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Impaired Functional Criticality of 
Human Brain during Alzheimer’s 
Disease Progression
Lili Jiang  1,2,3, Danyang Sui1,2,4, Kaini Qiao1,2,4, Hao-Ming Dong1,2,4, Luonan Chen5 & 
 Ying Han6,7,8,9,10

The progression of Alzheimer’s Disease (AD) has been proposed to comprise three stages, subjective 
cognitive decline (SCD), mild cognitive impairment (MCI), and AD. Was brain dynamics across the 
three stages smooth? Was there a critical transition? How could we characterize and study functional 
criticality of human brain? Based on dynamical characteristics of critical transition from nonlinear 
dynamics, we proposed a vertex-wise Index of Functional Criticality (vIFC) of fMRI time series in this 
study. Using 42 SCD, 67 amnestic MCI (aMCI), 34 AD patients as well as their age-, sex-, years of 
education-matched 54 NC, our new method vIFC successfully detected significant patient-normal 
differences for SCD and aMCI, as well as significant negative correlates of vIFC in the right middle 
temporal gyrus with total scores of Montreal Cognitive Assessment (MoCA) in SCD. In comparison, 
standard deviation of fMRI time series only detected significant differences between AD patients and 
normal controls. As an index of functional criticality of human brain derived from nonlinear dynamics, 
vIFC could serve as a sensitive neuroimaging marker for future studies; considering much more vIFC 
impairments in aMCI compared to SCD and AD, our study indicated aMCI as a critical stage across AD 
progression.

Alzheimer’s Disease (AD) is a chronic neurodegenerative disease characterized by a decline in cognitive and 
memory functions. It is estimated that 5.2 million Americans have AD and someone in America develops AD 
every 67 seconds1. Not only as increasing proportion of death reason each year, the disease also causes huge family 
and society burden all over the world. Accumulated evidence demonstrated that the development of AD was slow 
and progressive over several years to decades, mainly comprising three stages: the preclinical stage subjective 
cognitive decline (SCD) without impairment in cognition on standard assessments and biomarker evidence for 
AD, mild cognitive impairment (MCI) with impairment on memory or other domains of cognition on a standard 
assessment and biomarker evidence for AD, and dementia due to AD with dementia and biomarker evidence for 
AD2. Research on SCD was still on the very early stage, and the difference between SCD and normal state was 
still rarely reported3. Some people with MCI seem to remain stable or return to normal over time, but more than 
half progress to dementia within 5 years4. However, the quantitative mechanism of AD onset and progression was 
still not clear.

There have been two qualitative descriptions on the dynamical course of AD pathology5,6. Jessen et al.2 
proposed a dynamical model of cognitive decline in relation to progressive disease pathology in AD. They 
hypothesized that, SCD shows subtle decline in cognitive performance but still within the normal cognitive 
performance range; once cognitive performance declined further and crossed a threshold, the patient entered 
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MCI-AD stage and the cognitive performance begins declining linearly. Meanwhile, Jack et al.5 proposed a 
hypothetical dynamical biomarker model of pathophysiological process in AD. They believed that different 
biomarkers exhibited different sigmoid time course: cerebrospinal fluid (CSF) amyloid beta (Aβ) 42 firstly 
accumulate, then amyloid Positron Emission Tomography (PET) emerged, then CSF tau proteins starts to 
accumulate, then brain structure changes (observed using Magnetic Resonance Imaging, MRI), and then fluo-
rodeoxyglucose (FDG) PET appeared, and finally cognitive impairment was detected. The above two dynamical 
models of AD progression were both rooted in empirical observations from different dimensions including 
biochemical, neuroimaging and behavior. Compared with the two integrated theory of AD progression, a sin-
glet brain dynamical model with theoretical basis seems more specific and efficient for targeting the prevention 
and early warning of AD.

