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Carbon nanofibers (CNFs) 
supported cobalt- nickel sulfide 
(CoNi2S4) nanoparticles hybrid 
anode for high performance lithium 
ion capacitor
Ajay Jagadale1, Xuan Zhou1, Douglas Blaisdell1 & Sen Yang2

Lithium ion capacitors possess an ability to bridge the gap between lithium ion battery and 
supercapacitor. The main concern of fabricating lithium ion capacitors is poor rate capability and cyclic 
stability of the anode material which uses sluggish faradaic reactions to store an electric charge. Herein, 
we have fabricated high performance hybrid anode material based on carbon nanofibers (CNFs) and 
cobalt-nickel sulfide (CoNi2S4) nanoparticles via simple electrospinning and electrodeposition methods. 
Porous and high conducting CNF@CoNi2S4 electrode acts as an expressway network for electronic and 
ionic diffusion during charging-discharging processes. The effect of anode to cathode mass ratio on 
the performance has been studied by fabricating lithium ion capacitors with different mass ratios. The 
surface controlled contribution of CNF@CoNi2S4 electrode was 73% which demonstrates its excellent 
rate capability. Lithium ion capacitor fabricated with CNF@CoNi2S4 to AC mass ratio of 1:2.6 showed 
excellent energy density of 85.4 Wh kg−1 with the power density of 150 W kg−1. Also, even at the high 
power density of 15 kW kg−1, the cell provided the energy density of 35 Wh kg−1. This work offers a 
new strategy for designing high-performance hybrid anode with the combination of simple and cost 
effective approaches.

High energy density, high power density and long cycle life are the main requirements of future energy storage 
devices in order to use them in different moderns applications such as consumer electronic devices, hybrid elec-
tric vehicles and large scale grid energy storage1. In the last two decades, number of research articles have been 
published in the field of energy storage devices which are mainly focusing on the supercapacitors (SCs) and 
lithium ion batteries (LIBs). SCs store an electrical energy via non-faradaic process which includes adsorption/
desorption of electrolytic charges on the surface of electrode materials. However, LIBs use intercalation/dein-
tercalation of lithium ions in the host materials. Due to their electric double layer type (EDL) charge storage 
mechanism, SCs provide high power density (>10 kW kg−1) and good cyclic life (>105 cycles), however, due to 
the limited accumulation of charges they exhibit lower energy performance (<10 Wh kg−1). Besides, LIBs deliver 
high energy performance (150–200 Wh kg−1) due to diffusion controlled slow faradaic reactions throughout the 
active material. In the present state of art, these two devices are inadequate to be used for many applications such 
as electric vehicles and plugged in electric vehicles.

Recently, Lithium ion capacitors (LICs) have attracted great attention because of their extraordinary electro-
chemical properties. LICs bridge the gap between SCs and LIBs by combining merits of both systems2. Basically, 
LICs are made up of high energy LIB anode, high power SC cathode and Li ion containing organic electrolyte 
(mainly LIB electrolyte). In 2001, Amatucci et al.3 first fabricated LIC at the Telcordia technologies using nano-
structured Li4Ti5O12 (LTO) anode, activated carbon (AC) cathode and Li+ ion containing organic electrolyte. 
Till date, many research articles have been published which are mainly focused on the novel anode and cathode 
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materials. Generally, Li+ insertion based anode provides high energy density to the LIC, however, due to the 
sluggish kinetics, it results into poor power performance. In order to improve both power and energy densities 
simultaneously, preparation of nanostructured and high electrical conductivity anodes are desirable. Previously, 
research in the anode materials have been focused on the development of hybrid electrodes by applying conduc-
tive carbon coating and preparing controlled nanostructured morphology. Carbon coating on the active material 
surface provides fast electronic diffusion which leads to the increased rate capability and high power perfor-
mance. The nanostructured morphology offer reduced pathways for ionic and electronic diffusion and enhanced 
surface activity for charge storage. Previously, different anode materials have been reported such as LTO4, graph-
ite5, graphdiyne6, Si7, Mn3O4-graphene8, TiO2

9, graphene10, LiTi1.5Zr0.5(PO4)3
11, soft carbon12, NbN13, LiMnBO3

14, 
SnO2-C15, hard carbon16, Nb2O5@graphene17, TiO2-B18, etc. Cathodes such as AC, Nb2CTx-carbon nanotube19, 
graphene20, carbide-derived carbon21 have been mostly reported. In the aforementioned materials, binders and 
conductive additives are preferably used. However, these components increase the dead mass of the electrode 
that makes an obstacle for ionic diffusion in the active material which further deteriorates the cell performance. 
Also, anodes like LTO, TiO2 and Nb2O5 possess poor electrical conductivity that restricts them to be efficiently 
utilized in LIC. In this scenario, preparation of self-standing binder-free high conductivity electrodes is highly 
anticipated.

