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Application of kernel principal 
component analysis and 
computational machine learning to 
exploration of metabolites strongly 
associated with diet
Yuka Shiokawa1,2, Yasuhiro Date1,2 & Jun Kikuchi  1,2,3

Computer-based technological innovation provides advancements in sophisticated and diverse 
analytical instruments, enabling massive amounts of data collection with relative ease. This is 
accompanied by a fast-growing demand for technological progress in data mining methods for 
analysis of big data derived from chemical and biological systems. From this perspective, use of a 
general “linear” multivariate analysis alone limits interpretations due to “non-linear” variations in 
metabolic data from living organisms. Here we describe a kernel principal component analysis (KPCA)-
incorporated analytical approach for extracting useful information from metabolic profiling data. 
To overcome the limitation of important variable (metabolite) determinations, we incorporated a 
random forest conditional variable importance measure into our KPCA-based analytical approach 
to demonstrate the relative importance of metabolites. Using a market basket analysis, hippurate, 
the most important variable detected in the importance measure, was associated with high levels 
of some vitamins and minerals present in foods eaten the previous day, suggesting a relationship 
between increased hippurate and intake of a wide variety of vegetables and fruits. Therefore, the KPCA-
incorporated analytical approach described herein enabled us to capture input–output responses, and 
should be useful not only for metabolic profiling but also for profiling in other areas of biological and 
environmental systems.

Innovation in computer-based technology has caused not just advancements of computer-associated technology 
but also considerably contributions of their ripple effects to technological progress in research fields of chemistry 
and biology. This technological innovation facilitates advancements in sophisticated and diverse analytical instru-
ments, enabling massive amounts of data collection with relative ease. The increasing opportunity of handling 
“big data” has accompanied with a fast-growing demand for technological progress in highly analytical methods 
for mining “big data.” From this viewpoint, machine learning approaches such as deep learning and data mining 
techniques are currently being developing at a fast clip.

One research field in chemistry and biology that acquires and handles “big data” is metabolomics or metabolic 
profiling. A massive amount of data in metabolomics studies is typically obtained by nuclear magnetic resonance 
(NMR) spectroscopy and mass spectrometry. Especially, NMR spectroscopy is a non-destructive method for 
measurements of complex metabolites derived from biological systems1–3. In addition, NMR has advantages for 
analytical reproducibility and inter-convertibility among different institutions4,5. Therefore, NMR-based met-
abolic profiling has been applied to various biological and environmental samples6–13. These types of research 
benefit from several useful and helpful databases and analytical support tools for preprocessing of spectral data 
and assignments of metabolites in complex chemical mixtures in NMR-based metabolic profiling. Such databases 
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and tools, for example, include the human metabolome database14, biological magnetic resonance data bank15, 
1H (13C) TOCCATA16,17, SpinAssign18, SpinCouple19, MetaboAnalyst20, NMRShiftDB21, MVAPACK22, rNMR23, 
BATMAN24, statistical total correlation spectroscopy25, fragment-assembly approach26, and signal enhancement 
by spectral integration (SENSI) method27.

In the fields of NMR-based metabolomics, one key multivariate analysis is principal component analysis 
(PCA). PCA is an unsupervised method and a kind of “linear” multivariate analyses. Although PCA is able to 
capture meaningful tendencies in some datasets, PCA is not a panacea for analyses in all instances. For example, 
some cases in metabolic variations have typically non-linear relationships. Therefore, general PCA is not able to 
capture “non-linear” metabolomic relationships from various metabolic reactions in living organisms. Therefore, 
advances in powerful data mining methods that would allow the discoveries of valuable information from mas-
sive datasets have been eagerly anticipated. To circumvent difficulties in obtaining valuable information that can-
not be extracted by conventional linear PCA methods, we focused on “non-linear” kernel PCA (KPCA)28. KPCA 
is an enhanced PCA method that incorporates a kernel function, thereby facilitating solution of non-linear prob-
lems. KPCA was previously applied to analysis of NMR-based metabolic profiling29. However, KPCA is limited 
by an inability to determine importance of variables in contrast to linear PCA where it is possible to identify key 
variables that contribute to PCA score profiles. Thus, it was important to overcome this limitation for evaluation 
of key metabolites and for discovery of useful biomarkers in NMR-based metabolic profiling studies. To identify 
key variables for kernel-based methods, several variable selection approaches have been previously reported in 
supervised classifications and regressions30,31, however, determination of important variables for unsupervised 
data using kernel-based methods is still challenging.