Was there a quantitative dynamical trajectory of AD progression from the level of brain dynamics? Was it 
smooth or abrupt? Was there critical transition during progression of AD? How could we characterize and study 
functional criticality of human brain? Could the differences between patients and normal controls reflect dynam-
ical changes across the three stages of AD progression? There was no study addressing these questions now. 
Generally, human brain dynamics can be modeled as a nonlinear system, and critical transition theory in non-
linear dynamics could help this. The dynamical network biomarkers (DNBs) method7–9 was just derived from 
nonlinear dynamics. It supplied us a great opportunity to characterize and study functional criticality of human 
brain. Theoretically, DNBs7 are a group of measurements or variables (molecules, proteins, genes, voxels, verti-
ces, etc.) with average Pearson’s correlation coefficients across time (PCCs) that drastically increase in absolute 
values, while the average PCCs of the members of this group with variables outside the group drastically decrease 
in absolute value, and the average standard deviations (SD) in the group drastically increase whenever the sys-
tem approaches a critical state. Groups that satisfy these three conditions signal the imminent transition of the 
system from the current state to another state. Such group of measurements were called DNBs. DNBs have been 
successfully used for predicting critical transitions of diseases based on biochemical and genomic data, including 
respiratory disease10, depression11, episodic migraine12 and type 1 diabetes8.

Based on local information transfer hypothesis and the above three conditions of DNB, here we proposed a 
vertex-wise Index of Functional Criticality (vIFC) of resting-state fMRI time series to study functional criticality 
of human brain during AD progression. Specifically, local information transfer hypothesis meant that spatial 
neighborhood is more likely to be involved in the DNBs of the system. By calculating vIFC maps of 42 SCD, 67 
amnestic MCI (aMCI), 34 AD patients as well as their age-, sex-, years of education-matched 54 normal controls 
(NC), we aimed to: (1) study functional criticality impairments of human brain for the three different stages of 
AD progression as well as whether functional criticality of human brain is associated with clinical behavioral 
measurements; (2) verify which measurement is more sensitive, vIFC or standard deviation, correlations within 
spatial neighborhood cluster and correlations outside neighborhood cluster of human brain functional networks; 
(3) demonstrate whether aMCI patients exhibit the most patient-normal differences in vIFC, as well as whether 
aMCI works as a critical transition across AD progression. Overall, combining fMRI methodologies with non-
linear dynamics, the current vIFC study aimed to supply a sensitive neuroimaging marker for future studies, and 
would also promote our understanding of the neuroimaging pathology of AD progression from the dynamical 
perspective.

Results
vIFC patterns and its three components in healthy populations. To understand how each term of 
the three components contributes to vIFC, we plotted average maps of standard deviation of BOLD time series 
(STD), within cluster correlation (Corr(in)) and outside cluster correlation (Corr(out)) together with the average 
maps of vIFC and individual variability of vIFC (STD(vIFC)) across healthy populations. As shown in Fig. 1, the 
big STD, Corr(in) and Corr(out) in the inferior parietal and the precuneus contributed the big vIFC in the infe-
rior parietal and the precuneus. For insular, STD and Corr(out) is big but Corr(in) is not very big. In the other 
hand, the middle/inferior temporal and lateral occipital cortex had small STD, Corr(in) and Corr(out), as well as 

Figure 1. vIFC patterns and its three components in healthy populations. The five columns respectively 
correspond to the average maps of standard deviation of BOLD time series (STD), within cluster correlation 
(Corr(in)), outside cluster correlation (Corr(out)), vIFC and individual variability of vIFC (STD(vIFC)) across 
healthy populations.
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small vIFC. Standard deviation of vIFC, as a measurement of individual variation, was found to be big mainly in 
the central sulcus, cuneus, insular, lateral occipital and medial orbitalfrontal cortex, and small in the middle and 
inferior temporal and medial frontal cortex.

