologies Inc., Santa Clara, CA) using the following primers with their reverse comple-
ments: 5′-GTTCACTTTCCTGTGCGTGTTGTGTCTGGC-3′ (p.Gln913Cys aka Q913C: chosen because this de 
novo mutant had been previously included in a cysteine scanning study and was shown to exhibit defective plasma 
membrane targeting:)26, 5′-GTTCACTTTCCTGGAGGTGTTGTGTCTGGC-3′ (pGln913Glu aka Q913E: chosen 
as an example of a ‘negatively charged’ residue), 5′-GTTCACTTTCCTGAAGGTGTTGTGTCTGGC-3′ (p.Gln-
913Lys aka Q913K: chosen as a second example of a ‘positively charged’ residue), 5′-GTTCACTTTCCTGCTGGT 
GTTGTGTCTGGC-3′ (pGln913Leu aka Q913L: chosen as an example of a ‘nonpolar, aliphatic’ residue), and 5′-GTT 
CACTTTCCTGAGCGTGTTGTGTCTGGC-3′ (p.Gln913Ser aka Q913S: chosen as an example of a ‘polar, 
uncharged’ residue). Synthesis of oligonucleotide primers and sequencing of cDNA clones was performed by Eurofins  
Genomics (Huntsville, AL).

Figure 6. Membrane potential (Vm) of oocytes expressing WT or Q913X mutants. (A) Average Vm of cells 
bathed in ‘Na (0 HCO3)’ solution. (B) Average of the most negative values of Vm achieved upon exposure of 
cells to ‘Na, HCO3’ solution. Within each panel, groups that do not share the same annotated letter are deemed 
significantly different by ANOVA with post hoc Tukey analysis, 95% confident limit.
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Solutions. Ca2+-free wash-buffer contains (in mM): 82 NaCl, 2 KCl, 20 MgCl2, 5 HEPES, adjusted to pH 7.45 
with NaOH.

ND96 ‘Na (0 HCO3)’ solution contains (in mM): 93.5 NaCl, 2 KCl, 1.8 MgCl2, 1 CaCl2, 5 HEPES, adjusted to 
pH 7.5 with fresh (i.e. nominally HCO3

−-free) NaOH solution.
NaHCO3 ‘Na, HCO3’ solution: (in mM): 60.5 NaCl, 33 NaHCO3, 2 KCl, 1.8 MgCl2, 1 CaCl2, 5 HEPES. 

Equilibrated to pH 7.5 by bubbling with 5% CO2/21% O2/balance N2 generated from component gases using a 
Series 4000 gas mixing system (Environics, Tolland, CT).

Na+-free HCO3
− ‘(0 Na) HCO3’ solution: (in mM): 60.5 NMDG.Cl, 33 NMDG.HCO3, 2 KCl, 1.8 

MgCl2, 1 CaCl2, 5 HEPES. Equilibrated to pH 7.5 by bubbling with 5% CO2/21% O2/balance N2. (NMDG: 
N-methyl-D-glucamine).

In Cl− replacement solutions, Na-Gluconate substitutes for Cl− salts and we doubled the concentration of 
Mg2+ and Ca2+ salts as a compensation for divalent-cation chelation. DIDS-containing solutions (4,4′-dii
sothiocyanato-2,2′-stilbenedisulfonate: Sigma-Aldrich) were used on the day of preparation and covered in alu-
minum foil to minimize exposure to light.

Figure 7. Effect of Cl− replacement on currents mediated by WT or Q913X mutants in Xenopus oocytes in the 
absence of HCO3

−. (A) Representative current-voltage (I–V) relationship from a H2O-injected oocyte as it was 
sequentially exposed to ‘Na (0 HCO3)’ solution containing either 113 mM Cl− or 13 mM Cl−. (B–H) Equivalent 
data from oocytes expressing WT, Q913R, Q913C, Q913E, Q913K, Q913L, or Q913S.
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OR3 medium (14 g/L of powdered Leibovitz’s L-15 medium (Thermo Fisher Scientific, Rockford, IL), 100 
units/mL penicillin, 100 µg/mL streptomycin, 5 mM HEPES, adjusted to pH 7.5 using NaOH.

