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Field-controllable Spin-Hall Effect 
of Light in Optical Crystals: A 
Conoscopic Mueller Matrix Analysis
C. T. Samlan & Nirmal K. Viswanathan  

Electric-field applied perpendicular to the direction of propagation of paraxial beam through an 
optical crystal dynamically modifies the spin-orbit interaction (SOI), leading to the demonstration 
of controllable spin-Hall effect of light (SHEL). The electro- and piezo-optic effects of the crystal 
modifies the radially symmetric spatial variation in the fast-axis orientation of the crystal, resulting in 
a complex pattern with different topologies due to the symmetry-breaking effect of the applied field. 
This introduces spatially-varying Pancharatnam-Berry type geometric phase on to the paraxial beam 
of light, leading to the observation of SHEL in addition to the spin-to-vortex conversion. A wave-vector 
resolved conoscopic Mueller matrix measurement and analysis provides a first glimpse of the SHEL 
in the biaxial crystal, identified via the appearance of weak circular birefringence. The emergence of 
field-controllable fast-axis orientation of the crystal and the resulting SHEL provides a new degree of 
freedom for affecting and controlling the spin and orbital angular momentum of photons to unravel 
the rich underlying physics of optical crystals and aid in the development of active photonic spin-Hall 
devices.

The collective and significant role played by the amplitude, phase and polarization of an electromagnetic wave 
in enriching the fundamental understanding of light field and quanta (photons), is not more evident than in the 
spin-orbit interaction (SOI) of light – a study of the mutual influence of the spin angular momentum (SAM) and 
the intrinsic and extrinsic orbital angular momentum (OAM) of light1. The concept of SOI of light first proposed 
and demonstrated by Zel′dovich et al.2, continues to be a research topic of significant importance, as evinced in 
the authoritative and comprehensive recent review articles3–5. Broadly, the SOI effect results in the spin-dependent 
redistribution of light intensity due to space- or wavevector-variant geometric phase. In systems with rotational 
symmetry, the SOI leads to spin-to-orbital angular momentum conversion (SOC) and the generation of optical 
vortex beams; breaking of which results in the spin-Hall Effect of light (SHEL), a spin-dependent redistribution of 
light intensity in the transverse plane.

Of the innumerable effects and devices enabled by the SOI phenomenon, the direct manifestation of SHEL 
is reported in a verity of systems such as planar dielectric interface6, smoothly inhomogeneous medium2,7 
and metasurfaces8, and reviewed recently in ref.9, which is of interest to us here. The observation of SHEL is 
attributed to two ‘seemingly’ different mechanisms: the geometric phase gradient arising from spin-redirection 
(Rytov-Vladimirskii-Berry, RVB) phase, related to variation in the direction of propagation of a paraxial light 
beam due to medium inhomogeneity and the Pancharatnam-Berry (PB) phase associated with the manipulation 
of the state-of-polarization (SoP) of light via varying fast axis orientation8–10. The gradient in RVB and PB phases 
along any linear direction respectively, in the momentum space and real space manifest themselves as SHEL in 
the real and momentum space and have been investigated independently in a variety of systems6–16. The interplay 
between the SAM and the extrinsic OAM (trajectory) of paraxial light beam resulting in the SHEL is typically 
studied by invoking symmetry breaking11–16. Though the RVB phase induced SHEL has been widely investi-
gated in reflection and transmission at a refractive index boundary6,11–13, the first observation of its PB phase 
counterpart arising due to paraxial light propagation through a tilted anisotropic wave plate was only recently 
reported by us16. Accordingly, breaking of the rotation symmetry of a c-cut uniaxial crystal due to the application 
of electric field across it provides an ideal system for investigating the PB phase induced controllable SHEL. The 
problem in hand can be mathematically quite challenging despite the development of a new formalism based on 
optical singularities17. Nevertheless, the demonstration of important features of the treatment for transparent and 
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chiral crystal are evident from our experimental results. Which also provides answer to the non-conservation 
of total angular momentum (TAM) of the electromagnetic field propagating at an angle with reference to the 
symmetry-axis of an optical crystal18,19. Standard experimental techniques of Stokes polarimetry and quantum 
weak measurement6,16 not readily suitable for measuring the weak SHEL due to the complex PB phase gradient 
across the beam cross-section due to spatially-varying complex fast axis orientation of the crystal. We develop 
and demonstrate a wavevector resolved conoscopic Mueller matrix analysis (CMMA) to map the complex topo-
logical pattern of the crystal fast-axis orientation and its transformation and the resulting appearance of SHEL 
by measuring the circular birefringence as its manifestation. The effect observed varies across the interaction 
region, and is enhanced due to the applied electric field, which demonstrates the field-controllable nature of the 
SHEL. The results are of significance due to emerging interest in the control and tunability of SHEL via different 
mechanisms15,20–22.