vIFC alterations across AD progression. As shown in Figs 2, 3 and S1 (Supplementary Information), 
SCD, aMCI, AD and NC group exhibited similar vIFC patterns across the entire cortical mantle. We observed 
significant patient-normal vIFC differences for SCD and aMCI. As shown in Fig. 2, SCD exhibited significant 
increased vIFC in the left G_and_S_frontomargin, the left G_and_S_transv_frontopol, the left G_oc-temp_
med-Parahip and the right G_temporal_middle, as well as significant decreased vIFC in the left G_tempoal_inf 
and the left S_temporal_inf compared to normal controls. Meanwhile, Fig. 3 showed that aMCI exhibited more 
widely distributed alterations in vIFC: increased vIFC mainly in the left G_oc-temp_med-Parahip and the right 
G_precentral, as well as decreased vIFC mainly in the left S_collat_transv_ant, the right G_and_S_frontomargin, 
the right G_front_inf-Orbital, the right G_orbital, the right S_temporal_inf and the right G_parietal_sup com-
pared to normal control group. Please see Table 1 for a full list of brain regions with significant patient-normal 
differences. Furthermore, we observed significant vIFC differences between aMCI and all the other three groups, 
SCD, AD, NC (see Supplementary Information for details).

Clinical behavioral correlations. As shown in Fig. 2, vIFC in the right G_temporal_middle significantly 
negatively correlated with total score of MoCA in SCD (p = 6.88e-4, r = −0.39, Bonferroni correction for multiple 
clusters p < 0.05/9). No other significant correlations were observed.

Comparison with STD, Corr(in) and Corr(out). vIFC exhibited significant patient-normal differences for 
SCD and aMCI. In comparison, we also performed the same statistics using the three components of vIFC, For 
Corr(in) and Corr(out), we didn’t find any significant differences. For STD, we found significant increased STD 
in the left G_precentral, the left G_and_S_cingul-Mid, the left S_oc-temp_lat, the left G_front_sup and the left S_
postcentral in AD compared with normal controls (Fig. 4). Also we found some significant negative correlations 
of STD with behavioral measurements in AD patients: STD in the L-G_precentral versus MMSE (R = −0.4735, 
P = 0.0071); STD in the L-G_and_S_cingul-Mid-Ant versus AVLT-IR (R = −0.5143, P = 0.0031) and MMSE 
(R = −0.5312, P = 0.0021); STD in the the left G_and_S_cingul-Mid-Post versus AVLT-IR (R = −0.4705, 
P = 0.0076) and MMSE (R = −0.4948, P = 0.0047); STD in the L-G_front_sup versus AVLT-IR (R = −0.5085, 
P = 0.0035), MMSE (R = −0.5588, P = 0.0011) and MoCA (R = −0.5542, P = 0.0022); STD in the L-S_postcen-
tral versus AVLT-IR (R = −0.4699, P = 0.0076). We used Bonferroni correction for multiple clusters p < 0.05/6.

Figure 2. Significant SCD-NC differences in vIFC across cortical mantle. The cold and warm colors 
respectively stand for significant decreased and increased vIFC compared to normal controls (FDR α < 0.05/2, 
corrected p < 0.05/2). The right scatter illustrated the significant negative correlations of vIFC with MoCA in 
the right middle temporal gyrus (as represented by the red rings on the cortical mantle).
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Discussion
Based on critical transition theory of nonlinear dynamics in physics, here we proposed a vertex-wise Index of 
Functional Criticality of human brain. This new algorithm employed fMRI time series to calculate the proba-
bility of existence of critical transitions for a given vertex. Without knowing connection details of human brain 
network, the method supplies a great opportunity to characterize and study functional criticality of human brain 
dynamical system. Also our results showed that the vertex-wise Index of Functional Criticality was rather sensi-
tive compared with the three components of vIFC, STD, Corr(in) and Corr(out). Furthermore, the widely distrib-
uted vIFC impairments in aMCI may indicate aMCI as a critical transition across AD progression. Different from 
previous fMRI methodologies, our vIFC method has a solid theoretical basis and could serve as a neuroimaging 
marker for future human brain studies from the dynamical perspective.