Recently, transition metal sulfide (TMS) anodes have attracted great attention because of their superior capac-
ity values as compared to the conventional graphite (372 mAh g−1) and LTO (170 mAh g−1) anodes. Also, the 
high electrical conductivity of TMSs facilitates pathways for electron transportation which lead to the high power 
performance. Recently, very few sulfides have been utilized as an anode in LIC, for example, Zhang et al.22 fabri-
cated MoS2 incorporated onto 3D porous graphene and Amaresh et al.23 used cubic CoS2 nanoparticles as anodes 
for LIC. Apart from this, different TMSs have been frequently reported as anodes in LIBs including WS2

24, MoS2
25, 

Cu2S26, Ni3S4 and NiS1.03
27, SnS2

28, CoS29, Bi2S3
30, NiCo2S4

31, etc. Among the available sulfide anodes, mixed metal 
sulfides, for example, NiCo2S4 and CoNi2S4 have great importance due to their excellent electrical conductivity, 
high redox activity and high theoretical capacity around 703 mAh g−1.

On the other hand, carbon matrix, especially carbon nanofibers can enhance the electrical conductivity of the 
electrode and endure the stresses occurred during cycling32,33. By considering above facts, in the present investi-
gation, we have prepared carbon nanofibers (CNF) using electrospinning method and used as a scaffold for the 
electrodeposition of cobalt nickel sulfide (CoNi2S4) nanoparticles. This nanoparticle coated carbon nanofiber 
hybrid webs provide high surface area and open channels for efficient electron/ion transport which leads to the 
superior electrochemical performance. Furthermore, LICs were prepared by using CNF@CoNi2S4 as an anode 
and activated carbon as a cathode. AC//CNF@CoNi2S4 LIC fabricated with anode to cathode mass ratio of 1:2.6 
delivered energy density of 85.4 Wh kg−1 with the power density of 150 W kg−1 and showed excellent cyclic sta-
bility of 96% after 5000 cycles.

Results and Discussion
Figure 1 shows schematic of formation process of CNF@CoNi2S4 anode which involves three steps. In the first 
step, PAN nanofibers were prepared using electrospinning method. Furthermore, as synthesized PAN nanofibers 

Figure 1. schematics of the formation process of CNF@CoNi2S4 electrode.
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were stabilized and carbonized. Finally, carbonized nanofibers were used as a substrate for the deposition of 
Co-Ni sulfides. As shown in the figure, CoNi2S4 nanoparticles were homogeneously deposited on the surface of 
CNF.

Morphology of the CNF@CoNi2S4 is investigated by E-SEM and TEM. Figure 2a,b show E-SEM images of 
bare CNFs and CNFs loaded with CoNi2S4 samples. From the figure, it is seen that the bare carbon nanofibers 
construct 3D porous structure with randomly dispersed smooth fibers of the diameter of 200 to 300 nm. As 
shown in the Fig. 2b, CoNi2S4 particles are formed on the surface of CNFs, however, these are microsized larger 
particles. In the electrodeposition method, particles start growing at electrochemically active sites, some parti-
cles grow faster than normal because of inhomogeneous distribution of surface activity. In order to visualize the 
very surface of the CNF, TEM has been used. Figure 2c shows TEM image of the CNF@CoNi2S4 sample which 
confirms the formation of CoNi2S4 nanoparticles on the surface of CNF with the diameter of 10 to 15 nm. The 
SAED pattern depicts the polycrystalline nature of CoNi2S4 by indexing planes as (311), (400) and (440) (Inset 
of Fig. 2c). Figure 2d shows high resolution TEM image of the CoNi2S4 particles which depicts that the nano-
particles are firmly attached to the surface of CNF (inset of Fig. 2d). Interestingly, it seems that the particles are 
hard to be detached since there were no particles observed in the background of TEM images. Also, the inset 
of the Fig. 2d shows that the lattice spacing of 0.28 nm corresponds to the 311 crystal planes of CoNi2S4 which 
is consistent with XRD results. Recently, similar structure has been reported by Li et al.34 by fabricating Co3O4 
nanoparticles-decorated carbon nanofibers as an air-cathode for rechargeable Zn-air batteries. In another study, 
Shen et al.35 have loaded Tin nanoparticles on the carbon nanofibers for their application as an anode in LIBs.