To experimentally investigate the field-controlled SHEL, we use Potassium Dihydrogen Phosphate (KDP) 
crystal, an important class of hydrogen-bonded ferroelectric crystal and one of the most widely investigated opto-
electronic material for its linear and nonlinear optical effects and their applications23–25. For KDP crystal, 
non-centrosymmetric, with tetragonal structure (point group m42 ) and 4-fold inversion symmetry are not the 
only possibility26,27. Being an electro-optic as well as a piezo-optic medium, the radially symmetric fast-axis ori-
entation of the uniaxial structure gets modified considerably with the application of external electric field in 
transverse direction to the propagation of light. The non-vanishing electro-optic coefficient (r41), piezo-electric 
constant (d14) and strain-optic constant (p55) of the KDP crystal all together contribute to the changes in the fast 
axis direction as well as the principal refractive index values26–32. The corresponding transformation in the index 
ellipsoid of the KDP crystal from uniaxial tetragonal to biaxial orthorhombic and to biaxial monoclinic can be 
expressed as,
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 and the applied electric field is along the x-axis (Ex). The off-diagonal elements in the last 

matrix can be assumed to be negligible for lower values of Ex. Thus, under the influence of external field, the fast 
axis orientation of the KDP crystal gets modified significantly from radial symmetry as shown in Fig. 1(b). The 
corresponding ferroelectric-to-paraelectric phase transition leading to low-dimensional symmetry, including a 
centrosymmetric and biaxial orthorhombic (Fdd2) and monoclinic (2/m) crystal structures and a build-up of 
crystal structure asymmetry with reference to the optic-axis have been reported28–32. The partially broken 

Figure 1. (a) Index ellipsoid of a biaxial crystal and (b) its fast-axes orientation in the stereographic projection 
shows different topologies.
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rotational symmetry is evident from the scheme of fast-axis orientation in the momentum space (via stereo-
graphic projection) given in Fig. 1(b), which exhibit different topologies, marked in different colors at different 
regions. This feature of the field-induced transformation of the crystal structure is found to be highly desirable for 
the demonstration of simultaneously present SOI and controllable observation of SHEL. The complex topology 
of the fast-axis orientation (μ) perceived by the spread of wavevectors in a paraxial optical beam, as it propagates 
through a biaxial crystal is given by33

μ φ θ
θ φ θ
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where θ is the angle between the wavevector and the c-axis of the KDP crystal and φ is the azimuthal coordinate 
of the stereographic projection plane (Fig. 1(b)). It is important to note here the electric field Ex dependency of μ 
through the asymmetric term Δ, given by Δ = − −n n n n n n( )/ ( )z y x x y z