Figure 3. Significant aMCI-NC differences in vIFC across cortical mantle. The cold and warm colors 
respectively stand for significant decreased and increased vIFC compared to normal controls (FDR α < 0.05/2, 
corrected p < 0.05/2).
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Functional Criticality of human brain at millimeter level. Human brain is one of the most compli-
cated systems and could be studied from different spatial scales such as neurons, vertices/millimeters and brain 
regions. However, the systematic organizational principles should be similar with other biological system and 
even advanced technology physical system13. In more detail, human brain could be modeled using a set of differ-
ential equations and then the dynamical characteristics of human brain could be derived. But the construction 
of the complicated differential equations needs a lot of assumptions14. Another commonly used method is just 
employing the statistical dependence of fMRI time series to construct human brain network15. And this is how the 
studies using fMRI methodology usually do. vIFC just combined the above two kinds of study regimes and have 
its very unique advantages: there was no need to hypothesize or estimate the connection details of human brain; 
such kind of ‘black box’ operation could easily be widely applied in large scale clinical or healthy populations; 
this was the first index to characterize functional criticality of human brain from the spatial scale of millimeters. 
On the other hand, there was evidence showing that human brain benefits a lot from criticality: the dynamical 
range, information transmission and information capacity were all optimized at criticality16. Therefore, studies 
on functional criticality of human brain is rather meaningful, and our vertex-wise functional criticality would 
shed more lights on the understanding of human brain organizational principles from millimeter level in future.