Figure 3a shows XRD pattern of CNF@CoNi2S4 sample which represents diffraction peaks at 2θ of 26.3, 31.2, 
37.8, 50.0 and 54.8° can be indexed to (220), (311), (400), (511) and (440) planes of cubic CoNi2S4 (JCPDS card 
no. 24–0334). Peaks from the carbon nanofibers are not observed due to their amorphous nature. Also, the aver-
age crystallite size of CoNi2S4 was estimated as 25.7 nm on the basis of full width at half maxima intensity of XRD 
peak for (311) plane using Scherrer’s formula,

λ
β θ

=
.D 0 89
cos (1)

where ‘D’ is average crystallite size, ‘β’ is full width at half maxima, ‘λ’ is wavelength of X-ray used and ‘θ’ is dif-
fraction angle. This size is reasonably comparable with the size observed with high resolution TEM image. This 

Figure 2. E-SEM images of (a) bare CNFs, (b) CNFs loaded with CoNi2S4 nanoparticles, (c) TEM image of 
single CNF decorated with CoNi2S4 nanoparticles (Inset: SAED pattern), and (d) high resolution-TEM image 
of CoNi2S4 nanoparticle supported on CNF (Inset: lattice spacing corresponds to 311 plane of single CoNi2S4 
nanoparticle).
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XRD data is quite consistent with the literature35,36. Furthermore, the XPS measurements were carried out in 
order to understand the surface electronic states of the CNF@CoNi2S4 sample. Figure 3b shows the survey spec-
trum recorded for CNF@CoNi2S4 sample which demonstrates the presence of Ni, Co, S and C elements. The high 
resolution spectrum of Ni 2p is fitted with two shakeup satellites (s) by using a Gaussian fitting method. As shown 
in the Fig. 3c, two strong peaks centered at binding energies of 857.8 and 875.8 eV are attributed to Ni3+ and Ni2+ 
ions37. The satellite peaks at around 862.7 and 881.1 eV are two shakeup type peaks of Ni at the upper binding 
energy sides of Ni 2p3/2 and Ni 2p1/2, respectively38. Figure 3d shows the Co 2p spectrum, the binding energy 
centered at 776.2 eV of the Co 2p peak are assigned to Co3+ and the binding energies at 783.4 and 799.4 eV to 
Co2+. The existence of Co 2p3/2 and Co 2p1/2 peaks indicates the presence of both Co3+ and Co2+ ions39. As shown 
in Fig. 3e, the S 2p spectrum depicts two peaks with the binding energies centered at 169.8 and 164.4 eV which 
correspond to the main and shakeup satellite peaks, respectively. The second satellite peak designates the bonding 
between metal and sulfur, in the present case, Ni-S and Co-S bondings37. As the CNF@CoNi2S4 electrode was 
mainly formed of carbon, it was desirable to understand the electronic states of the carbon. Figure 3f shows the 
C1s spectrum comprised of three different peaks centered at 284.6, 285.4 and 288.6 eV which might be attributed 
to the single and double bonds between carbon (C-C, C=C), carbon interacted with hydroxyl and epoxy groups 
(C-OH, C-O-C), and carboxylic groups (COO), respectively40. This result confirms the formation of CoNi2S4 on 
the surface of CNF and also supports the data obtained by XRD study.

Figure S1 (supporting information) shows 1st, 2nd, and 3rd CV curves of CNF@CoNi2S4, 1st CV cycle depicts 
three distinct cathodic peaks at 1.7, 1.2 and 0.7 V which can be assigned to the reduction of Co2+ and Ni3+ into 
metallic Co and Ni, respectively. Also, peaks observed at around 2.0, 2.2 and 2.4 V in the subsequent anodic scan 
can be attributed to the oxidation of metallic Ni and Co to NiSx and CoSx, respectively31,41. In the 2nd and 3rd 
cycles, the main cathodic peaks shifted toward a higher potential and the anodic peaks shifted slightly toward 
lower potential. This shifting and decrease in the cathodic peak currents might be due to the existence of cer-
tain irreversible reactions associated with the formation of a solid electrolyte interphase (SEI) film on the elec-
trode surface42. Furthermore, the overlapping of 2nd and 3rd CV curves indicates an excellent reversibility of 
the CNF@CoNi2S4 electrode. The redox reversibility of the CNF@CoNi2S4 electrode has been evaluated using 
Laviron’s theory with the calculation of heterogeneous electron transfer rate constant using Kochi’s method (sup-
porting information, S1). The electrochemical reaction associated with the charging-discharging process of the 
CNF@CoNi2S4 electrode can be illustrated as follows41,43,