The osmolality of all solutions and media (except for Ca2+-free wash buffer) was corrected to 195 ± 5 mmol/kg 
with H2O, as measured using a Vapro vapor pressure osmometer (Wescor, Logan, UT).

Preparation and culture of Xenopus oocytes. Extraction of ovaries from Xenopus laevis frogs was 
approved by and performed in accordance with the rules and recommendations of the Institutional Animal Care 
and Use Committee (IACUC) at the University at Buffalo.

Xenopus laevis frogs were anesthetized in a 0.2% solution of pharmaceutical grade Tricaine-S (Western 
Chemical Inc., Ferndale, WA). Frogs were euthanized by exsanguination following surgical extraction of their 
ovaries. The excised ovaries were cut into ~5mm2 fragments and washed for 3 × 5 min in Ca2+-free wash-buffer. 
Individual oocytes were released from the ovary and defolliculated during a 30 min exposure of the washed 
fragments to Ca2+-free wash-buffer containing 2 mg/mL type-IA collagenase (Sigma-Aldrich, St Louis, MO) 
solution. Following two further 5-min washes in Ca2+-free wash buffer, and one wash in ND96 solution (see 
Electrophysiology sections), the oocytes were re-suspended in OR3 medium and maintained at 18 °C prior to 
H2O/cRNA injection.

NBCe1-A expression in oocytes. pGH19 vector constructs were linearized with NotI at 37 °C for 2 hours 
and purified using a MinElute PCR Purification Kit (QIAgen, Valencia, CA) for use as template in in vitro tran-
scription reactions. cRNA was synthesized using a T7 mMessage mMachine transcription kit (Life Technologies, 
Grand Island, NY), purified using an RNeasy MinElute cleanup kit (QIAgen), and quantified using a Nanodrop 
2000 spectrophotometer (Thermo Fisher Scientific). Individual oocytes were injected with 25 nL of 1000 ng/nL 
cRNA or 25 nL of H2O and maintained at 18 °C in OR3 medium for 3–5 days prior to experimentation.

Note that all NBCe1 clones used in this study included a C-terminal EGFP tag, although the EGFP suffix is 
omitted from their mention in the text and figures to aid readability.

Biotinylation and western blotting. Biotinylation experiments were performed on groups of 15 oocytes 
using the Pierce Cell Surface Protein Isolation Kit (Thermo Fisher Scientific) according to the manufacturer’s 
instructions, with the difference that solutions applied to intact cells were diluted to 195 ± 5 mmol/kg osmolality 
to be isosmotic with Xenopus plasma. Biotinylated (membrane isolated) fractions of oocytes were resolved on 
3–8% Tris-Acetate protein gels (Thermo Fisher Scientific) and transferred onto PVDF membranes using an XCell 
II Blot Module (Thermo Fisher Scientific). Resolved NBCe1-A protein was visualized by blocking the membrane 
with TBS-T containing 2% milk powder for 1 hour, exposing the membrane to an anti-EGFP monoclonal anti-
body (‘JL-8’ at 1:5000 dilution: Clontech Laboratories, Mountain View, CA) for 1 hour, a horse-radish-peroxidase 
(HRP)-conjugated goat anti-mouse secondary antibody (#55563 at 1:2000 dilution: MP Biomedicals, Solon, OH) 
for 1 hour, and ECL2 chemiluminescent substrate (Thermo Fisher Scientific) for 5 min. Images were acquired 
using a Pierce MyECL imager (Thermo Fisher Scientific) and analysed using Fiji software27. Both bands (Fig. 5B) 
were included in the densitometric analysis: the lower band is monomeric NBCe1-A-EGFP, the upper band rep-
resents a pool of NBCe1-A-EGFP that retains its dimeric status during SDS-solubilization.