Contrast Brain regions Max (−log10p) VtxMax Size (mm2) TalX TalY TalZ NVtxs

lh

aMCI < NC

S_collat_transv_ant −6.437 5622 33.78 −40.6 −25.6 −16.9 4

G_oc-temp_lat-fusifor −5.775 10077 8.68 −38 −29.8 −19.3 1

G_oc-temp_med-Parahip −4.866 1346 5.09 −21 −15.9 −21.7 1

S_collat_transv_ant −4.653 3315 9.44 −43.8 −17.8 −23.2 1

aMCI > NC G_oc-temp_med-Parahip 5.519 5487 7.06 −29.5 −21.7 −22.5 1

SCD < NC

G_temporal_inf −8.406 7097 25.15 −56.5 −48 −11.7 2

S_temporal_inf −7.071 3302 25.33 −55.4 −42.7 −10.1 2

G_temporal_inf −4.786 5585 10.11 −55.9 −51.2 −7.4 1

SCD > NC

G_oc-temp_med-Parahip 6.374 5487 7.06 −29.5 −21.7 −22.5 1

G_and_S_frontomargin 5.158 8214 21.74 −33.5 51.9 −4.7 2

G_and_S_frontomargin 5.091 8217 10.65 −28.7 49.2 −4.5 1

G_and_S_transv_frontopol 5.018 4107 26.33 −21.2 58.2 0.8 2

rh

aMCI < NC

G_and_S_frontomargin −10.828 8264 54.86 21.5 51 −5.4 5

G_front_inf-Orbital −10.123 6652 40.6 47 30.6 −9.3 4

G_orbital −9.879 4857 137.82 38.3 24.1 −10.2 17

G_front_inf-Orbital −9.263 4846 53.15 48.3 33.2 −9 4

S_temporal_inf −8.741 5751 69.53 52.3 −17 −23.4 6

G_parietal_sup −8.513 7767 14.72 13.8 −69 47.6 2

G_parietal_sup −7.266 1684 47.68 16.6 −67.5 45.7 5

S_temporal_inf −6.688 7195 11.21 55.9 −22 −21.3 1

G_temp_sup-Lateral −6.073 2725 11.52 46 9.3 −22.6 1

S_collat_transv_ant −5.591 10076 8.72 40.9 −35 −16.6 1

S_collat_transv_ant −5.552 5623 17.31 40.4 −29.8 −16.5 2

G_temporal_middle −5.437 8033 22.32 61.7 −14 −17.4 2

G_temporal_middle −4.546 5646 11.43 59.7 −39 −7.1 1

G_and_S_cingul-Ant −4.523 3707 27.57 9.3 28.7 −11.1 3

G_parietal_sup −4.28 3166 8.23 14.7 −66.7 51.9 1

S_oc-temp_lat −4.072 7999 9.34 45.8 −54.7 −7.3 1

G_temporal_middle −3.938 8035 11.84 58.1 −19.8 −17.5 1

G_oc-temp_med-Parahip −3.686 1367 8.24 26.5 −24.5 −20.7 1

G_precuneus −3.592 8363 6.35 11 −68.3 50.7 1

G_front_middle −3.509 8216 14.82 35.3 50.1 −4.2 1

aMCI > NC

G_precentral 7.607 3370 17.47 18.6 −13.7 64.9 3

G_precentral 5.878 2781 11.09 13.6 −19.2 67 2

S_collat_transv_ant 4.979 5555 16.22 40.1 −14.3 −20.9 2

G_precentral 4.543 5767 7.16 22.1 −12.2 62.8 1

SCD > NC
G_temporal_middle 5.271 2760 10.99 60.5 −30 −12.9 1

G_temporal_middle 5.151 5740 7.27 53.3 4.5 −25.7 1

Table 1. Full list of brain regions with significant vIFC differences for aMCI-NC and SCD-NC. AD, Alzheimer’s 
Disease; aMCI, amnestic Mild cognitive impairment; SCD, subjective cognitive decline; NC, cognitively normal 
subjects; lh, left hemisphere; rh, right hemisphere.
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Characterize dynamical progression of AD: a sensitive neuroimaging marker. The progression 
of Alzheimer’s Disease (AD) usually comprise three stages, subjective cognitive decline (SCD), mild cognitive 
impairment (MCI), and dementia due to AD2. Although Jack et al.5 proposed a hypothetical dynamical biomarker 
model of pathophysiological process in AD, quantitatively characterizing dynamical trajectory of AD progres-
sion from the perspective of brain function is still on the very beginning. Here we tried to use patient-normal 
differences to probe whether there was a critical transition across AD progression. Firstly, for SCD, only few 
studies reported its functional abnormalities17–19. However, our vIFC method detected significant increased and 
decreased multiple vIFC clusters compared to normal controls. This indicated that vIFC was a rather sensitive 
method for characterizing brain abnormalities. Secondly, aMCI patients exhibited more patient-normal vIFC 
differences compared to SCD and AD patients. This indicated that aMCI is a rather special stage, and might be a 
critical transition across AD progression. Thirdly, in comparison with degree centrality, using vIFC we observed 
more significant patient-normal differences. Finally, consistent with previous studies20,21, the temporal lobe dis-
played a major damage during AD progression in this study. All these results validated our data analysis, con-
firmed vIFC as a sensitive neuroimaging marker for future studies, and characterized aMCI as a critical transition 
across AD progression.

Figure 4. Significant AD-NC differences in STD across cortical mantle. The warm color stand for significant 
increased STD compared to normal controls (FDR α < 0.05/2, corrected p < 0.05/2). The five scatters represent 
the significant negative correlations of STD with behavioral measurements.
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One would expect high average correlation outside the spatial neighborhood for the regions of wide-spread 
networks such as default-mode or frontal-parietal networks. Therefore, functionally, these networks would have 
larger vIFC scores. Since in AD particularly DMN connectivity is impaired, for a spatial cluster vIFC score of the 
voxels associated to DMN will appear increased (due to the denominator in equation 1), although functionally it 
is expected to decrease (due to the numerator in equation 1). We didn’t find any significant differences between 
AD patients and normal controls, a likely explanation might be that the diffusion of the activity is impaired dur-
ing the course of AD due to degeneration, but vIFC score is masked in AD group by the reductions in whole-brain 
correlations.

Correlations between MoCA and functional criticality. MoCA was a rapid screening instrument for 
cognitive dysfunction. It assesses different cognitive domains including attention, executive function and mem-
ory. It has been proved with high sensitivity and moderate specificity22,23. Also there were few studies, which 
showed significant correlations of brain structural and functional alterations in SCD with cognitive impair-
ment3,24. Here we employed a new algorithm, vIFC to explore the associations of functional criticality of human 
brain with cognitive impairment. We observed significant negative correlations of vIFC with MoCA total score in 
the right middle temporal gyrus. Selnes et al.25 reported impaired brain structures in the middle temporal cortices 
in SCD. Such overlapping in the middle temporal cortex may underlie associations of brain structure with func-
tion. Also, the correlations further validated our data analysis and may promote MoCA as an efficient screening 
tool for the early warning of SCD diagnosis.

