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Integrative genomic analysis of 
methylphenidate response in 
attention-deficit/hyperactivity 
disorder
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María Soler Artigas1,3, Iris Garcia-Martínez1,2, Eva Calvo-Sánchez1,2, Montse Corrales2,4,  
Bruna Santos da Silva5, Nina Roth Mota6,7, Marcelo Moraes Victor7, Luis Augusto Rohde7,8, 
Eugenio Horacio Grevet7,8, Claiton Henrique Dotto Bau5,7, Bru Cormand9,10,11,12,  
Miguel Casas1,2,3,4, Josep Antoni Ramos-Quiroga1,2,3,4 & Marta Ribasés1,2,3

Methylphenidate (MPH) is the most frequently used pharmacological treatment in children with 
attention-deficit/hyperactivity disorder (ADHD). However, a considerable interindividual variability 
exists in clinical outcome. Thus, we performed a genome-wide association study of MPH efficacy in 
173 ADHD paediatric patients. Although no variant reached genome-wide significance, the set of 
genes containing single-nucleotide polymorphisms (SNPs) nominally associated with MPH response 
(P < 0.05) was significantly enriched for candidates previously studied in ADHD or treatment outcome. 
We prioritised the nominally significant SNPs by functional annotation and expression quantitative 
trait loci (eQTL) analysis in human brain, and we identified 33 SNPs tagging cis-eQTL in 32 different 
loci (referred to as eSNPs and eGenes, respectively). Pathway enrichment analyses revealed an 
over-representation of genes involved in nervous system development and function among the 
eGenes. Categories related to neurological diseases, psychological disorders and behaviour were also 
significantly enriched. We subsequently meta-analysed the association with clinical outcome for the 
33 eSNPs across the discovery sample and an independent cohort of 189 ADHD adult patients (target 
sample) and we detected 15 suggestive signals. Following this comprehensive strategy, our results 
provide a better understanding of the molecular mechanisms implicated in MPH treatment effects and 
suggest promising candidates that may encourage future studies.

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterised by per-
sistent and age-inappropriate symptoms of inattention, hyperactivity and/or impulsivity1, which significantly 
impacts on academic, social, emotional and psychological functioning. With a worldwide prevalence rang-
ing from 5.3 to 7.1% in school-age children and adolescents2, ADHD is one of the most common childhood 
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psychiatric conditions and causes high costs to the healthcare system and society3,4. Although its aetiology is 
largely unknown, several family, twin and adoption studies reported heritability estimates around 76%5, suggest-
ing a strong genetic component in the pathogenesis of the disorder.

Among the wide variety of pharmacological options available in ADHD treatment, methylphenidate (MPH) 
is the first-line choice in paediatric patients, given its proved general efficacy in reducing ADHD symptoms and 
improving neuropsychological performance on executive functions6,7. However, a considerable interindivid-
ual variability exists in clinical outcome, optimal dosage and duration of effect8,9, which may reflect underlying 
genetic influences.

Most of the pharmacogenetic studies conducted so far in ADHD patients have focused on genes related to the 
catecholamine neurotransmission, with SLC6A3 and DRD4 being the most extensively investigated, since MPH 
is thought to exert its therapeutic effects through the inhibition of the dopamine and the norepinephrine trans-
porters10. Based on this putative mechanism of action, additional genes such as DRD2, DRD5, COMT, SLC6A2, 
ADRA2A, TPH2, SLC6A4, HTR1B, HTR2A and MAOA11 have been considered plausible candidates that may 
influence medication response. Nevertheless, a recent review on ADHD pharmacogenetics in childhood reported 
no consistent effects for dopaminergic and serotoninergic signaling, and suggested neurodevelopmental genes as 
new promising targets12.

Given that candidate gene-based investigations have not reached many compelling results, genome-wide 
association studies (GWAS) may represent an alternative, hypothesis-free approach to unravel the molecular 
mechanisms implicated in MPH treatment. To date, only one prior GWAS evaluated the efficacy of a MPH trans-
dermal system in 187 children with ADHD13. Although no genome-wide significant associations were found, the 
metabotropic glutamate receptor 7 (GRM7) and two SNPs within the SLC6A2 gene showed potential involvement 
in MPH response. Using that sample, Mick et al.14 conducted a secondary GWAS of changes in blood pressure 
after MPH therapy and detected nominal evidence for genes functionally related to blood pressure regulation 
and other cardiovascular phenotypes, including a SNP in a K+-dependent Na+/Ca2+ exchanger (SLC24A3). 
Furthermore, despite the fact that GWAS have been useful to identify genetic risk loci for multiple complex 
conditions, yet the functional effects of the trait-associated variants and the underlying pathological mechanisms 
remain mainly elusive.

Based on the absence of clear conclusions regarding MPH response raised by previous genetic studies, we 
undertook a GWAS of MPH efficacy in 173 ADHD paediatric patients and, for the first time to our knowledge, we 
integrated data from functional annotation, expression quantitative trait loci (eQTL) and enrichment analyses to 
characterise the biological pathways associated with treatment response. Additionally, we performed a polygenic 
risk score analysis and a meta-analysis across the study sample and an independent population of 189 ADHD 
adult patients.