2 2 2 2 2 2 .
To understand the SOI of light in optical crystals, consider circularly polarized (CP) paraxial light beam prop-

agating along Z-axis, making an angle θc with the optic-axes of the biaxial crystal (Fig. 1(a)). Different local topol-
ogies in the fast-axis orientation, shown in Fig. 1(b), leads to different manifestation of the SOI. To exemplify this, 
we consider the plane wave component σ±  in the paraxial beam, which makes an angle θ with the z-axis. The 
final state, after propagation through the crystal, can be expressed in the right- (R), σ+  and left- (L), σ−  CP basis 
as34
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where δ is the phase retardation experienced by the linear polarization component of the plane wave due to linear 
birefringence of the crystal. The second term in eqn. (3) represents the SOI, with δsin ( /2)2  fraction of photons flip 
its SAM handedness and transform to its orthogonal state, accompanied by the PB phase factor μ±e i2 . As shown 
in Fig. 1(b), the topological structures identified as node (green circle) and lemon (red circles) play a significant 
role in the SOC, and the linear gradient portion (blue lines) contribute to the SHEL, respectively via azimuthally 
and linearly varying PB phase for a range of plane-waves (Δk) in the paraxial beam around the central plane 
wave. The SOC is typically characterized by extracting the associated helical phase structure either using the 
Fourier fringe analysis34 or wavevector resolved Stokes polarimetry18 respectively representing the scalar and 
vector optics treatment.

However, as stated, due to the complex fast-axis orientation around the symmetry axis (Fig. 1(b)) the weak 
measurement and Stokes polarimetry techniques are found not suitable to characterize the SHEL in the biaxial 
crystal, and we use CMMA as an alternate measurement technique. For that, we consider the SHEL, i.e., the 
spin-dependent energy re-distribution in the transverse direction due to broken symmetry of the crystal system 
as the induced circular birefringence that gives rise a spatial walk-off of the right and left circular polarization 
(RCP and LCP) modes linked to the recently reported transverse birefringence16, a noteworthy analogue to the 
spatial walk-off of ordinary and extra-ordinary modes due to the linear birefringence32 as schematically illus-
trated in Fig. 2. In the case of linear birefringence, the additional dynamic phase (retardance) gradient acquired by 
the linearly polarized extra-ordinary mode (e-mode) in the medium results in an in-plane beam shift with respect 
to the optic-axis (Fig. 2(a)), whereas the additional Pancharatnam-Berry type geometric phase acquired by the 
right and left circular polarization modes result in out-of-plane beam shift (Fig. 2(b)) that leads to the SHEL. 
Thus, a careful investigation of the circular birefringence in a linear birefringent medium provides the glimpses 
of the SHEL. Accordingly, we characterize the induced circular birefringence in the crystal through the extensive 
CMMA and introduce the circular anisotropy coefficient (γ), as a measure of the SHEL. The fast-axis orientation 
(μ) of the crystal is obtained from the linear anisotropy coefficients (α and β) using 2μ = arg(α + iβ). The aniso-
tropy coefficients α, β and γ with α2 + β2 + γ2 = 1 defines the relative measure of the birefringence of the crystal 
between horizontal-vertical, diagonal-anti diagonal and right-left circular polarization modes, respectively and 
can be extracted directly from the MM elements35.

The conoscopic MM elements of the KDP crystal under different applied electric field are measured using the 
experimental setup schematically shown in Fig. 3. A He-Ne laser beam (λ = 632.8 nm) is focused into the c-cut 
KDP crystal (l × d = 4 cm × 1 cm) using a lens L1 (focal length f1 = 2 cm) and collimated back using lens L2 
(f2 = 3 cm). The biaxial phases of the KDP crystal are obtained by applying electric field Ex using a DC voltage 

Figure 2. Schematic illustration of the analogy between (a) spatial walk-off of o-mode and e-modes due to 
linear birefringence and (b) SHEL due to induced circular birefringence. Optic-axis of the crystal is indicated by 
purple color arrow.
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source (V) connected across the crystal as shown in the figure, where = = ×E dV/ V 10x
2. A polarization state 

generator (PSG), made up of a vertical-oriented Glan-Thompson polarizer (P1) and a zero-order half- or quarter- 
wave plate (WP), preselect the beam in linear or circular states of polarization (SoP) and a polarization state 
analyzer (PSA) post-select the output beam on different linear and circular polarization states and the intensity 
images are recorded using a CCD camera (Spiricon, USA) connected to a computer. The method of extraction of 
MM elements and anisotropy coefficients from the recorded intensity images are detailed in the Method 
section.