Limitations. The original DNB method is applied to a data that represents the dynamics of interest of a par-
ticular individual. Because of disease complexities and personal variations (e.g., genetic or epigenetic factors), 
each individual may progress to the same disease through different underlying networks, which hampers the dis-
covery of effective molecule- or model-based biomarkers. So addressing individual variations is critical because it 
is very difficult to justify if the observed alterations reflect a shift in criticality or any other systematic alterations 
that are not related to the dynamics. Our study involved four different clinically groups of distinct individuals. 
Ideally our vIFC method should be first justified in healthy control subjects or by using appropriate randomiza-
tion techniques. Indeed, we tried to use healthy children’s brain images to do vIFC analysis, but unfortunately we 
didn’t find any meaningful results. In future we would try to use appropriate randomization technique to further 
verify our method.

Conclusions
We proposed a vertex-wise method to describe the possibility of existence of critical transition in human 
brain, vIFC, based on critical transition theory of nonlinear dynamics. vIFC successfully detect significant 
patient-normal differences for SCD and aMCI, as well as significant correlates of vIFC in the right middle tempo-
ral gyrus with MoCA scores in SCD. However, among the three components of vIFC, only STD detected signif-
icant differences between AD patients and NC. Therefore, vIFC could serve as a sensitive neuroimaging marker 
for future studies; considering much more vIFC impairments in aMCI compared to SCD and AD, our study 
indicated aMCI as a transitional or critical stage across AD progression.

Methods
Participants. Subjects with SCD (n = 47), aMCI (n = 93) and AD (n = 48) were recruited from the mem-
ory clinic of the Neurology Department, Xuanwu Hospital, Capital Medical University, Beijing, China. Normal 
Controls (NC, n = 92) were recruited from local community by advertisements. All the patients were diagnosed 
by the consensus of two consultant psychiatrists according to the criteria for SCD, aMCI and AD26–28. An inter-
national effort to establish common standards for SCD, SCD-I2,29–31 has been proposed, which is a broad defini-
tion of SCD along with specific features that increase the likelihood of preclinical AD in the affected individuals 
(referred to as SCD plus). In this study all we used were SCD plus. However, for simplicity we still used ‘SCD’ 
in our manuscript. A standard clinical evaluation protocol, which included Mini-Mental State Exam (MMSE), 
Auditory Verbal Learning Test (AVLT), Montreal Cognitive Assessment (MoCA), and Clinic Dementia Rating 
Scale (CDR) evaluated all the subjects. All the subjects had no history of other major neuropsychiatric illness, 
head injury, alcohol and drug abuse. The medical research ethics committee and institutional review board of 
Xuanwu Hospital approved this study, and written informed consent was obtained from individual participant 
prior to data acquisition. The methods were carried out in accordance with the approved guidelines.

MRI Imaging. All the MRI images were collected on a 3.0 T Siemens scanner (Erlangen, Germany) 
at Xuanwu Hospital, Capital Medical University. All the participants completed a T1-weighted structural 
MRI scan with a MPRAGE sequence (TR = 1900ms; TE = 2.2ms; TI = 900ms; FA = 9°; matrix = 256 × 256; 
slice thickness = 1.0 mm; 176 sagittal slices, no gap) and a 478-second resting state fMRI scan using an EPI 
sequence (TR = 2000ms; TE = 40ms; FA = 90°; number of slices = 28; slice thickness = 4 mm; gap = 1 mm; voxel 
size = 4 mm × 4 mm × 4 mm; and matrix = 64 × 64). Participants were asked to lie quietly in the scanner with 
their eyes closed during data acquisition.

Imaging Data Preprocessing. All of the images were preprocessed using the Connectome Computation 
System (CCS) platform32 with cortical surface reconstruction as a key component. Detailed descriptions of the 
system can be found in our previous publications33,34. Preprocessing comprised structural image preprocessing 
and functional image preprocessing. The structural image preprocessing was mainly cortical surface reconstruc-
tion35,36, which included MR intensity inhomogeneity correction, brain extraction, automated segmentation of 
the cerebrospinal fluid (CSF), white matter (WM) and deep gray matter (GM), production of the GM-WM (white 
surface) and GM-CSF interface (pial surface), and spatial registration via matching of the cortical folding patterns 
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across subjects. The functional image preprocessing involved the following steps: drop the first 4 EPI volumes to 
allow for signal equilibration, detect and reduce outliers (spikes), slice timing correction, alignment of each vol-
ume to a ‘base’ volume (the mean EPI) to correct for between-head movements, normalization of the 4D global 
mean intensity into 10000 to allow for inter-subject comparison, regressing out the WM/CSF mean time series 
and the Friston-24 motion time series37,38, filtering the residual time series with a band-pass (0.01–0.1 Hz) filter, 
removal of both linear and quadratic trends, and alignment of the individual motion-corrected functional image 
to the anatomical image with a GM-WM boundary-based registration algorithm39. Finally, individual preproc-
essed 4D rfMRI time series were projected onto the fsaverage5 standard cortical surface with 10,242 vertices per 
hemisphere and an average spacing of 4 mm40.