Materials and Methods
Discovery population.  The study sample included 173 ADHD paediatric patients for whom MPH was pre-
scribed. Subjects were required to satisfy full DSM-IV criteria for ADHD, be under 18 years of age, Spanish of 
Caucasian origin and have never received MPH treatment. Patients with an IQ below 70 or having pervasive 
developmental disorders were not eligible for the investigation. Additional exclusion criteria included schizo-
phrenia or other psychotic disorders; adoption; sexual or physical abuse; birth weight <1.5 kg; any significant 
neurological or systemic disease that might explain ADHD symptoms; and clinical contra-indication to MPH. 
Comorbid oppositional defiant disorder, conduct disorder, depression and anxiety disorders were allowed unless 
determined to be the primary cause of ADHD symptomatology. The study was approved by the Ethics Committee 
of the Hospital Universitari Vall d’Hebron and all methods were performed in accordance with the relevant 
guidelines and regulations. Written informed consent was obtained from parents/caregivers.

Clinical assessment.  Diagnoses of ADHD and comorbidities were established by child psychiatrists blind to 
patients’ genotypes through the Present and Lifetime version of the Kiddie Schedule for Affective Disorders and 
Schizophrenia for School-Age Children (K-SADS-PL). Furthermore, families were interviewed with the Clinical 
Global Impression-Severity scale (CGI-S). Additional information on clinical assessment is available elsewhere15.

Pharmacological intervention.  Patients were treated according to the program’s recommendations of 
initiating treatment with MPH at low to moderate dose and titrating to higher doses until no further clinical 
improvement or limiting adverse effects were observed. The mean daily dose of MPH prescribed was 1.06 mg/kg 
(SD = 0.28). Risperidone was the most frequent concomitant drug.

Treatment outcome.  We considered the Clinical Global Impression-Improvement scale (CGI-I)16, which 
ranges from 1 (‘very much improved’) to 7 (‘very much worse’), as the primary outcome measure of treatment 
success. Those patients rated with a CGI-I score of two points or less after eight weeks of treatment were consid-
ered as responders, while the remaining were classified as non-responders.

Genome-wide association study.  Genomic DNA was isolated from peripheral blood leukocytes by a 
salting out procedure17. A total of 173 samples were genotyped on the Infinium PsychArray-24 BeadChip plat-
form (Illumina, San Diego, CA, USA), which covers 588,628 markers, and processed at the Stanley Center for 
Psychiatric Research, Broad Institute of MIT and Harvard (Cambridge, MA, USA). Pre-imputation quality con-
trol and principal components analysis were implemented following the QC and PCA modules from the Ricopili 
with the default settings (https://sites.google.com/a/broadinstitute.org/ricopili/). Genotype imputation was per-
formed with the pre-phasing and imputation strategy using the EUR population of the 1,000 Genomes Project 
Phase 1 dataset as the reference panel (http://www.1000genomes.org/). We assured the accuracy of the imputation 
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data by filtering best-guess genotypes for an info score <0.3. This resulted in a total of 11,051,824 markers eligible 
for association tests.

Before GWAS analysis, further quality control measures were applied using the PLINK software18. Individuals 
exhibiting high rates of genotype missingness (>98%) were removed, as well as SNPs with low call rate (<0.99), 
MAF < 0.01 or failing Hardy-Weinberg equilibrium test (P < 1e-06).

Finally, 173 subjects and 3,566,199 variants were tested for association with MPH response through logistic 
regression under an additive model, which included those clinical variables (i.e., CGI-S baseline scores) and prin-
cipal components (i.e., PC6) significantly associated with clinical outcome (P ≤ 0.05) as covariates.

Identification of candidate causal SNPs.  Among the SNPs showing nominal association with treatment 
outcome (P < 0.05), we used the genome pipeline of SNPinfo (http://snpinfo.niehs.nih.gov/)19 to prioritise those 
that were more likely to affect protein sequence, transcriptional regulation, mRNA splicing or miRNA binding 
based on functional annotation. GenomePipe parameter values included: GWAS population = CEU; study pop-
ulation = CEU; flanking region = 200,000 bp; GWAS P-value < 0.05; LD threshold = 0.8; and MAF = 0.01 for all 
prediction methods. Additionally, we combined both the predicted conserved transcription factor-binding sites 
(TFBS) with the regulatory potential score (RP Score; available at http://genome.ucsc.edu) to improve predictions 
as suggested in several studies20–22.

Cis-expression quantitative trait loci analysis.  Cis-eQTL analysis was conducted on 193 neuropatho-
logically normal cortical samples of adult humans from Myers et al.23. Expression-genotype pairs were extracted 
after extending the genotyped data by imputation as previously described, and considering a 10 kb window 
around the untranslated regions. Rank-invariant normalised expression levels were log10 transformed and tran-
scripts detected in less than 75% of the samples were discarded from the study. Association tests were performed 
under a linear model with the MatrixEQTL R Package24, including gender, age at death, cortical region, day of 
expression hybridisation, institute source of sample, post-mortem interval and transcripts detected rate in each 
sample as covariates.

Functional and pathway enrichment analysis.  The biological functions and pathways related to genes 
containing at least one SNP nominally associated with both MPH response and human cortical expression levels 
(referred to as eSNPs) were assessed through the Ingenuity Pathway Analysis software (IPA) (Ingenuity Systems, 
Redwood City, CA, USA; www.ingenuity.com). IPA was also used to test for over-representation of genes previ-
ously studied in either ADHD or treatment outcome. Candidate genes for ADHD or MPH response were selected 
based on the gene list provided by the ADHDgene database (http://adhd.psych.ac.cn/index.do)25 and a compre-
hensive search for published reviews of ADHD genetic and pharmacogenetic studies11,12,26–31. Thus, a total of 
436 genes were considered (Supplementary Table S1). Fisher’s exact tests, with a Benjamini-Hochberg-adjusted 
P-value (PB-H) < 0.05 as significance threshold, were applied in all analyses. To achieve meaningful statistics and 
interpretation of the results, we restricted the enrichment analysis to those annotation terms that included ≥2 
genes of our dataset.