Electrophysiology. Current-passing and voltage-sensing microelectrodes for voltage clamp were pulled 
from Clark borosilicate capillary glass (#BF200-156-10, Sutter Instruments, Novato, CA) using a P-1000 micro-
pipette puller (Sutter Instruments). The tips of the microelectrodes were filled with saturated KCl (#SP138-500, 
Thermo Fisher Scientific) and the filled electrodes were mounted in Ag/AgCl2 half-cells that connect the liquid 
junction to OC-275C oocyte clamp circuitry (Warner Instruments) via a silver wire. The resistance of these elec-
trodes was 0.5–1.0 MΩ. Individual oocytes were placed in a perfusion chamber (#RC-3Z, Warner Instruments, 
Hamden, CT) and impaled with both electrodes. Oocyte membranes were clamped to their spontaneous electrical 

Figure 8. Cl−-sensitivity of the membrane current (I) of oocytes expressing WT or Q913X mutants. Bar chart 
shows the average decrease in current, measured at +120 mV, upon lowering of extracellular Cl− from 113 mM 
to 13 mM calculated from a larger set of I-V relationships such as those shown in Fig. 7. Groups that do not 
share the same annotated letter are deemed significantly different by ANOVA with post hoc Tukey analysis, 95% 
confident limit.
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potential (Vm) prior to initiating a protocol (under the control of pClamp 10.4 software: Molecular Devices, 
Sunnyvale, CA) in which the potential was stepped to +120 mV for 100 ms, returned to Vm for 100 ms and then 
stepped to +100 mV and so on for 15 × 20 mV increments. Perfusion solutions were interchanged using a six 
channel perfusion pinch-valve control system (#VC-6, Warner Instruments). Oocytes were released from clamp 
prior to any solution change followed by re-clamping after 1 min after solution change, unless the solutions con-
tained the NBCe1-blocker DIDS, in which case they were allowed 2 min before re-clamping to allow additional 

Figure 9. Distribution of WT or Q913X mutant NBCe1-A-EGFP in polarised MDCK−II Cells. (A) 
Representative WT transfected cells showing the distribution of NBCe1-EGFP and Na+-K+ ATPase in the 
XY, XZ, and YZ plane as disclosed by an anti-EGFP primary antibody following by an Alexa-488 conjugated 
secondary antibody (green) and anti-Na+-K+ ATPase followed by an Alexa-594 conjugated secondary 
antibody (red). (B–G) Equivalent representative from cells transfected with Q913R, Q913C, Q913E, Q913K, 
Q913L, and Q913S. (H) Bar chart showing the average Pearson’s coefficient values for co-incidence of EGFP 
immunoreactivity with Na+-K+ ATPase immunoreactivity. Groups that do not share the same annotated letter 
are deemed significantly different by ANOVA with post hoc Tukey analysis, 95% confident limit.
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time for DIDS interaction. Current-voltage relationships (I-V plots) were generated using Clampfit 9.0 software 
(Molecular Devices).

Slope conductances were calculated from I-V plots over the range −20 mV to +20 mV range, a region over 
which endogenous conductances interfere least with NBCe1-mediated conductances.

Mammalian-cell culture, transfection, and fluorescence microscopy. Madine Derby Canine 
Kidney cells (MDCK-II, Sigma, passage number 2–4) were used as a model for polarised renal epithelia. 
MDCK-II cells were cultured using antibiotic free Minimum Essential Medium with L-glutamine (#11095–072, 
Thermo Fisher Scientific) supplemented with 5% heat-inactivated fetal bovine serum (Denville Scientific Inc., 
Holliston, MA) and grown in T-75 flasks at 37 °C in 5% CO2/95% air. Cells were released from the flasks using 
0.05% trypsin-EDTA (Thermo Fisher Scientific, Waltham, MA) digest and seeded at 1 × 105 cells/well into 
Lab-Tek® II CC2™ 4-chambered slides (Electron Microscopy Sciences, Hatfield, PA). Once the monolayer had 
achieved 80–90% confluence, cells were bathed for 30 min in 2 mM EGTA at 37 °C28 and transiently transfected 
with NBCe1-A-EGFP.pcDNA3.1 constructs using Lipofectamine 3000 (Invitrogen, Carlsbad, CA) following the 
manufacturer’s protocol. 48 h later, expression of NBCe1-A-EGFP was confirmed by visualizing EGFP fluores-
cence using a ZOE Fluorescent Cell Imager (Bio-Rad Laboratories, Hercules, CA). Transfected monolayers were 
fixed and permeabilized by a 5 min incubation in 60% methanol/40% acetone mixture at −20 °C. Monolayers 
were blocked with PBS + 4% BSA for 15 min and washed with PBS for 3 × 5 min. Basolateral membranes were 