Quality Control Procedure. Quality control is very important for solid data analysis. CCS provides a set of 
complicated quality control procedures: (1) brain extraction or skull stripping, (2) brain tissue segmentation, (3) 
pial and white surface reconstruction, (4) boundary-based functional image registration, and (5) head motion 
correction during rFMRI. For those images that the brain extraction was not good, we used two types of thresh-
olds for the FSL BET combined with the FreeSurfer automated skull strip to supply templates for manual edit-
ing. Quantitative controls of boundary-based functional image registration (mcBBR <= 0.5) and head motion 
(maxTran <= 2 mm, maxRot <= 2°, mean FD < 0.2 mm) were also used. Subjects without demographic data like 
years of education and age were all excluded. And then we selected age-, sex-, and years of education- matched 
normal controls from NC group. Finally we have 42 SCD (43.1–80.0 years, 16 males), 67 aMCI (44.2–85.1 years, 
30 males) and 34 AD (51.9–86.8 years, 12 males) and 54 NC (58.1–83.1 years, 21 males). The detailed participant 
information was summarized in Table 2.

Data availability. The datasets used and generated in this study are available from the corresponding author 
on reasonable request.

vIFC Method. Whenever a dynamical system approaches a critical state immediately before phase tran-
sition, a subnetwork or a dominant group of variables in the system appears and satisfies the following three 
conditions7–9:

 1. The average Pearson’s correlation coefficients across time (PCCs) for the variables within the group drasti-
cally increase in absolute value (see PCCin in Eqn. (1)).

 2. The average PCCs of the variables within this group with any other variables (i.e., those outside the group) 
drastically decrease in absolute value (see PCCout in Eqn. (1)).

 3. The average standard deviations (SD) of the variables in the group drastically increase (see STD(i) in Eqn. (1)).

These three conditions demonstrate that appearance of a group of variables with high correlations and strong 
fluctuations implies the emergence of a critical transition. The special group of variables was called DNB. Based 
on these three dynamical characteristics of DNB nodes (variables), we proposed a vertex-wise Index of Functional 
Criticality (vIFC) method for human brain rfMRI datasets. Also in this algorithm, we adopted local information 
transfer hypothesis (Spatial neighborhoods were likely involved in the same dominant group of vertices), which 

AD (34) aMCI (67) SCD (42) NC (54) F/ Chi-square values P values

Age (Years) 51.90–86.80 
(69.86 ± 9.00)

44.2–85.1 
(66.08 ± 9.35)

43.1–80.0  
(66.01 ± 8.0)

58.10–83.10  
(67.22 ± 6.15) 1.861 0.138

Gender (M/F) 12/22 30/37 16/26 21/33 1.040 0.792

Education (Years) 0–25  
(10.29 ± 4.79)

0–21  
(10.73 ± 4.15)

2–18  
(11.88 ± 4.17)

0–22  
(11.37 ± 5.22) 0.962 0.412

MMSE 3–29  
(17.88 ± 5.24)

17–30  
(24.97 ± 3.18)

22–30  
(27.62 ± 1.85)

20–30  
(28.31 ± 2.26) 83.552 0.000

AVLT Immediate Recall 0–6.67  
(3.80 ± 1.44)

2.67–10  
(5.89 ± 1.62)

4.67–13.67  
(7.95 ± 1.86)

6–13.67  
(9.17 ± 1.75) 84.931 0.000

AVLT Delayed Recall 0–5  
(1.12 ± 1.67)