Polygenic risk score analysis.  We generated polygenic risk scores (PRS) based on the results of the present 
GWAS using the Polygenic Risk Score software (PRSice)32. A logistic regression model was applied to test whether 
PRS at multiple stepwise P-value thresholds (i.e., PT < 1e-04, PT < 1e-03, PT < 0.05, PT < 0.1, PT < 0.2, PT < 0.3, 
PT < 0.4, and PT < 0.5) predicted treatment outcome in an independent sample of patients with ADHD (target 
population). The target population comprised 189 Brazilian adults from the Adult ADHD Outpatient Clinic 
of the Hospital de Clínicas de Porto Alegre, who underwent immediate-release MPH treatment. Diagnoses of 
ADHD and comorbidities, as well as inclusion/exclusion criteria, were achieved as previously described33. The 
outcome measures of MPH treatment were the CGI-S scale, applied before medication and at least four weeks 
after its beginning, and the CGI-I scale. Drug response was defined following the criteria used in the discovery 
sample. Similarly, samples were genotyped and imputed using the same platform, imputation protocol and refer-
ence panel. The resulting dataset consisted of 7,304,149 SNPs with an info score >0.6, a genotype call probability 
>0.8 and a missing rate <0.02.

Potential confounders were included as covariates in the PRS model if they were associated with MPH 
response (P ≤ 0.05) in the target sample (i.e., CGI-S baseline scores, use of concomitant medication and pres-
ence of phobia as comorbid condition), as well as the 10 first principal components to control for population 
stratification.

Meta-analysis.  The eSNPs nominally associated with MPH response in the discovery sample were 
meta-analysed across the discovery and the target population used in the PRS analysis by the inverse-variance 
weighted method. The threshold for significance was set at P ≤ 1.52e-03 under the more conservative Bonferroni 
correction, taking into account 33 SNPs.

Data availability.  The datasets generated and/or analysed during the current study are not publicly available 
due to ethics constraints but are available from the corresponding author on reasonable request.

Results
Genome-wide association study in the discovery population.  Subjects were predominantly male 
(84.4%), with an average age at assessment of 9.59 (SD = 2.91) years (range 5–17). One hundred and thirty-one 
participants (75.7%) met DSM-IV criteria for ADHD-combined subtype, 37 (21.4%) had ADHD-inattentive 
subtype and 5 (2.9%) were diagnosed with ADHD-hyperactive-impulsive subtype. Comorbid disorders were 
present in a modest number of patients (22.5%), the main ones being disabilities in reading and writing (12.7%), 

http://snpinfo.niehs.nih.gov/
http://genome.ucsc.edu
http://www.ingenuity.com
http://adhd.psych.ac.cn/index.do


www.nature.com/scientificreports/

4SCIENTIFIC RePortS |  (2018) 8:1881  | DOI:10.1038/s41598-018-20194-7

oppositional defiant disorder (5.8%) and tic disorders (1.7%). One hundred and forty-one subjects (81.5%) 
responded favourably to treatment according to the CGI-I scale, while 32 (18.5%) failed to show a clinical 
response to MPH. Responders and non-responders were comparable with regard to age, sex, ADHD subtype, 
comorbidity, use of concomitant medication, MPH dose and drug formulation (P > 0.05). There were signif-
icant differences, however, in the severity of symptoms as assessed by the CGI-S scale (P < 1e-03), with chil-
dren resistant to MPH scoring higher at the baseline evaluation than children showing clinical improvement 
(Supplementary Table S2).

No variant reached genome-wide significance (P < 5e-08). However, the set of 4,709 genes containing SNPs 
nominally associated with MPH response (P < 0.05; Supplementary Table S3) was significantly enriched for can-
didates previously studied in ADHD or treatment outcome, with 199 out of 436 being present in this category 
(ratio = 0.46; PB-H = 1.56e-31).

Identification of candidate causal SNPs and cis-expression quantitative trait loci analy-
sis.  Considering these results, we prioritised the SNPs with P-values below 0.05 based on functional annotation 
and eQTL analysis rather than focusing on the top significant hits. Eight hundred and ninety-six independ-
ent markers were selected as candidate causal variants by functional annotation (Supplementary Table S4) and 
were subjected to further cis-eQTL analysis on a pre-existing dataset of 193 neuropathologically normal human 
cortical samples23. After imputation and quality control, a total of 284 variants and 300 genes with detectable 
expression levels in at least 75% of the samples were available for 146 individuals. Of these, we identified 33 
SNPs tagging cis-eQTL in 32 different loci (referred to as eGenes), with eight SNP-gene pairs surpassing the 0.05 
false discovery rate (FDR) threshold: rs12302749-SPSB2, PFDR = 1.13e-05; rs1061115-PYROXD2, PFDR = 2.17e-04; 
rs2071421-ARSA, PFDR = 7.26e-04; rs11553441-RRP7A, PFDR = 7.26e-04; rs4902333-CHURC1, PFDR = 7.26e-04; 
rs17279558-GGH, PFDR = 0.013; rs9901673-SENP3, PFDR = 0.023; and rs17685420-PEBP4, PFDR = 0.041 (Table 1).