Results
The transformation of the KDP crystal is characterized first by mapping the well-known conoscopic interference 
pattern36 under the electric fields =E m0 V/x , = . ×E m0 7 10 V/x

2  and = ×E m2 10 V/x
2 , and are respectively 

shown in Fig. 4(a,b and c). The rotationally symmetric conoscopic pattern consisting of entangled isochromate 
rings and isogyre cross pattern confirm the uniaxial phase of the KDP crystal at =E m0 V/x

34 (Fig. 4(a)), while 
the broken symmetry of the pattern under the applied electric field shows the weak and strong biaxial phases of 
the crystal (Fig. 4(b,c)). Next, we send right CP Gaussian beam along the c-axis of the crystal and the polarimetric 
measurements of the output beam further confirms the uniaxial and the biaxial phases of the crystal. The polari-
zation map of the beam exhibits a rotationally symmetric spiral topology around the C-point37 as shown in 
Fig. 4(d). This polarization topology arises from the superposition of right CP Gaussian beam with doubly 
charged left CP Laguerre-Gaussian (LG) beam of light propagating through the uniaxial crystal. Figure 4(e) and 
(f) exhibit a broken symmetry with two well-separated lemon topologies around the two optic-axes of the biaxial 
KDP crystal, and is due to the local superposition of right CP Gaussian beam with single-charge of left CP LG 
beam.

Figure 3. Experimental scheme for the measurement of conoscopic Mueller matrix elements.

Figure 4. Conoscopic interference pattern (first row) and the polarization ellipse map (second row) of the 
output beam for different applied fields, =E m0 V/x  (a,d), = . ×E m0 7 10 V/x

2  (b,e) and = ×E m2 10 V/x
2  

(c,f).
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The experimentally obtained MM elements of the KDP crystal in uniaxial phase (for =E m0 V/x ) are given 
in Fig. 5(a). The 4 × 4 MM elements are normalized with respect to the first element M00 that represents the total 
intensity of light passing through the crystal, which is set to unity. The elements in the first column (M10, M20 and 
M30) and first row (M01, M02 and M03) represent the polarizance and dichroism of the crystal for different paraxial 
beam wave vector directions passing through the crystal. The values are almost zero close to the optic-axis imply-
ing that the KDP crystal does not possess such characteristics to start with. However, these elements exhibit 
non-negligible values away from the optic-axis, especially near the periphery, due to the attenuation of obliquely 
incident rays, possibly due to reflection loss at the crystal interfaces. The remaining elements of the MM construct 
a 3 × 3 sub-matrix, representing the linear and circular birefringence properties of the crystal, from which the 
linear (α and β) and circular anisotropy coefficients (γ) are calculated as described in the method section35. The 
α and β behavior given in Fig. 4(b) reflect the rotational symmetry of the system and the isogyre-like cross pat-
tern. Important to note here the sign flip in the radial direction due to singular jumps which occur at π multiples 
of the crystal retardance, and is taken into consideration in the calculation of fast axis orientation.

However, the simple situation changes dramatically with the application of electric field (Ex) across the KDP 
crystal – transforming from the rotationally symmetric uniaxial to asymmetric biaxial crystal phase. The parab-
oloidal form retardance of the uniaxial KDP crystal gets modified significantly, becoming broader and shallower 
double well type with the application of Ex

34. We report here two significant points in this continuous transforma-
tion, corresponding to the fields = . ×E m0 7 10 V/x

2  and = ×E m2 10 V/x
2  applied across the crystal, which 

correspond to the appearance of weak and strong asymmetry respectively. The experimentally obtained MM 
elements, given in Fig. 6(a) and (b) clearly indicate the appearance of biaxiality in the KDP crystal, a hitherto less 
known and investigated crystal structure to be reported at room temperature38,39. We identify from the MM ele-
ments that the KDP crystal for = . ×E m0 7 10 V/x