0–11  
(3.82 ± 2.74)

3–15  
(8.29 ± 2.69)

4–15  
(10.06 ± 2.59) 116.171 0.000

AVLT Recognition 0–12  
(4.41 ± 3.02)

0–14  
(7.67 ± 3.61)

2–15  
(10.81 ± 2.67)

1–15  
(11.89 ± 3.02) 46.677 0.000

MoCa 3–22  
(13.58 ± 4.84)

13–26  
(20.17 ± 3.71)

21–30  
(25.91 ± 1.91)

18–30  
(26.32 ± 2.84) 100.599 0.000

MoCa Delayed Recall 0–1  
(0.13 ± 0.34)

0–5  
(0.93 ± 1.18)

0–5  
(3.11 ± 1.41)

0–6  
(3.18 ± 1.59) 47.705 0.000

MoCa Orientation 0–6  
(2.70 ± 1.77)

1–6  
(4.98 ± 1.34)

2–6  
(5.83 ± 0.75)

5–6  
(5.95 ± 0.23) 51.821 0.000

Table 2. Demographic information and behavioral measurements for AD, aMCI, SCD and NC. AD, 
Alzheimer’s Disease; aMCI, amnestic Mild cognitive impairment; SCD, subjective cognitive decline; NC, 
cognitively normal subjects; MMSE, Mini-mental state examination; AVLT, Auditory verbal learning test; 
MoCA, Montreal cognitive assessment. Differences among the samples were tested with ANOVAs (p < 0.05) 
with LSD or Dunnett’s T3 post hoc comparisons.
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was inherited from the method of local functional homogeneity (ReHo). The detailed mathematical formula was 
as following:

= =
∑ − < > ⋅ < ∈ >

< ∉ >
=i STD i PCC

PCC
x t x t PCC j I

PCC k I
vIFC( ) ( ) ( ( ) ( ) ) ( )

( ) (1)
in

out

n
N

i n i n ij

ik

1
2

As illustrated in Fig. 5 and Eqn. 1, there are three types of vertices, i.e., {i}, {j ∈ I}, and {kj ∉ I}. For given vertex 
i, I stands for its second-order neighborhood cluster, j represents vertices within I, and k represents other vertices 
outside the neighborhood. N is the number of fMRI BOLD time points. xi(tn) stands for the fMRI BOLD value of 
the vertex i at time tn; PCC stands for the inter-vertex Pearson correlation coefficient across time; STD stands for 
the standard deviation of the BOLD time series; and < > in the ‘STD’ means averaging across all the time points, 
< > in the ‘PCC’ means averaging across vertices. Intuitively, based on the three DNB conditions, whenever 
a system approaches critical states, vIFC(i) in the dominant group drastically increases, and thus the variables 
with high vIFC scores can signal the emergence of critical transition. In another word, vIFC quantitatively meas-
ures the possibility of the emergence of critical transitions. The calculation was repeated for each vertex, and we 
then obtained a vIFC map on the fsaverage5 surface of each participant. All individual vIFC maps were spatially 
smoothed with a Gaussian kernel with a 10-mm FWHM on fsaverage5.

Three components of vIFC. As shown in the vIFC formula, there were three components that contributed 
to vIFC values, standard deviation of BOLD time series (STD), within cluster correlation (Corr(in)) and outside 
cluster correlation (Corr(out)). We also calculated the three components respectively for each participant on 
fsaverage5 surface, and a Gaussian kernel with a 10-mm FWHM was also performed.

Statistics. Similar with our previous studies33,34,41, we employed FreeSurfer Group Descriptor (FSGD) files 
to generate a general linear model that considered age, sex, and years of education as covariates with DODS 
(Different Offset and Different Slope). Finally, the vertex-wise significance values for each contrast of group com-
parisons were corrected with FDR (False Discovery Rate) method (FDR α = 0.05/2, corrected p = 0.05/2). After 
acquiring the cluster with significant vIFC differences, we also calculated the partial correlations of average vIFC 
within the cluster and behavioral measurements (MMSE, AVLT and MoCA) after controlling age, sex, and years 
of education.
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