Functional and pathway enrichment analysis.  The set of 32 eGenes included three candidates pre-
viously investigated in ADHD, namely ALDH1L134, CDH2335 and CMTM836 (ratio = 0.007; PB-H = 0.023), and 
showed over-representation of genes implicated in abnormal morphology of molecular layer of cerebellum 
(PB-H = 0.012), abnormal morphology of white matter (PB-H = 0.012), morphology of axons (PB-H = 0.012), mor-
phology and length of neurites (PB-H = 0.012 and PB-H = 0.021, respectively), coordination (PB-H = 0.022), and 
formation of hippocampus (PB-H = 0.033). Interestingly, categories related to neurological diseases, psychological 
disorders and behaviour were also significantly enriched, including learning deficit (PB-H = 0.012), hyperactive 
behaviour (PB-H = 0.015) and spatial learning (PB-H = 0.018) (Table 2).

Polygenic risk score analysis and meta-analysis using the target population.  Finally, in order to 
assess the predictive value of our findings we first computed PRS derived from the present GWAS in an independ-
ent sample of ADHD adult patients for whom data on response to MPH were available. The demographic and 
clinical characteristics of the target population according to the response status are presented in Supplementary 
Table S5. Briefly, 85.2% of subjects (n = 161) were classified as responders, while 14.8% (n = 28) exhibited a 
reduced or lack of improvement. Responders and non-responders significantly differed with regard to CGI-S 
baseline scores, use of concomitant medication and presence of phobia as comorbid condition, and thus these 
additional risk factors were entered as covariates in the PRS model, as well as the 10 first principal components 
to control for population stratification. Since we did not detect significant results at any of the predefined P-value 
thresholds, we subsequently focused on the 33 eSNPs nominally associated with treatment outcome in the discov-
ery sample and we increased statistical power by performing a meta-analysis across the discovery and the target 
population. Sixteen suggestive signals were identified (Table 3). Among them, 15 revealed the same direction of 
effect, with rs17685420 in the PEBP4 gene being significant after Bonferroni correction (OR = 3.07 (1.76–5.35), 
P = 7.90e-05), followed by additional compelling markers such as rs2071421 within ARSA (OR = 2.63 (1.29–
5.37), P = 7.71e-03), rs2886059 in ALDH1L1 (OR = 2.30 (1.14–4.66), P = 0.020), and rs17712523 in CDH23 
(OR = 2.13 (1.07–4.24), P = 0.031).

Discussion
To our knowledge, this is the first study investigating the genetic basis of MPH response from an integrative 
perspective that combines GWAS data, functional annotation, eQTL in relevant tissues to ADHD and pathway 
enrichment analyses. Our results highlight genes related to nervous system development and function, neuro-
logical diseases and psychological disorders. Thus, this comprehensive strategy provides a better understanding 
of the molecular mechanisms implicated in MPH treatment effects and suggests promising candidates that may 
contribute to clinical outcome.

In our attempt to improve earlier genetic studies by bridging the gap between genotype and phenotype, we 
prioritised the nominally significant SNPs based on functional annotation and cis-eQTL analysis in human brain, 
and we identified three candidates previously investigated in ADHD: ALDH1L134, CDH2335 and CMTM836. Of 
these, CMTM8 showed overlapping association between adult ADHD and bipolar disorder36, and ALDH1L1, 
which yielded suggestive results in the present meta-analysis of MPH response, has been related to other neu-
ropsychiatric conditions such as major depressive disorder or schizophrenia37,38. In addition, the ALDH1L1 
locus was found among the top hits of a GWAS conducted on children and adolescents with ADHD34 and 
contains non-synonymous rare variants identified through whole-exome sequencing in an ADHD nuclear 
family39. Similarly, CDH23 harbours one of the top SNPs from a pooling-based GWA of adult ADHD35 and 
reached nominal significance in our meta-analysis. CDH23 is a member of the cadherin superfamily that medi-
ates calcium-dependent cell-cell adhesion. The activity of cadherins depends on their anchorage to the neuronal 
cytoskeleton through proteins termed catenins (e.g., CTNNA2), which in turn activate KALRN, a key regulator 
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of dendritic spine development and synaptic plasticity underlying learning and memory40. This is of particular 
interest since catenin-cadherin cell-adhesion complexes are important in cerebellar and hippocampal lamina-
tion41 and both CTNNA2 and KALRN have shown nominal associations with clinical outcome in our GWAS. 
In this sense, Park et al.41 demonstrated that mice lacking the actin-binding domain of Ctnna2 (cdf-mutant 
mice) exhibited abnormal morphology of cerebellum and hippocampus. Moreover, the cdf-mutant mice showed 
an impaired control of the startle response and deficits in startle modulation have also been found in ADHD 
patients42,43. Therefore, cell-adhesion molecules and regulators of synaptic plasticity may play a role in MPH 
treatment effects, which is in agreement with data from genome-wide linkage and association studies pointing to 
cadherin13 (CDH13) as one of the most consistent candidates implicated in ADHD pathophysiology. Specifically, 
CDH13 was detected in three independent GWAS34,35,44 and lies within the 16q22-16q24 region identified in a 
meta-analysis of seven ADHD linkage scans45. Furthermore, SNPs in this gene have been linked to defects in ver-
bal working memory and hyperactive/impulsive symptoms in subjects with ADHD46,47, addiction vulnerability 
and drug dependence (e.g., methamphetamine, alcohol, and nicotine)48,49.