Here, we describe a KPCA-incorporated analytical approach for the extraction of useful information from 
NMR-based metabolic profiling datasets. To overcome the limitation concerning important variable identifica-
tions in unsupervised KPCA, we incorporated a random forest conditional variable importance measure (cfor-
est)32, a form of machine learning, into the KPCA-based analytical approach to determine the importance of 
variables. The obtained importance was validated using statistical tests and further analyzed using a market basket 
analysis (MBA)33 to evaluate input–output responses (urinary metabolites and minerals associated with dietary 
food and nutritional information) in humans (Fig. 1).

Results and Discussion
Non-linear KPCA. In this study, urinary metabolic and elemental data obtained from NMR and inductively 
coupled plasma optical emission spectrometry (ICP-OES), respectively (Figure S1), were integrated on a data 
matrix prior to KPCA. KPCA was performed using the analysis of variance (ANOVA) kernel function after 

Figure 1. Analytical flow of the study. Kernel principal component analysis (KPCA) was calculated from 
urinary organic (nuclear magnetic resonance) and inorganic (inductively coupled plasma optical emission 
spectrometry) data. Subsequently, cforest was used to identify significant metabolites in four groups generated 
from the KPCA results. Finally, market basket analysis was used to obtain human lifestyle-associated 
information related to significant metabolites. The colored circles and red symbols in the market basket analysis 
indicate individual nutrients and metabolites (for the purposes of illustration), respectively. The image was 
drawn by Yuka Shiokawa.
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changing the sigma parameter from 0.05 to 0.3 with the degree parameter d = 1 (Figure S2), 2, and 3 (data not 
shown). Using the PC1 contribution rate from KPCA, we determined the sigma value (0.135) with the parameter 
d = 1 as the KPCA parameters for further analyses. We used these determined parameters to demonstrate that 
KPCA and conventional PCA yielded different profiles (Fig. 2). With conventional PCA, many samples were con-
centrated at particular positions on the score plot; therefore, it was difficult to identify any characteristics among 
samples. In contrast, with KPCA, the samples were holistically dispersed over the score plot, and the profiles 
tended to cluster according to individual differences. In this study, dispersion on the scores plot is very important 
to avoid biased grouping and generation of an unbalanced dataset. Thus, KPCA compared to PCA was suitable 
to use in subsequent analyses.

Important variable identifications of KPCA by incorporation of cforest. In this study, KPCA was 
used for unsupervised clustering (grouping) of the dataset with no class information in a data-driven manner. 
The grouping is key for this analytical procedure, but KPCA cannot calculate importance of variables directly 
due to an inner product computation process. To overcome this limitation, we used cforest to determine the key 
metabolites according to the importance in a model constructed by machine learning (random forest)34. cforest 
is an unbiased tree algorithm that overcomes a major limitation of the classical random forest approach involving 
variable selection bias32. To incorporate cforest into KPCA, profiles on the KPCA score plot were mathematically 
classified according to principal component (PC) plus and minus signs. In the present study, four groups based on 
the signs of PC1 and PC2 were manually generated for the cforest analysis (Fig. 3A). In this grouping, all samples 
were categorized in one of the 4 classes considered in the calculation. The number of samples belonging to classes 
1, 2, 3, and 4 were 73, 94, 96, and 123, respectively. The samples categorized to classes 1 and 2 had a tendency to 
consume vegetable and fruit diets in the previous day, whereas the samples categorized to classes 3 and 4 had a 
tendency to consume protein- and fat-rich diets in the previous day (Table S1). Among this tendency, the class 1 

Figure 2. Comparison of profiles from conventional principal component analysis (PCA) (A) and kernel PCA 
(B). The symbols and numbers indicate individual subjects.