Figure 10. Homology model of the transmembrane domain of NBCe1. (A) Side view, of an NBCe1 homology 
model, based on the crystal structure of AE1 (PDB ID: 4YZF) showing the relative positions of the gating 
domain (yellow; H4, TM13, and TM14 are colored darker yellow to provide contrast), anion translocating 
core domain (white), putative substrate interacting domain (green), Gln913 (purple), Arg811 (red), Thr910 
(cyan), and Asp555 (magenta). The gating domain is composed of six transmembrane spans (TM5-7, TM12-
14) and a hydrophilic helix (H4) in the structured intracellular loop between TM12 and TM13. (B) View of the 
intracellular face of the same model. (C) Closer view of putative hydrogen bonds (green dotted-lines) between 
Arg881, Thr910, and Gln913.



www.nature.com/scientificreports/

13Scientific REPoRTs |  (2018) 8:3066  | DOI:10.1038/s41598-018-20488-w

visualized using a mouse anti-Na+/K+-ATPase antibody (#C464.6 at 1:1000 dilution: EMD Millipore, Billerica, 
MA) followed by an Alexa594-conjugated goat-anti-mouse secondary antibody (#A-11032 at 1:200 dilution: 
Thermo Fisher Scientific). NBCe1-A-EGFP distribution was visualized using a rabbit anti-GFP antibody (#A-
11122 at 1:100 dilution: Thermo Fisher Scientific) followed by an Alexa488-conjugated goat-anti-rabbit second-
ary antibody (#A-11034 at 1:500 dilution: Thermo Fisher Scientific). X-Y images and Z-stack sections (0.24 µM 
separation) were obtained using a Zeiss Axio Imager 2 fluorescence microscope with Apotome.2 attachment 
for optical sectioning (Carl Zeiss, Jena, Germany). Images were acquired using ZenPro software. Images were 
analysed using Fiji software. Pearson’s coefficients for co-localization analysis were calculated using the ‘Just 
Another Localization Plugin (JAcoP) for Fiji. For each cell, a 4–12 µm2 area of interest was selected around a 
section of membrane (identified by Na,K-ATPase immunofluorescence) in the X-Y plane and the co-incidence 
of EGFP immunofluorescence was with Na,K-ATPase immunofluorescence was reported for each pixel in that 
area throughout the Z-stack.

Homology model. The model was generated using Phyre2 (protein homology/analogy recognition engine 
v 2.0:)29 at the online Phyre2 protein fold recognition server. The amino acid sequence of the transmembrane 
domain of human NBCe1 was input to generate homology models using the Phyre2 intensive modeling mode. 
The model presented here is modeled on the crystal structure of the transmembrane domain of SLC4A1 (PDB ID: 
4ZYF:)18. The model was visualized and annotated using Swiss-Pdb Viewer 4.1.030.

Statistical Analysis. Microsoft Excel 2013 was used for t-tests. Minitab 17 (Minitab Inc., State College, PA) 
was used for multiple comparisons (One-Way ANOVA with Tukey’s post hoc analysis). Both analyses use a 95% 
confidence limit. For instances in which it was appropriate to perform multiple t-tests, Bonferroni correction was 
applied to the confidence limit (i.e., increasing the confidence limit by a factor that equals the number of t-tests, 
n: P = 0.05/n).

Data Availability. The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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