Pathway enrichment analysis provided further evidence for neuroplastic changes in response to MPH treat-
ment, considering the over-representation of genes involved in morphology of neurons, neuroglia, white matter 
and brain regions relevant to ADHD (e.g., cerebellum, cerebral cortex, and hippocampus) that we found among 
eGenes associated with drug response. Our results are in accordance to a wealth of data from neuroimaging 
studies showing that unmedicated ADHD patients present cortical thickness and reduced white matter volume 
in several areas of the brain compared to healthy subjects, while medicated children do not differ from control 
group50–53. In addition to structural alterations, ADHD patients exhibit deficits in neural functioning, which may 

Gene Chra Start baseb Stop basec SNP SNP based
Risk 
allele OR (95% CI)

GWAS 
P-value Beta

eQTL 
P-value

eQTL adjusted 
P-value (FDR)e

SPSB2 12 6870935 6873357 rs12302749 6867132 T 2.31 (1.22–4.39) 0.011 0.115 3.34e-08 1.13e-05

PYROXD2 10 98383565 98415221 rs1061115 98417292 G 2.23 (1.13–4.41) 0.021 −0.088 1.28e-06 2.17e-04

ARSA 22 50622754 50628173 rs2071421 50625988 T 2.56 (1.06–6.22) 0.037 0.104 8.26e-06 7.26e-04

RRP7A 22 42508335 42519823 rs11553441 42516091 C 3.13 (1.15–8.54) 0.026 0.177 1.04e-05 7.26e-04

CHURC1 14 64914361 64935368 rs4902333 64909368 T 2.37 (1.24–4.51) 8.73e-03 0.116 1.07e-05 7.26e-04

GGH 8 63015079 63039051 rs17279558 63015187 C 3.61 (1.12–11.7) 0.032 0.130 2.38e-04 0.013

SENP3 17 7561992 7571969 rs9901673 7580783 A 3.95 (1.79–8.71) 6.53e-04 0.052 4.66e-04 0.023

PEBP4 8 22713251 22941095 rs17685420 22927888 T 2.87 (1.38–5.94) 4.62e-03 −0.073 9.72e-04 0.041

STRBP 9 123109494 123268576 rs9032 123104493 C 2.28 (1.07–4.85) 0.033 0.071 2.15e-03 0.081

ETFDH 4 158672101 158708713 rs11559290 158680524 C 2.08 (1.01–4.28) 0.048 −0.048 2.57e-03 0.087

CORO7 16 4354542 4416961 rs3810818 4382028 A 2.10 (1.13–3.94) 0.020 −0.053 3.17e-03 0.098

FXR2 17 7591230 7614897 rs9901675 7581494 A 4.12 (1.32–12.9) 0.015 0.130 3.84e-03 0.107

NFIB 9 14081843 14398983 rs7858 14087770 C 2.89 (1.02–8.19) 0.045 −0.055 4.12e-03 0.107

ALDH1L1 3 126103561 126181526 rs2886059 126146923 C 2.73 (1.04–7.14) 0.041 −0.078 5.31e-03 0.129

OPCML 11 132403361 133532983 rs751655 132623600 C 3.08 (1.18–8.02) 0.022 −0.063 7.43e-03 0.158

PURA 5 140114123 140119416 rs2013169 140118020 T 3.32 (1.23–9.01) 0.018 0.071 7.45e-03 0.158

ZDHHC7 16 84974460 85011732 rs3210967 84975857 C 2.09 (1.11–3.94) 0.023 0.056 8.03e-03 0.160

WRB 21 39380287 39397889 rs3761372 39371919 T 3.38 (1.39–8.22) 7.36e-03 0.071 8.54e-03 0.161

FARP2 2 241356249 241494842 rs757978 241431686 C 5.18 (1.19–22.6) 0.029 0.062 0.010 0.181

SENP3 17 7561992 7571969 rs11552708 7559238 A 3.81 (1.50–9.72) 5.05e-03 0.041 0.011 0.189

ZNF565 19 36182060 36215084 rs4805162 36183403 G 2.24 (1.19–4.22) 0.012 0.034 0.016 0.255

ESYT2 7 158730998 158829628 rs1061735 158733764 G 2.91 (1.10–7.67) 0.031 0.030 0.017 0.255

HTT 4 3074510 3243960 rs362272 3233253 G 2.40 (1.06–5.42) 0.035 −0.033 0.019 0.276

CMTM8 3 32238679 32370325 rs4627790 32259860 C 1.98 (1.07–3.68) 0.030 0.054 0.021 0.298

ZNF134 19 57614219 57624717 rs10413455 57620255 A 5.75 (1.35–24.4) 0.018 0.061 0.024 0.323

PDIA2 16 283118 287209 rs1048786 286916 C 3.55 (1.19–10.6) 0.023 −0.087 0.027 0.345

PIGM 1 160027672 160031993 rs12409352 160030645 A 2.67 (1.00–7.12) 0.049 0.029 0.032 0.395

TRIB3 20 380629 397559 rs2295490 388261 G 2.06 (1.06–4.00) 0.033 0.092 0.034 0.406

ZNF211 19 57633167 57644046 rs10420097 57633193 G 7.29 (1.82–29.3) 5.18e-03 0.084 0.038 0.439

ARHGAP12 10 31805398 31928876 rs2799018 31913141 T 1.89 (1.00–3.56) 0.049 −0.036 0.039 0.446

ARHGEF28 5 73626158 73941993 rs929740 73621913 G 2.52 (1.31–4.84) 5.40e-03 −0.037 0.042 0.453

CDH23 10 71396934 71815947 rs17712523 71777857 G 2.61 (1.05–6.48) 0.039 −0.073 0.045 0.475

ELP5 17 7252053 7259940 rs4562 7260420 A 2.22 (1.24–3.95) 6.95e-03 −0.031 0.048 0.497