Figure 3. Important variables evaluated in the cforest analysis. Kernel principal component analysis results 
were used to generate four groups based on PC1 and PC2 plus and minus signs for the cforest analysis (A). 
The top 100 variables were depicted as important variables determined by cforest (B). The above-highlighted 
numbers correspond to metabolites as follows: 1: Methylmalonate, 2: Fucose, 3: Citrate, 4: Creatinine, 5: 
Taurine, 6: Glycine, 7: Ethanol, 8: Glucose, 9: Hippurate, 10: Phenylalanine, 11: Trigonelline.
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was likely to be also influenced by the alcohol intakes, and the class 3 was likely to be associated with fish intakes 
in the previous day. From the unsupervised grouping by KPCA in a data-driven manner, the class information 
was added to the original data for calculation of cforest modeling. The cforest modeling was performed with 
leave-one-out cross validation, resulting in 85.8% classification accuracy based on 4 classes with the confusion 
matrix shown in Table S2. The importance was also calculated for all variables in the cforest analysis, and the 
variables were aligned in descending order according to importance; only the top 100 variables are depicted in 
Fig. 3B. Among metabolites and inorganic elements, hippurate was identified as the most important variable, 
followed by fucose, methylmalonate, taurine, trigonelline, creatinine, glycine, glucose, citrate, phenylalanine, and 
ethanol. Significant intergroup differences were calculated to validate important variables (metabolites) (Fig. 4). 
For example, hippurate was significantly abundant in samples located in the positive PC2 group on the KPCA 
score plot compared with those in the PC2 negative group. In our previous study35, hippurate was detected in 
NMR spectra but was not focused because there was no correlation with nutritional trends (high and low protein 
diets) studied in the previous paper. Thus, this current study enabled to provide a different perspective (a stand-
point based on hippurate) that couldn’t detect the relationship by the conventional method in the previous paper.

Evaluation of hippurate in input–output responses. Hippurate was identified as the most important 
variable contributing to KPCA class information. To characterize biological contents, hippurate, other urinary 
metabolites and inorganic elements, and nutritional data derived from daily dietary intake records were subjected 
to an MBA. MBA enables to screen direct or indirect relationships though MBA manages occasionally to detect 
any biological irrelevant and meaningless correlations. Notably, hippurate was associated with high concentra-
tions of some vitamins and minerals present in foods eaten during the previous day (Figure S3A). Hippurate is 
abundant in diets that gain a lot of nourishment from foods containing aromatic compounds (e.g., polyphenols, 
aromatic side-chain amino acids) such as plants36,37. Studies in germ-free mice, which excrete low levels of hip-
purate in urine, suggest that aromatic compounds from dietary components are metabolized by symbiotic gut 
microbiota38. Two other reports have described a relationship between high levels of urinary hippurate excretion 
and intake of certain foods including fruits, vegetables, and whole-grain wheat flour39,40. In our study, the intake 
of fruits, vegetables, and whole-grain wheat flour during the previous day was considered to indicate a high intake 
of nutritive components (e.g., vitamins, minerals, food fiber, and carbohydrates), and thus our observations were 
consistent with those of previous reports39,40. Additionally, fruits such as banana and citrus fruit contain aromatic 
compounds41, and hippurate excretion was found to increase over time after the consumption of orange juice42, 

Figure 4. Box plots of the peak intensities of important variables. Significance: p < 0.05*, p < 0.01**, 
p < 0.001***.



www.nature.com/scientificreports/

5Scientific RepoRtS |  (2018) 8:3426  | DOI:10.1038/s41598-018-20121-w

a finding that was also consistent with our observation of high levels of urinary hippurate excretion following 
intake of edible fruits during the previous day. Overall, our data suggest that high hippurate levels observed in this 
study were consequent to the intake of a wide variety of vegetables and fruits.