+ + → + ++ −CoNi S 8Li 8e Co 2Ni 4Li S (2)2 4 2

+ ↔ + ++ −Co Li S CoS 2Li 2e (3)2

+ ↔ + ++ −Ni Li S NiS 2Li 2e (4)2

Figure 3. (a) XRD pattern, (b) XPS survey, (c) Ni 2p, (d) Co 2p, (e) S 2p, and (f) C 1 s spectra of CNF@CoNi2S4 
sample.
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+ ↔ + ++ −CoS 1/3Li S 1/3Co S 2/3Li 2/3e (5)2 3 4

In order to investigate the electrochemical performance of CNF@CoNi2S4 electrode, CV measurements were 
carried out at various scan rates ranging from 0.1 to 2 mV s−1 (Fig. 4a). As shown from CV curves, when the scan 
rate increased, area under the curve also increased which is in accordance with the high rate capability of the 
CNF@CoNi2S4 electrode. Also, Fig. S3 (supporting information) shows the variation of specific charge and scan 
rate. The capacity retention of 78% at relatively highest scan rate (2 mV s−1) demonstrates high rate capability 
of the CNF@CoNi2S4 electrode. Furthermore, it is necessary to ensure the quantitative analysis of charge stor-
age contributions in the anode materials, recently, Trasatti procedure has attracted great attention because of its 
ability to distinguish different charge storage contributions in the anode materials44–46. According to the Trasatti 
procedure, the total charge storage (q*) involves both outer (qo) and inner (qi) charge storage, this can be seen by 
the equation below,

= +⁎q q q (6)i0

The outer charge is mainly originated due to the surface capacitive reactions and the inner charge due to the 
diffusion controlled insertion reaction. Therefore, specific charge storage at various scan rates can be estimated 
by using equation,

= +∞q q k v/ (7)
1/2

where v and k are scan rate and constant, respectively. Figure 4b shows the plot of normalized capacitance versus 
inverse of root of scan rate (v−1/2) for CNF@CoNi2S4 from a scan rate of 0.1–2 mV s−1. The plot distinguishes into 
two regions, the region-I (0.1–0.7 mV s−1) and the region –II (0.7–2 mV s−1). In the region-I, the normalized 
capacitance was seen to be independent or inadequately dependent on the scan rate, however, in the region-II, 
normalized capacitance started to decrease quickly when the scan rate increased. The capacitive or the surface 
controlled contribution can be estimated by extrapolated y-intercept which was found to be 73%. Here, it is 
worth mentioning that the remaining only 27% contribution was originated from the diffusion controlled kinet-
ics. In order to prepare excellent anode materials for LIC, it is desirable to use electrode with greater capacitive 
or surface-controlled contributions. This kind of electrodes can facilitate excellent rate capability or the power 
capability without compromising energy performance. Recently, the capacitive contributions for 3D intercon-
nected TiC and 2D nanosheets structured ZnMn2O4-graphene have been reported as 78% (0.5 mV s−1) and 24.2% 
(0.2 mV s−1), respectively47,48. An excellent capacitive contribution in the present case might be attributed to the 
excellent rate capability of the electrode which can be originated due to the high conductivity and open porous 
structure of the CNF@CoNi2S4 electrode. Furthermore, as shown in the Fig. 4c, when the scan rate increased 

Figure 4. (a) CV curves of CNF@CoNi2S4 electrode at different scan rates range from 0.1 to 2 mV s−1,  
(b) variation of normalized capacitance and [scan rate (mV s−1)]−1/2, (c) surface and diffusion controlled charge 
storage contributions at different scan rates for CNF@CoNi2S4 electrode, (d) GCD curves of of CNF@CoNi2S4 
electrode at different current densities range from 0.05–2 A g−1, (e) rate perfromance of CNF@CoNi2S4 at 
current densities of 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5 A g−1, and (f) cyclic performance of CNF@CoNi2S4 and CNF at 
the current density of 0.1 A g−1.
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from 0.1 to 1 mV s−1, the diffusion controlled contribution decreased which can be attributed to the diffusion 
limitations and increased ohmic contribution48.