Table 1.  Cis-associated gene-SNP pairs with a nominal significant effect on methylphenidate response in the 
GWAS analysis. Note: SNP, single-nucleotide polymorphism; GWAS, genome-wide association study; Chr, 
gene chromosomal location; OR, odds ratio; CI, confidence interval; eQTL, expression quantitative trait loci. 
a,b,c,dAll relative to the human reference genome GRCh38 (NCBI Build 38). eSignificance threshold for the False 
Discovery Rate (FDR) correction at P < 0.05.
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Categories
Diseases or functions 
annotation

Adjusted P-value 
(Benjamini-Hochberg)a Molecules

Nervous System Development and Function, Organ Morphology, 
Organismal Development

abnormal morphology of 
molecular layer of cerebellum 0.012 ARSA, PURA

Nervous System Development and Function, Organ Morphology, 
Tissue Morphology

abnormal morphology of 
white matter 0.012 ARSA, PURA

Cellular Development, Embryonic Development, Organismal 
Development

differentiation of neuronal 
progenitor cells 0.012 FXR2, HTT

Developmental Disorder, Neurological Disease learning deficit 0.012 ARSA, HTT

Cell Morphology, Nervous System Development and Function, 
Organ Morphology, Organismal Development, Tissue Morphology morphology of granule cells 0.012 HTT, NFIB

Cell Morphology, Haematological System Development and 
Function, Nervous System Development and Function morphology of microglia 0.012 ARSA, HTT

Neurological Disease gait disturbance 0.012 ARSA, HTT, PURA

Cell Morphology, Nervous System Development and Function, 
Tissue Morphology morphology of axons 0.012 ARSA, HTT, PURA

Cell Morphology, Nervous System Development and Function morphology of neuroglia 0.012 ARSA, HTT, NFIB

Cell Morphology, Nervous System Development and Function, 
Organ Morphology, Organismal Development morphology of brain cells 0.012 ARSA, HTT, NFIB, PURA

Cell Morphology, Nervous System Development and Function, 
Tissue Morphology morphology of neurites 0.012 ARSA, FARP2, HTT, 

PURA

Cell Morphology, Nervous System Development and Function, 
Tissue Morphology morphology of neurons 0.012 ARSA, CDH23, FARP2, 

HTT, NFIB, PURA

Neurological Disease late-onset encephalopathy 0.014 ARSA, HTT

Psychological Disorders hyperactive behaviour 0.015 ARSA, FXR2, HTT

Neurological Disease tremor 0.015 ARSA, HTT, PURA

Nervous System Development and Function, Organ Morphology, 
Organismal Development

abnormal morphology of 
dentate gyrus 0.015 NFIB, PURA

Cell Morphology, Nervous System Development and Function, 
Organ Morphology, Organismal Development, Tissue Morphology

abnormal morphology of 
Purkinje cells 0.015 ARSA, PURA

Cell Death and Survival, Cellular Compromise, Neurological 
Disease, Organismal Injury and Abnormalities, Tissue Morphology

neurodegeneration of 
Purkinje cells 0.015 ARSA, HTT

Nervous System Development and Function, Organ Morphology, 
Organismal Development

abnormal morphology of 
telencephalon 0.015 ARSA, HTT, NFIB

Behaviour spatial learning 0.018 ARSA, FXR2, HTT

Nervous System Development and Function, Organ Morphology, 
Organismal Development mass of brain 0.019 HTT, PURA

Cell Morphology, Cellular Function and Maintenance, Nervous 
System Development and Function, Tissue Morphology length of neurites 0.021 FARP2, HTT

Organismal Injury and Abnormalities abnormality of head 0.022 HTT, NFIB

Nervous System Development and Function coordination 0.022 ARSA, FXR2, HTT

Cellular Development differentiation of stem cells 0.022 FXR2, HTT, NFIB

Developmental Disorder, Neurological Disease, Organismal Injury 
and Abnormalities cerebral dysgenesis 0.022 NFIB, PURA

Nervous System Development and Function, Organ Morphology, 
Organismal Development

morphology of cerebral 
cortex 0.023 HTT, NFIB, PURA

Organismal Development size of head 0.024 HTT, NFIB, PURA

Neurological Disease, Organismal Injury and Abnormalities astrocytosis 0.025 ARSA, HTT

Cell Death and Survival, Cellular Compromise, Neurological 
Disease, Tissue Morphology neurodegeneration of axons 0.026 ARSA, HTT

Cellular Growth and Proliferation, Nervous System Development 
and Function, Organ Development proliferation of brain cells 0.030 HTT, PURA

Nervous System Development and Function, Organ Morphology, 
Organismal Development

abnormal morphology of 
brain 0.030 ARSA, HTT, NFIB, PURA

Embryonic Development, Organismal Development, Tissue 
Development mesoderm development 0.032 CHURC1, HTT

Embryonic Development, Nervous System Development and 
Function, Organ Development, Organismal Development, Tissue 
Development

formation of hippocampus 0.033 HTT, NFIB

Nervous System Development and Function, Organ Morphology, 
Tissue Morphology quantity of brain cells 0.042 HTT, PURA

Nervous System Development and Function sensation 0.047 CDH23, FXR2, HTT

Table 2.  Significantly enriched biological functions and diseases identified by Ingenuity Pathway Analysis 
within the eGenes associated with methylphenidate response. Note: eGenes, genes whose expression levels are 
associated with at least one genetic variant. aSignificance threshold for the Benjamini-Hochberg correction at 
P < 0.05.
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be normalised by MPH. In this sense, Rubia et al.54–56 demonstrated that MPH restores the aberrant activation 
and functional connectivity in attention, motivation and interference inhibition networks, as well as during error 
processing, thus improving neuropsychological performance of subjects with ADHD.