An increasing hippurate level was also associated with increasing or decreasing levels of some output metab-
olites and minerals (Figure S3B). Among these metabolites and minerals, increasing levels of phenylalanine, 
tryptophan, and citrate have been reported to reflect the intake of whole-grain wheat flour39. Increasing levels 
of tryptophan and phenylalanine are attributed to the gut microbiotic shikimate pathway43,44 which resynthesize 
aromatic amino acids45.

One report suggests a relationship between reduced creatinine levels and vegetable intake40 as well as between 
hippurate production and increasing and decreasing levels of citrate and glycine, respectively. The latter is par-
ticularly relevant, as hippurate is produced from benzoate and glycine in the human liver46. In addition, benzoate 
is derived from gut microbial degradation of aromatic compounds from vegetables or fruits37, and citrate is an 
intermediate component of the TCA cycle. Hippurate production requires ATP; the increased citrate production 
resulting from an increased demand for ATP may explain the observed concurrent increases in hippurate and 
citrate levels47. Accordingly, the observed associations of hippurate with food intake and other metabolites were 
summarized into a putative simple pathway (Fig. 5). Overall, the analytical approach described here enabled us to 
capture input–output responses that were undetectable using linear PCA in previous studies33,35.

In this study, only two principle components (PC1 and PC2) were used for the categorization of KPCA in the 
analytical procedure because it is important to evaluate with as few components as possible in terms of dimen-
sional (data) reduction. However, this may be not always suitable in some cases to obtain a best performance of 
the analytical procedure. Moreover, the grouping to 4 classes may be not always better in some cases although 
characteristic features in the dataset were able to be captured by the 4 class grouping with appropriate dispersion 
on the scores plot in this study. Therefore, it will be beneficial and effective to develop a method for automatic 
determination of optimal number of components and classes and to incorporate the method into the analytical 
procedure in the future.

To evaluate the generality and robustness of our analytical approach, a dataset obtained from skin microbiota 
profiling48 as another kind of omics data was used for the performance test. The same strategy was applied to 
this dataset, resulting in class information obtained from the KPCA scores plot (Figure S4A). In this categoriza-
tion, the samples categorized in class 1 and in class 4 were mostly derived from the arm and from the face and 
neck, respectively, whereas those categorized in class 2 and in class 3 were mainly derived from the armpit, but-
tock, and leg (Figure S4B). The important variables contributing to each class were calculated by cforest analysis 
(Figure S4C), resulting in several key bacteria such as Corynebacteriaceae and Neisseriaceae identified as having 

Figure 5. Putative pathway from dietary intake to metabolite generation. Significant metabolites were extracted 
using kernel principal component analysis followed by cforest, and associated intake nutrients were computed 
using market basket analysis.
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high importance for the KPCA categorization. The important bacteria were further assessed by significant test 
among each class (Figure S5), revealing that the bacteria belonging to Corynebacteriaceae and Tissierellaceae 
were abundant on the arm (class 1) whereas the bacteria belonging to Propionibacteriaceae, Streptococcaceae, and 
Pasteurellaceae were abundantly located on the face and neck (class 4). The bacteria belonging to Moraxellaceae 
were relatively abundant on the armpit, buttock, and leg (classes 3 and 4) compared to the arm, face, and neck. 
From this analysis, our analytical approach enabled us to capture the localizations of bacteria on the body that 
were undetectable using linear PCA in a previous study48. Therefore, this approach should be useful not only for 
metabolic and microbiota profiling but also for profiling in other areas such as proteomics and transcriptomics in 
biological systems and environmental ecosystems.

Conclusions
This study established an analytical approach based on the combined use of non-linear KPCA and cforest with 
validation of the extracted important variables and subsequent evaluation of detected metabolites performed by 
MBA to identify input–output responses in humans. This approach enabled the identification of relationships 
between dietary intake and metabolites that could not be detected using linear PCA. By changing the kernel 
functions and parameters, this novel analytical approach could potentially be applied to a wide range of analyses 
in which useful and valuable information is extracted from biological and environmental systems. This approach, 
which can be applied to non-linear trend data, should therefore be incorporated as a new analytical option in 
diverse fields of science (especially life sciences).