The rate capability was examined by recording galvanostatic charging discharging (GCD) curves of the 
CNF@CoNi2S4 electrode at various current densities ranging from 0.05–2 A g−1. Figure 4d shows the GCD curves 
at various current densities performed within the potential window of 0.005–3 V vs. (Li+/Li), which depicts the 
excellent coulombic efficiency of 100%. As shown in the Fig. 4e, CNF@CoNi2S4 was able to deliver a specific 
capacity of 497 mAh g−1 at 0.05 A g−1 (10th cycle), which is far greater than the theoretical capacities of graphite 
and LTO21. Also, when the current density increased by 10 folds to 0.5 A g−1, the specific capacity was found to be 
319 mAh g−1. The rate capability in the present case is quite comparable with that of obtained for carbon paper 
supported CoNi2S4 nanorods arrays49. This is because, good conducting, porous and high surface area CNFs 
facilitate fast and efficient ionic and electronic diffusion during charging discharging process. Furthermore, after 
the rigorous cycling at higher current density of 10 A g−1, the specific capacity at the 0.1 A g−1 was recovered back 
close to initial cycling capacity, which certainly proves the superior rate capability of the CNF@CoNi2S4 electrode.

Furthermore, in order to understand the cyclic performance of the CNF@CoNi2S4 electrode, the 
charge-discharge cycling was performed at the current density of 0.1 Ag−1 for 100 cycles and compared with 
the bare CNF (Fig. 4f). During cycling, the capacity of the CNF@CoNi2S4 increased up to certain extent and 
appeared to be stabilized. However, the capacity of the bare carbon nanofibers was decreased during the first 
couple of cycles and stabilized. The capacity increment in case of CNF@CoNi2S4 can be attributed to the elec-
trochemical activation of the electrode50. An excellent electrochemical performance in terms of specific capac-
ity, rate capability and cyclic stability of the CNF@CoNi2S4 electrode can be attributed to the following points. 
1) Well-distributed nanoparticles of the CoNi2S4 on the CNF surface facilitate enhanced surface area for the 
electrochemical charge storage, besides, the extra spacing between two adjacent particles offers extra space for 
the expansion of the particles during lithiation process which improves cyclic performance. Also, as discussed 
in the TEM results, these particles are strongly attached to the CNF which also empowers the cyclic life of the 
particle-derived nanocomposite electrodes. 2) The structure of CNF@CoNi2S4 electrode is mainly comprised 
of CNF webs and CoNi2S4 nanoparticles which is highly porous structure that offers reduced pathways for elec-
trolytic diffusion, moreover, the good conducting behavior of both CoNi2S4 and CNF acts as an expressway for 
electronic diffusion through the electrode network, this enhances the rate capability of the electrode. 3) Carbon 
matrix near the interface of nanoparticle and the CNF accommodates the expansion of the CoNi2S4 and prevents 
the pulverization of nanoparticles which further improves cyclic life of the electrode.

As shown in the Fig. 5a, LICs were fabricated using AC as a cathode and prelithiated CNF@CoNi2S4 as an 
anode in 1 M LiPF6 in EC-DEC electrolyte solution. Before fabrication of the LICs, CNF@CoNi2S4 electrodes were 
first prelithiated by directly contacting with lithium foil with one or two drops of electrolyte. The charge storage 
mechanism of the LIC is based on both faradaic and non-faradaic electrochemical reactions. During charging 
process, Li+ ions from the electrolyte are intercalated into the CNF@CoNi2S4 nanocomposite material, while −PF6  
ions are adsorbed on the high surface area AC cathode. In order to utilize full benefits of CNF@CoNi2S4 electrode, 

Figure 5. (a) Schematic of the LIC based on AC cathode and CNF@CoNi2S4 anode, (b) GCD curves of LICs 
fabricated with different anode to cathode mass ratios at constant current density of 0.1 A g−1, (c) Ragone plot 
with values of energy and power densities for different LICs, (d) cyclic performance of LIC2.6 (1–4 V) and 
LIC2.9 (0–4.5 V) at the current density of 2 A g−1, (e) CV curves of LIC2.6 at different scan rates range from 
5–50 mV s−1, and (f) GCD curves of LIC2.6 at different current densities range from 0.05–5 A g−1.