It should also be noted that 15 out of the 32 eGenes included in the pathway enrichment analysis harboured 
variants which provided preliminary evidence for an association with clinical outcome across the discovery and 
an independent sample. Our top hit from the meta-analysis, rs17685420, is located in the phosphatidylethanola-
mine binding protein 4 (PEBP4), a member of an evolutionary conserved family of proteins with pivotal biologi-
cal functions such as cell proliferation and survival, stimulation of acetylcholine synthesis and inhibition of serine 
proteases57. Given that serine proteases are implicated in many processes during development and tissue home-
ostasis (e.g., neuronal outgrowth, cell migration, and cell death), disturbances in their activity on the nervous 
system have been proposed as a possible pathological mechanism for neurological disorders58. Indeed, Hohman 
et al.59 identified a gene-gene interaction involving PEBP4 associated with late onset Alzheimer’s disease (AD) 
across 13 independent datasets, and decreased expression levels have been found in hippocampus of both AD 
patients and mouse models for another phosphatidylethanolamine binding protein, the PEBP160–62, which has 
also shown alterations after methamphetamine and morphine administration63,64. Additional compelling results 
were detected for ARSA, SPSB2, CORO7 and PIGM. The ARSA gene encodes the arylsulfatase A, whose deficiency 
is characterised by decline in school performance, emergence of behavioural problems and neurologic symptoms, 
such as cerebellar ataxia, among others65. SPSB2 has been associated with borderline personality disorder in a 
genome-wide methylation analysis66 and CORO7, which has shown to be important in brain development67, 
was identified as a novel candidate gene for emotionality by comparing the expression profile of two mouse lines 

SNP Chra SNP baseb
Risk 
allele

SPAIN BRAZIL META-ANALYSIS

GeneOR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-valuec

rs17685420 8 22927888 T 2.87 (1.38–5.94) 4.62e-03 3.38 (1.43–8.01) 5.71e-03 3.07 (1.76–5.35) 7.90e-05 PEBP4

rs3210967 16 84975857 C 2.09 (1.11–3.94) 0.023 2.25 (1.02–4.94) 0.044 2.15 (1.31–3.52) 2.40e-03 ZDHHC7

rs10413455 19 57620255 A 5.75 (1.35–24.4) 0.018 3.86 (0.63–23.7) 0.144 4.93 (1.59–15.3) 5.70e-03 ZNF134

rs2071421 22 50625988 T 2.56 (1.06–6.22) 0.037 2.76 (0.84–9.15) 0.096 2.63 (1.29–5.37) 7.71e-03 ARSA

rs12302749 12 6867132 T 2.31 (1.22–4.39) 0.011 1.49 (0.72–3.10) 0.280 1.91 (1.18–3.09) 8.48e-03 SPSB2

rs10420097 19 57633193 G 7.29 (1.82–29.3) 5.18e-03 1.58 (0.14–17.7) 0.712 4.98 (1.49–16.6) 9.13e-03 ZNF211

rs3810818 16 4382028 A 2.10 (1.13–3.94) 0.020 1.40 (0.62–3.16) 0.413 1.81 (1.10–2.97) 0.019 CORO7

rs2886059 3 126146923 C 2.73 (1.04–7.14) 0.041 1.89 (0.67–5.33) 0.230 2.30 (1.14–4.66) 0.020 ALDH1L1

rs9901675 17 7581494 A 4.12 (1.32–12.9) 0.015 1.57 (0.33–7.46) 0.572 2.95 (1.18–7.39) 0.021 FXR2

rs4805162 19 36183403 G 2.24 (1.19–4.22) 0.012 1.21 (0.59–2.50) 0.608 1.72 (1.07–2.76) 0.026 ZNF565

rs4562 17 7260420 A 2.22 (1.24–3.95) 6.95e-03 1.05 (0.51–2.15) 0.889 1.65 (1.05–2.59) 0.029 ELP5

rs17712523 10 71777857 G 2.61 (1.05–6.48) 0.039 1.63 (0.57–4.66) 0.366 2.13 (1.07–4.24) 0.031 CDH23

rs2799018 10 31913141 T 1.89 (1.00–3.56) 0.049 1.40 (0.66–2.97) 0.375 1.67 (1.03–2.71) 0.038 ARHGAP12

rs12409352 1 160030645 A 2.67 (1.00–7.12) 0.049 1.63 (0.54–4.95) 0.387 2.15 (1.03–4.49) 0.041 PIGM

rs4902333 14 64909368 T 2.37 (1.24–4.51) 8.73e-03 0.94 (0.41–2.18) 0.893 1.68 (1.01–2.80) 0.046 CHURC1

rs2295490 20 388261 G 2.06 (1.06–4.00) 0.033 1.22 (0.48–3.13) 0.678 1.73 (1.01–2.98) 0.048 TRIB3

rs4627790 3 32259860 C 1.98 (1.07–3.68) 0.030 1.13 (0.52–2.45) 0.761 1.59 (0.98–2.59) 0.060 CMTM8

rs1048786 16 286916 C 3.55 (1.19–10.6) 0.023 1.15 (0.38–3.48) 0.805 2.03 (0.93–4.43) 0.074 PDIA2

rs9901673 17 7580783 A 3.95 (1.79–8.71) 6.53e-04 0.21 (0.054–0.77) 0.019 1.82 (0.92–3.59) 0.084 SENP3

rs751655 11 132623600 C 3.08 (1.18–8.02) 0.022 0.99 (0.37–2.62) 0.986 1.76 (0.89–3.49) 0.104 OPCML

rs11559290 4 158680524 C 2.08 (1.01–4.28) 0.048 1.03 (0.39–2.74) 0.957 1.62 (0.90–2.90) 0.105 ETFDH