2  and = ×E m2 10 V/x
2  respectively belong to the orthor-

hombic and monoclinic biaxial crystal structures of lower symmetry40. Accordingly, we infer that the crystal 
structure of the transparent KDP crystal, due to the applied electric field undergoes a continuous transformation 
from uniaxial tetragonal (point group m42 ) to biaxial orthorhombic (Fdd2) and monoclinic (2/m) structure of 
decreasing symmetry28,40. This transformation offers a unique opportunity to explore the changes in the optical 
properties of the crystal at room temperature, leading to a complete understanding of the SOI in optical crystals. 
The extracted linear anisotropy coefficients (α and β) of the two biaxial phases of the crystal are shown in the 
second row of Fig. 6.

The topological transformation of fast-axis orientation and the non-vanishing circular anisotropy coefficient 
of the KDP crystal under strong electric field are the central results of our experiment. The fast-axis orientation 
(μ) exhibits rotationally symmetric node topology with μ = φ as shown in Fig. 7(a) for =E m0 V/x , correspond-
ing to the uniaxial phase of the crystal. When the crystal symmetry, with reference to the optic-axis and the 
direction of propagation, is broken due to the application of transverse electric field, the node topology splits into 
two lemon structures with μ φ= ′2  and pushes away from the center, the consequence of uniaxial-to-biaxial 
transformation of the KDP crystal. Here φ′ is the local azimuthal coordinate around the newly formed optic-axes. 
Figure 7(b) and (c) show the slightly and well separated lemon structures corresponding to the weak and strong 
biaxiality of the crystal in response to the applied field.

Significantly, the appearance of non-zero circular anisotropy coefficient is quite surprising for the traditional 
crystal optics, since it directly indicates the presence of circular birefringence in a linear birefringent medium due 
to the SHEL. However, the unexpected presence of γ in the uniaxial phase of the crystal, as shown in the beam 
center in Fig. 7(d), is due to the inherent, weak biaxiality of the KDP crystal used in the experiment. This can be 
seen in the zoomed inset, where the white circles are the optical axes surrounded by lemon-type polarization ellipse 

Figure 5. (a) conoscopic Muller matrix elements, and (b) linear anisotropy coefficients (α, β) of the KDP 
crystal at uniaxial phase, for =E m0 V/x .
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stream lines37. In addition, the variations in γ appears as concentric circles at every  π phase variation as mentioned 
previously. In addition to these, the appearance of strong circular anisotropy coefficient is significant for the biaxial 
phases of the KDP crystal as shown in Fig. 7(e) and (f). The cross-shaped γ behavior gets enhanced, and moves 
from the periphery to the center as the crystal asymmetry increases with the applied field. In the region closer to the 
two optic-axes γ is almost negligible, due to the local rotational symmetry. These results are considered as strong 
evidence for the presence of circular birefringence in the biaxial crystal and hence the SHEL, in response to the 
symmetry-breaking due to the applied electric field. An overall tilt of 45° in the pattern may be attributed to the 
electro-gyration effect38,41 arising due to the field induced crystal asymmetry and will be detailed elsewhere.

Figure 6. (a), (b) conoscopic Muller matrix elements (first row), and linear anisotropy coefficients (α, β) 
(second row) of the KDP crystal in orthorhombic and monoclinic biaxial crystal phases respectively for (a) 

= . ×E m0 7 10 V/x
2  and (b) = ×E m2 10 V/x

2 .

Figure 7. Circular anisotropy coefficient (γ) for (a) =E 0 V/mx , (b) = . ×E 0 7 10 V/mx
5  and 

= ×E 2 10 V/mx
5  applied across the biaxial crystal.
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Discussion
The SOI of light in a birefringent crystal is governed mainly by two parameters: the retardance (δ) and the fast-axis 
orientation (μ), that respectively decide the efficiency and the nature of the associated OAM transfer. The 
wave-vector resolved CMMA of the KDP crystal characterizes the SOI by extracting the key parameters, δ and μ 
from the linear anisotropy coefficients. It is important to note here the average efficiency of the SOI for a paraxial 
light beam propagating along the c-axis of the crystal is limited to 50% by the factor ∫ δ ≤ .sin ( /2) 0 52  from eqn. 
(3)34. We thus focus here on the fast-axis orientation and the associated nature of SOI of light with the crystal.