www.nature.com/scientificreports/

7Scientific RepoRtS |  (2018) 8:1602  | DOI:10.1038/s41598-018-19787-z

it is necessary to balance charges on both electrodes. In the present investigation, different LICs were fabricated 
with anode to cathode mass ratios of 1:0.25, 1:0.4, 1:0.9, 1:1.6, 1:2.9 and 1:4.3, and respectively labeled as LIC0.25, 
LIC0.4, LIC0.9, LIC1.6, LIC2.9 and LIC4.3. Furthermore, the electrochemical performance of the LICs was exam-
ined using cyclic voltammetry, GCD and EIS. Figure 5b shows the GCD curves of LICs fabricated with different 
anode to cathode ratios at 0.1 A g−1. Interestingly, the GCD curves are slightly deviated from the ideal triangular 
shape which might be due to the combination of both faradaic and non-faradaic reactions involved during 
charging-discharging processes. Also, GCD curves are symmetric in nature which suggests its high reversibility 
and excellent coulombic efficiency. The operating potential window of the each LIC was optimized and found to 
be 1 to 4.5 V (LIC0.25 and LIC0.4), 1 to 4 V (LIC0.9) and 0 to 4.5 V (LIC1.6, LIC2.9 and LIC4.3). The capacitance 
(Ccell) of the cell was calculated using equation = × ∆C i t V/cell , where i is the discharging current (A), t is the 
discharging time (s) and ΔV is a difference between upper and lower potentials of the discharging curve (V). 
Further, the specific capacitance (CSP) of the cell was calculated based on the total mass of both electrodes by 
using a formula =C C m4 /SP cell , where m is the total mass (g). The maximum specific capacitances (at 0.1 A g−1) 
were obtained as 74, 72, 77, 143, 181 and 161 F g−1 for LIC0.25, LIC0.4, LIC0.9, LIC1.6, LIC2.9 and LIC4.3, 
respectively.

Furthermore, the energy and power densities of the LICs were calculated using formulae given in the experi-
mental section. Figure S3 shows GCD curves for all LICs at different current densities (supporting information). 
Figure 5c shows Ragone plots composed of values of energy and power densities for LICs fabricated with different 
anode to cathode ratios. It is worth noting that the energy and power densities of LIC fabricated with anode to 
cathode mass ratio of 1:2.9 found to be phenomenally high as 254 Wh kg−1 at the power rating of 450 W kg−1. 
Also, the same LIC can facilitate the maximum power density of 22.5 kW kg−1 with energy density of 101 Wh kg−1. 
These values of energy and power densities are still beyond the limit of supercapacitor and LIB, respectively. 
Interestingly, the LICs with lower mass ratios showed poor values of energy and power densities which might be 
attributed to the imbalanced charge storage on both electrodes which minimizes an operating potential window 
of the cell. Further, when the mass ratio increased, the energy and power densities were also increased up to cer-
tain extent, however, when the mass ratio increased around 1:4.3, the energy and power densities were decreased 
because of the increased inactive or dead masses in the cathode material. Furthermore, due to the excellent capac-
itive performance of LIC2.9, it was employed for the cyclic stability study by GCD cycling for 2000 cycles at 
2 A g−1 within potential window of 0.005–4.5 V. As shown in the Fig. 5d, the capacity of the LIC2.9 was surprising 
decreased which might be due to the large potential window that causes decomposition of electrolyte and dep-
rivation of cycling stability. In order to confirm the interpretation on the capacity loss, we fabricated the new 
LIC with approximately similar anode to cathode mass ratio of 1:2.6 (LIC2.6) and employed for stability study at 
current density of 2 A g−1 within a reduced potential window of 1–4 V. The stability performance of LIC2.6 has 
been showed in the Fig. 5d which demonstrated the huge capacity retention of 96% after 5000 cycles. Figure 5e 
shows the cyclic voltammetry curves recorded for the LIC2.6 at different scan rates ranging from 5–50 mV s−1. 
The curves are rather deviated from the ideal rectangular shape which can be attributed to the combination of 
both faradaic and non-faradaic electrochemical processes on both electrodes. Also, when the scan rate increased, 
the area under the curves also increased which is in good agreement with ideal supercapacitive behavior, also 
it confirms that the electrochemical reactions are surface controlled rather than diffusion controlled. Figure 5f 
shows the GCD curve of LIC2.6 at different current densities varied from 0.05–5 A g−1 within a potential window 
of 1–4 V. GCD curves are triangular with little bit of deviation from the ideal triangular shape which is consistent 
with the cyclic voltammetry study (Fig. 5e). The values of specific capacitance were found to be 137, 127, 118, 106, 
95, 82, 71, 63 and 56 F g−1 at the current densities of 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4 and 5 A g−1, respectively. When the 
current density increased by 100 folds to 5 A g−1, the value of the specific capacitance still maintained up to 41% 
which demonstrates the superior rate capability of the LIC2.6.

Figure 6a shows the Ragone plot for LIC2.6 obtained by the calculation of energy and power densities from 
the GCD curves. LIC2.6 showed the maximum energy density of the 85.4 Wh kg−1 with the power delivery of 
150 W kg−1 at the current density of 0.05 A g−1. Interestingly, even at the high power density of 15 kW kg−1, LIC2.6 
still can maintain the energy density of 35 Wh kg−1. These values of energy and power densities in the present case 
are quite comparable with the literature51–61.