rs7858 9 14087770 C 2.89 (1.02–8.19) 0.045 1.12 (0.41–3.09) 0.820 1.78 (0.86–3.67) 0.119 NFIB

rs929740 5 73621913 G 2.52 (1.31–4.84) 5.40e-03 0.69 (0.34–1.41) 0.313 1.40 (0.87–2.27) 0.169 ARHGEF28

rs9032 9 123104493 C 2.28 (1.07–4.85) 0.033 0.71 (0.25–2.01) 0.515 1.52 (0.82–2.81) 0.179 STRBP

rs11552708 17 7559238 A 3.81 (1.50–9.72) 5.05e-03 0.11 (0.020–0.62) 0.012 1.70 (0.75–3.86) 0.207 SENP3

rs1061735 7 158733764 G 2.91 (1.10–7.67) 0.031 0.79 (0.32–1.98) 0.618 1.46 (0.75–2.84) 0.265 ESYT2

rs11553441 22 42516091 C 3.13 (1.15–8.54) 0.026 0.74 (0.29–1.90) 0.529 1.46 (0.73–2.90) 0.284 RRP7A

rs362272 4 3233253 G 2.40 (1.06–5.42) 0.035 0.72 (0.31–1.68) 0.451 1.34 (0.75–2.41) 0.324 HTT

rs757978 2 241431686 C 5.18 (1.19–22.6) 0.029 0.74 (0.22–2.42) 0.613 1.59 (0.63–4.01) 0.325 FARP2

rs17279558 8 63015187 C 3.61 (1.12–11.7) 0.032 0.37 (0.081–1.74) 0.210 1.56 (0.62–3.97) 0.348 GGH

rs3761372 21 39371919 T 3.38 (1.39–8.22) 7.36e-03 0.65 (0.30–1.39) 0.268 1.31 (0.73–2.33) 0.365 WRB

rs1061115 10 98417292 G 2.23 (1.13–4.41) 0.021 0.58 (0.28–1.24) 0.161 1.22 (0.74–2.02) 0.438 PYROXD2

rs2013169 5 140118020 T 3.32 (1.23–9.01) 0.018 0.28 (0.11–0.73) 9.33e-03 0.92 (0.46–1.84) 0.813 PURA

Table 3.  Meta-analysis of the eSNPs nominally associated with methylphenidate response across the discovery 
and the target population. Note: eSNP, single-nucleotide polymorphism associated with cortical expression 
levels; Chr, gene chromosomal location; OR, odds ratio; CI, confidence interval. a,bAll relative to the human 
reference genome GRCh38 (NCBI Build 38). cSignificance threshold for Bonferroni correction at P ≤ 1.52e-03.
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with either high or low anxiety-related behaviour68. Finally, mutations in the PIGM gene, which encodes a pro-
tein involved in the synthesis of the glycosylphosphatidylinositol anchor, have been reported in individuals with 
severe neurological features, including seizures, muscular hypotonia and intellectual disability69.

Another interesting finding arising from our research is the significant enrichment for candidates previ-
ously related to ADHD or MPH response detected among the set of genes nominally associated with treatment 
outcome. It is worth mentioning that four of these candidates, namely CTNNA2 (rs79067553, P = 3.51e-05), 
PARD3B (rs62172701, P = 3.28e-04), LRP1B (rs410870, P = 4.00e-04) and GRM7 (rs17047590, P = 6.36e-04), 
were significant at P < 1e-03 in the present GWAS analysis. In particular, the metabotropic glutamate receptor 7 
(GRM7), which is widely expressed in brain regions relevant to ADHD such as the cerebral cortex, the hippocam-
pus and the cerebellum51,70 and has been associated with the disorder71–73, was also found among the top hits in a 
prior GWAS of MPH efficacy13, thus supporting the role of the glutaminergic system as a moderator of treatment 
outcome.

The main strengths of our design include the coverage of a considerably higher number of genetic variants in 
comparison with the study from Mick et al.13 (319,722 vs 3,566,199 markers), the use of an integrative approach 
that combines GWAS data with bioinformatic methods, and the follow up of our top signals in an independent 
cohort, which did increase the association of a number of markers located in loci with biologically plausible func-
tions (PEBP4, ARSA, and SPSB2). Nevertheless, some limitations should also be considered when interpreting 
these results. Given the limited sample size, the present study might not be sufficiently powered to detect indi-
vidual variants of modest effects and we did not identify any loci reaching the genome-wide threshold. This con-
straint, however, is heavily conditioned on the difficulty to find the required phenotype as shown by the sample 
size of the studies included in the last meta-analysis of candidate gene-based investigations on MPH response74. 
The small dimension of our paediatric sample could also explain the lack of significance of the PRS derived from 
the GWAS results in an independent population of ADHD adult patients. Alternatively, this discrepancy may be 
attributed to differences in the genetic background and the clinical heterogeneity (e.g., comorbidities, frequency 
of clinical subtypes, and sex ratio) of ADHD among children and adults, as suggested by most of the pharmaco-
genetic studies conducted in adult samples, which failed to replicate variants previously identified in children and 
adolescents75. Additional methodological aspects or distinct environmental influences between the discovery and 
the target population may also be responsible for the absence of association.

In conclusion, despite not reaching any genome-wide significant association, our results are consistent with 
previous findings and highlight genes related to morphological abnormalities in brain regions important for 
motor control, attention and memory, thus supporting the use of bioinformatic and biological evidence as a com-
plement to GWAS data to disentangle the genetic basis of MPH response.
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