Methods
Data preparations. In this study, we used 386 NMR and 386 ICP-OES datasets of urine samples collected 
from 8 human volunteers and 309 nutritional datasets of daily dietary intake records obtained from previous 
studies33,35, and also spectral data acquired in the present study. The human ethical committees of RIKEN 
Yokohama Research Institute and Yokohama City University approved this study which enrolled human subjects 
who provided informed consent. All methods and procedures were performed in accordance with the relevant 
guidelines and regulations.

Data processing. Collected 1H NMR data (32,000 data points) were normalized via probabilistic quotient 
normalization49 using the mQTL package (Revolution R open software, 8.0.1 beta 64-bit) and aligned using the 
icoshift50 program on Matlab R2015b (MathWorks Japan, Tokyo, Japan) in an in-house computing environment. 
Peak-picked NMR data and ICP-OES data were merged into a data matrix with auto scaling for further analyses.

KPCA. As mentioned above, KPCA was developed for non-linear PCA28. Accordingly, KPCA comprises PCA, 
in which a non-linear kernel function has been incorporated, allowing the performance of non-linear PCA using 
matrices converted from input matrices by the kernel function. During processing, a kernel-enabled non-linear 
data approximation enables the extraction of information that differs from that obtained using conventional 
linear approximations. Although several methods have been developed for the kernel function, ANOVA kernel 
method was the best performance of dispersion on the scores plot compared to the other kernel methods, i.e., 
Gaussian (Figure S6), Laplace (Figure S7), and Bessel (Figure S8). Thus, the following ANOVA kernel method 
was used in the present study:

∑ σ = − − ′=( )K x y exp x xANOVA kernel: ( , ) ( ( ) ) (1)k
n k k d

( 1)
2

ANOVA kernel calculations were performed using the kpca function installed in the R kernlab package51.

cforest. The random forest method34 is a well-known machine learning algorithm for clustering and regres-
sion analyses and has become widely used in recent years in bioinformatics studies. Random forest can be applied 
to datasets with non-linear features and is intended for the construction of predictive and discriminant models 
as well as the calculation of important variables for constructing predictors. However, random forest is associated 
with the potential for bias caused by differences in sample numbers between groups. In other words, a group with 
a larger number of samples is more likely to be identified as having greater importance with respect to corre-
sponding variables32,52,53. To counteract this bias, the cforest algorithm was developed based on a non-biased deci-
sion tree which overcomes the weakness associated with variable selections using conditional inference trees to 
calculate a permutation importance. In this study, cforest was calculated using the cforest function in the R party 
software package54 for original data with group information determined from KPCA results. In this process, we 
used the tuneRF function in the R randomForest package to tune ntree (number of decision trees) set to 80 and 
mtry (number of features used to make a decision tree) set to 900. Leave-one-out cross validation was performed 
for verification of the constructed model.

Statistical analysis. MBA with NMR, ICP-OES, and nutrient variables was performed using the R software 
package arules55 as previously described33. The association rules were determined to exceed the cut-off values of 
0.0625 for support, 0.25 for confidence, and 1.2 for lift. The association network was drawn using the Cytoscape 
program56. The Kruskal–Wallis test was used to determine significant differences between groups.

Analytical protocol. For analysis of KPCA, the R “kernlab” package is installed from the CRAN website. 
Then the command “library(kernlab)” was executed for loading in the R platform. The function “kpca” was exe-
cuted with kernel=“anovadot” for ANOVA function. The obtained KPCA scores were manually classified into 
four groups based on PC1 and PC2 plus and minus signs. Class information for four groups was added to the 
original data, followed by execution of the cforest program using the R “party” package installed from the CRAN 
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website. The function “cforest” was executed, and variable importances were calculated. Finally, the variables 
were sorted in descending order according to their importances for further analyses such as significance tests and 
MBA. The R protocols (i.e., KPCA, cforest, and MBA) used in this study were deposited on our website (http://
dmar.riken.jp/Rscripts/).
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