In order to understand the effect of cycling on the resistive behavior of the LIC, LIC2.6 was employed for EIS 
analysis. Figure 6b shows Nyquist plots of LIC2.6 obtained before cycling and after 5000 cycles (2 A g−1) within 
a frequency range from 0.1 Hz to 100 kHz for an applied AC amplitude of 5 mV at the open circuit potential. 
As shown in the Nyquist plot, two semicircles are observed at high to mid-frequency region with inclined line 
at low frequency region, however, second semicircle is not distinct in the plot of before cycling. The equivalent 
circuit model fitted for the impedance data is shown in the inset of Fig. 6b and the calculated data is plotted as 
a line plots. The equivalent circuit exhibits elements such as Rs, Rsf, Rct, CPE and W1 which correspond to the 
solution resistance, lithium ion migration resistance through the SEI (solid electrolyte interphase) layer62, charge 
transfer resistance, constant phase element and Warburg impedance, respectively. An intercept to the real Z axis 
designates as the solution resistance Rs which can be caused due to the ionic resistance of Celgard separator, 
electrical resistance of both AC and CNF@CoNi2S4 and contact resistances between active materials and current 
collectors. In the present case, Rs was estimated to be 2.6 and 3.5 Ω for before cycling and after cycling, respec-
tively. It is seen that the internal resistance of the cell doesn’t change significantly. The first semicircle in the high 
to mid-frequency region can be recognized as the SEI film resistance which might be formed on the negative 
electrode of the LIC and the values were found to be 3.3 and 9.7 Ω for before and after cycling. Interestingly, after 
cycling, the SEI film resistance increased which can be attributed to the increased thickness of the SEI layer over 
cycling63. The second semicircle in the mid-frequency region represents the charge transfer resistance which was 
estimated to be 9 and 24.8 Ω for before and after cycling, respectively. The increased value of the Rct is ascribed to 
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the increased contact resistance between active materials and current collector64. The capacitive component in the 
equivalent circuit is substituted with CPE because of the porous nature of both AC and CNF@CoNi2S4 electrodes. 
Warburg impedance W1 is associated with the diffusion of lithium ions through the network of CNF@CoNi2S4 
anode. Summarized fitting parameters estimated for the LIC2.6 are shown in the Table 1.

In order to demonstrate the practical applicability of the LIC, we charged LIC2.6 at contact potential of 3 V for 
less than 60 s and discharged through 18 LEDs making KU (initials of Kettering University) which lasts for 2 min 
as shown in the Fig. 6c. This indicates its potential application in future appliances.

Conclusions
In summary, we have fabricated a novel LIC based on CNF supported CoNi2S4 nanoparticles anode and AC 
cathode in Li ions containing nonaqueous electrolyte in order to bridge the gap between LIB and supercapacitor. 
The CNF webs decorated with CoNi2S4 nanoparticles offer highly porous structure which reduces pathways for 
the electrolytic diffusion, while, the good conducting behavior of both CoNi2S4 and CNF acts as an expressway 
for electronic diffusion for efficient electrochemical reactions at the electrode/electrolyte interface. The capacitive 
or the surface controlled contribution of CNF@CoNi2S4 electrode was found to be 73% which demonstrates 
excellent rate capability and ensures its ability to be used for LIC. LIC2.6 fabricated with CNF@CoNi2S4 to AC 
mass ratio of 1:2.6 showed excellent energy density of 85.4 Wh kg−1 with the power density of 150 W kg−1. Also, 
even at the huge power density of 15 kW kg−1, LIC2.6 can supply the energy density of 35 Wh kg−1. Therefore, it 
is worth mentioning that the CNF@CoNi2S4 electrode is an excellent anode material for the fabrication of high 
performance LICs to be used for electric and plugged in electric vehicles.

Methods
Chemicals. Cobalt chloride (CoCl2·6H2O) and nickel chloride (NiCl2·6H2O) were purchased from Alfa Aesar. 
Polyacrylonitrile (PAN, Mw = 150,000) and Thiourea were purchased from Sigma-Aldrich.