As seen from Fig. 6(a), μ exhibits a rotationally symmetric node topology that results in the generation of 
doubly charged vortex beam with IOAM of = +l 2 per photon. This is a well-studied manifestation of SOI in 
terms of SOC in uniaxial crystal34,42. This conversion can be understood from the angular momentum (AM) 
conservation point of view: let us consider a photon in right circularly polarized Gaussian beam, carrying an 
intrinsic OAM of =l 0 and SAM σ = 1  giving rise to a total AM (TAM), σ= + =J l 1. Upon interacting 
with the crystal, the photon SAM switches to σ = −1  due to flipping in the SAM handedness. The rotational 
symmetry of the system provides conservation of TAM and the change in TAM by a factor 2  due to Δσ = −2  
which is completely transformed to the intrinsic OAM with = +l 2 . The efficiency of this process is only half 
and accordingly, half of the photons in the beam acquire an intrinsic OAM, resulting in the LG mode with charge 

= +l 2 . However, the application of strong electric field across the crystal breaks the rotational symmetry of μ 
and completely changes the nature of SOI. The complex and asymmetric structure of μ mainly involves three local 
topologies as mentioned previously, a node at the periphery, two lemons around the optic-axes and a linear gra-
dient at intermediate regions (Fig. 1(b)) which are experimentally verified in Fig. 7(b) and (c). Photons propagat-
ing around the periphery undergo SOC as discussed above. Whereas, the photons propagating through the lemon 
structure around the ‘newly formed’ optic-axes acquire intrinsic OAM of = +l 1 , and results in the LG mode 
with a unit charge. It was shown that these observations alone do not lead to the TAM conservation18,43,44 of the 
beam-field due to the absence of continuous rotational symmetry, and the remaining 1 may be transferred to the 
medium. The two SOIs mentioned above, are very similar to the SOCs of the q-plate, sub-wavelength dielectric 
and plasmonic metasurfaces with index =q 1 and =q 1/2 respectively3–5.

Significantly, the linear gradient in the fast-axis orientation (blue lines in Fig. 1(b)), is not associated with 
the any of the azimuthal coordinate, and photons passing through this region do not acquire intrinsic OAM 
and do not involve in the either of the SOCs. On the other hand, these photons acquire an additional extrinsic 
OAM accounted to the linearly varying accumulation of PB phase, and results in SHEL8,9,16. The subsequent spin 
dependent shift, the spatial walk-off of circular polarization modes resulting in an induced circular birefringence 
and leads to the non-zero circular anisotropy coefficient (γ) at regions where the symmetry is maximally broken 
as shown in Fig. 7(e) and (f). These original observations are quite surprising for traditional crystal optics since 
it implies the appearance of weak circular birefringence in biaxial KDP crystal. Similar kind of results have been 
demonstrated recently in quartz wave plate as the manifestation of SHEL by our group using the weak measure-
ment technique16. It is important to note here the crucial difference of the present work part the measurement 
technique point of view. In addition to the asymmetry in the wave plate was brought by tilting its optic-axis with 
respect to the propagation direction, whereas, here the symmetry is broken by the applied electric field by means 
of electro- and piezo-optic effects, which provides a fine tuning of the SHEL.

This remarkable observation of the conversion of the SAM to extrinsic OAM completes the AM conservation 
law in biaxial crystals by the definition, TAM = SAM + intrinsic OAM + extrinsic OAM, and addresses directly 
the recently reported non-conservation of AM and the generation of higher-order OAM side bands18,43,44 in biax-
ial crystals. Accordingly, a photon entering a biaxial crystal at an arbitrary angle can have the following possibili-
ties: photon flips its SAM handedness and acquires an intrinsic AM of 2 or acquire an intrinsic AM of 1 , or 
acquire an extrinsic AM and deviate from the propagation path, with a note that the maximum possibility to flip 
the handedness is only half and the unbalanced AM in the latter scenario may be transferred to the crystal. On the 
other hand, the same photon exhibits a 50% of probability to pass through the crystal without the spin flip.