Synthesis of CNF@CoNi2S4 hybrid anode. At first carbon nanofibers were fabricated via electrospin-
ning method. Briefly, homogeneous solution of 12% PAN in DMF was prepared and filled into a syringe with 
a needle having an inner diameter of 0.64 mm. The electrospinning process was done at an applied voltage of 
14 kV with a feeding speed of 1 mL h−1 and the distance between the tip of the needle and the collector was 
20 cm. As prepared PAN fibers were pre-oxidized at 280 °C for 2 h with a heating rate of 1 °C min−1. Furthermore, 
pre-oxidized fibers were employed for carbonization process at 950 °C for 0.5 h with a heating rate of 3 °C min−1 
under Ar atmosphere. After carbonization, CNF mats were cut into suitable pieces and employed as a substrate 
for electrodeposition process. Prior to deposition, CNF mats were first electrochemically treated in 1 M H2SO4 
solution using cyclic voltammetry within the potential window of −0.7 to +1.2 V vs. Ag/AgCl at the scan rate 
of 50 mV s−1 for 100 cycles. Co-Ni sulfide was coated on the CNF mats using potentiodynamic electrodeposi-
tion method within a potential window of +0.2 to −1.2 V vs. Ag/AgCl at the scan rate of 5 mV s−1 for 25 cycles. 
An electrochemical cell was assembled in a three-electrode configuration in which Cu supported CNF mat, Pt 
and Ag/AgCl were used as working, counter and reference electrodes, respectively. The electrodeposition bath 
was formed of 5 mM CoCl2.6H2O, 10 mM NiCl2.6H2O and 0.75 M thiourea in 50 ml deionized (DI) water. After 

Figure 6. (a) Ragone plot of LIC2.6 with scattered points designate the data of LICs taken from the literature, 
(b) Nyquist plots of LIC2.6 before and after cycling within a frequency range from 0.1 Hz to 100 kHz at the open 
circuit potential (Inset: equivalent circuit fitted for the impedance data), and (c) A demonstration of 18 LEDs 
lighted by the AC//CNF@CoNi2S4 LIC.

Sample Rs (Ω) Rsf (Ω) Rct (Ω) C (F)

Before cycling 2.6 3.3 9.0 1.3 × 10−3

After cycling 3.5 9.7 24.8 1.6 × 10−3

Table 1. Fitting EIS parameters obtained from the LIC cell before and after 5000 cycles.
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deposition, electrodes were thoroughly rinsed with DI water and dried at room temperature. In order to improve 
the crystallinity of the sample, dried electrodes were further heat treated at 300 °C for 2 h with a heating rate of 
5 °C min−1 under Ar atmosphere. These electrodes were punched into circular discs and weighted via micro-
balance with an accuracy of 0.01 mg.

Material characterization. The morphology of the sample was characterized by environmental scanning 
electron microscope, E-SEM, (Quanta 200 s, Phillips Electron Optics Company) and transmission electron 
microscope, TEM, (JEOL JEM-2100, USA). X-ray diffraction, XRD pattern was collected using a diffractometer 
(Rigaku SmartLab) equipped with a Cu Kα radiation source (λ = 1.5406 A). The electronic states of the different 
elements in the sample were examined using X-ray photoelectron spectroscopy, XPS, (Kratos Axis Ultra).

Electrochemical measurement. All electrochemical measurements were performed at room temper-
ature. The galvanostatic charge-discharge was performed on a LAND-CT2001A battery testing system. The 
cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were made through 
Biologic SP-300 potentiostat. Electrochemical performance of the CNF@CoNi2S4 electrode was evaluated in half 
coin cells (CR2032) assembled in an Ar-filled glove box. Lithium metal was used as a counter and reference elec-
trode and Celgard membrane was used as a separator. The electrolyte was prepared by dissolving 1 M LiPF6 in 
the mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) with a volume ratio of 1:2. The LICs such 
as LIC0.25, LIC0.4, LIC0.9, LIC1.6, LIC2.9, LIC2.6 and LIC4.3 were formed of CNF@CoNi2S4 electrode masses 
as 4.4, 3.9, 3.2, 2.9, 1.7, 1.4 and 1.5 mg cm−2, and the electrode densities as 0.09, 0.08, 0.06, 0.06, 0.03, 0.03 and 
0.03 g cm−3 respectively. Also, LIC was fabricated with prelithiated CNF@CoNi2S4 as anode, AC as a cathode and 
Celgard membrane as a separator. Prelithiation of the CNF@CoNi2S4 was performed by making direct contact 
of Li metal with one or two drops of electrolyte in between for 3h48,65. AC cathode was fabricated by mixing AC 
powder, acetylene black and polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP) solvent with a 
mass ratio of 80:10:10 and the slurry was coated on the Al foil. Further, the electrodes were dried at 120 °C for 8 h. 
The energy and power density of the LIC were calculated using following formulae,

= × ∆P I V m/ (8)

= ×E P t/3600 (9)

∆ = −V V V (10)max min

Where, I is the discharge current (A), t is the discharge time (s), m is the total active material on both electrodes 
(kg) and Vmax and Vmin are the upper and lower potentials during charge-discharge process.

Data Availability. The datasets generated during the current study are available from the corresponding 
author on reasonable request.
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