Method
A Mueller matrix (MM) represents an optical system that transforms the Stokes vector as given below45,
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where Sj and ′S i are the Stokes vectors of input and output field, and Mij are the 4 × 4 MM elements, with i, 
j = 0−3. The elements Mi0 and M j0  characterize the polarizance and dichroism property that determined by the 
imaginary part of the anisotropy of the medium. For a non-depolarizing and non-absorbing medium, the bire-
fringence properties are described by the remaining elements, where the linear birefringence of the medium is 
represented by,
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here ML and ′ML  are respectively represent the horizontal - vertical and diagonal - anti-diagonal birefringence 
MM of the medium. Correspondingly, the circular birefringence is represented by,

=













M
M M
M M
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0 0
0 0
0 0 0 1 (6)

C
11 12
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Importantly, the linear anisotropic coefficients and the circular anisotropic coefficient γ are determined by the 
difference between the off-diagonal elements of ML, ′ML  and MC respectively35. Accordingly, the fast axis orienta-
tions of the crystal are directly related to the conoscopic MM elements M23, M32, M13 and M31, while the elements 
M12 and M21 reflect the SHEL in the crystal.

Experimentally, the MM elements are obtained using Stokes polarimetry measurements using the following 
relations46,
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here ′S X( )i  are the four Stokes vector elements of the output field for a pre-selected input field in the state of 
polarization (SoP) X, which stands for H, V, D, A, R and L respectively the Horizontal, Vertical, Diagonal, 
Anti-diagonal, Right-circular and Left-circular SoP. The Stokes vectors for the input SoP can be obtained from the 
intensity measurement of different polarization projections from the relations45,
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X H X V X X H X V X
X D X A X X R X L X

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) (8)

0 1

2 3

Figure 8. (a) Recorded intensity images corresponding to 36 polarization projections of KDP crystal in uniaxial 
phase, (b) The Stokes parameters calculated from the projection measurements.
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The pre-selection of different SoP, necessary to extract the Mueller matrix elements, is achieved using the 
polarization state generator (PSG) in the experimental set up shown in Fig. 3. The V, D, H and A SoP are gen-
erated with the HWP oriented at 0°, 22.5°, 45° and 67.5° respectively with respect to the y-axis, and the R and L 
states are pre-selected by carefully replacing the HWP with a QWP which is orientated at 45° and 135°, respec-
tively. After the interaction of the pre-selected paraxial field with the crystal, the output beam is post-selected onto 
the six (H, V, D, A, R and L) SoP using the polarization state analyzer (PSA) and the resulting intensity images are 
recorded using the CCD camera. Calculation of the Stokes parameters using Eqn. 8 is carried out after digitally 
smoothening the recorded images using Fourier fringe analysis to remove the high-frequency patterns in the 
images, which appear possibly due to dust and scattering from the optical components. The recorded intensity 
images and the calculated Stokes parameters are shown in Fig. 7(a) and (b), respectively. Columns and rows in 
the Fig. 8 are corresponding to the pre-selections and the post-selections respectively. The first four columns and 
rows represent the pre- and post-selection on to the linear SoP obtained by rotating the HWP, and the last two are 
on to the circular SoP obtained using the QWP. The angles given in the figure correspond to the orientation of the 
wave plates in the PSG and PSA. Accordingly, these 36 projection images which represent the complete birefrin-
gence properties of the crystal is then reduced to 18 Stokes parameters using the Eqn. 8, and to 16 MM elements 
using the Eqn. 7, and finally reduced to two linear and circular anisotropy coefficients α, β and γ by following the 
calculations described in ref.35.
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