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Two-color second-order sideband 
generation in an optomechanical 
system with a two-level system
Cui Kong  , Sha Li, Cai You, Hao Xiong & Ying Wu  

Second-order sideband generation in an optomechanical system with the coupling between a 
mechanical resonator and a two-level system is discussed beyond the conventional linearized 
description of optomechanical interactions. The features of two-color second-order sideband 
generation are demonstrated in this hybrid system. We discovery that the switch between one- and 
two-color second-order sideband generation is easily realized by shifting the detuning between the 
control field and the cavity field or the transition frequency of the two-level system. The efficiency of 
two-color second-order sideband generation increases monotonously with the control field strength. 
The coupling strength between the mechanical resonator and the two-level system plays a decisive 
role in the appearance of the two-color second-order sidebands. The two-color second-order sideband 
generation may provide measurement with higher precision in new degrees of freedom.

Cavity optomechanics1–3, which explores the coupling between the optical cavity and the mechanical oscillation 
via radiation-pressure, has played an indispensable position in modern physics. The subject of rapid develop-
ments brings about significant value in both fundamental physics and practical applications, such as achieving 
high precision measurement4–7, slowing and storage of light pulses8,9, information processing10,11 and optome-
chanical induced transparency(OMIT)12,13. Micro-mechanical resonators14 are in combination with optical cavi-
ties, which presents some important  phenomena, such as phonon blockade15,16, phonon-induced transparency17, 
and high-harmonic generation18.

Recently, due to the nonlinear optomechanical interactions between the optical cavities and the mechanical 
resonators, a lot of interesting phenomena19–22 emerge, such as high-order sidebands23,24 and chaos25,26 which are 
achieved in the bichromatic driving regime by making use of numerical calculation method. In the perturba-
tive regime that the probe field is weaker than the control field, an analytical method has also been proposed to 
describe the nonlinear interactions in an optomechanical system27–29. Here we use the perturbation method to 
study the second-order sideband generation in a hybrid optomechanical system with a two-level system coupled 
to the mechanical resonator.

The hybrid optomechanical system may consist of an optical cavity, a mechanical resonator and other objects 
including two-level atoms30, superconducting qubit circuits31, two-level defects32 and so on. There are three sit-
uations in a hybrid optomechanical system for the coupling among an optical cavity, a mechanical resonator 
and another object: a two-level system is coupled to both the cavity field and the mechanical mode33; a two-level 
atom is only coupled to the cavity field30 and a two-level system is only coupled to the mechanical resonator34. 
For the third situation, the hybrid optomechanical system has been utilized to complete both the classical and 
quantal researches, such as the appearance of the two transparent windows34 and tunable photon blockade35. For 
other similar systems, the discovery of some new applications in the double-electromagnetic-induced transpar-
ency (EIT)36,37 and double-OMIT38,39 has been presented subsequently. All of these results inspire us to explore 
second-order upper sideband of double frequencies in output spectrum, which is called two-color second-order 
sideband generation here.

In the present work, we show the two-color second-order sideband generation in a hybrid optomechanical 
system where a two-level system is only coupled to the mechanical resonator. The interpretation is given for 
the formation of two-color second-order sidebands and the features of two-color second-order generation are 
exhibited. The switch between the one- and two-color second-order sideband generation can be actualized by 
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transforming the transition frequency of the two-level system compared to the mechanical-mode frequency, or 
the detuning between the cavity field and the control field, whose strength sets a direct influence on the efficiency 
of the second-order sideband generation. In addition, the coupling strength between the mechanical resona-
tor and the two-level system determines whether two-color second-order sidebands can appear. The two-color 
second-order sideband generation may find potential applications in optical frequency comb40 and provides 
measurement with higher precision in new degrees of freedom, such as charge measurement4 and force sensors41.

Results
Model, Hamiltonian, steady states, and the second-order sideband generation. The hybrid 
optomechanical system consists of an optical cavity and a mechanical resonator coupled to a two-level system, 
which might be an intrinsic defect inside the mechanical resonator or a superconducting artificial atom, as shown 
in Fig. 1. Before considering the input laser fields, the Hamiltonian of the system is given by
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where â ˆ†a( ),b̂ b( )ˆ†
 are the annihilation (creation) operators of the optical field and the mechanical resonator with 

frequencies ωa, ωb, respectively. The Pauli operator σ̂z, which is atomic inversion operator, usually describes the 
two-level system and ωq is the transition frequency of the two-level system. The coupling parameter between the 
cavity field and the mechanical resonator, which is coupled to the two-level system with coupling strength g, is χ. 
Here we treat the interaction between the single-mode optical field and the mechanical resonator as 
radiation-pressure Hamiltonian. For simplicity, we assume that the mechanical resonator interacted with the 
two-level system is regarded as Jaynes-Cummings Hamiltonian, and we have no consideration on the direct inter-
action between the cavity field and the two-level system. The last term, where σ−ˆ  and σ̂+ are the ladder operators 
of the two-level system, omits two parts ˆ ˆ

†
b σ+ and σ−

ˆ ˆb  by means of rotating wave approximation.
Although the Hamiltonian Ĥ0 dose not give the direct coupling between the cavity field and the two-level sys-

tem, we can get the relational expression  ˆ ˆ ˆ†g a a/x bχσ ω  via applying a unitary transform U = exp ˆ ˆ ˆ ˆ† †
a a b b[ ( )/ ]bχ ω− −  

to Eq. (1). This explains that there are nonlinear interactions between the two-level system and the cavity field.
The hybrid optomechanical system is driven by a strong control field with frequency ωc. When the strong 

control field and a weak probe field with frequency ωp are applied to the optomechanical system, the whole 
Hamiltonian of the hybrid system can be written as
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where the parameter Ω is the Rabi frequency of the control field, which describes the coupling strength between 
the control field and the cavity field, and the parameter ε is the Rabi frequency of the probe field, which describes 
the coupling strength between the probe field and the cavity field. In a frame rotating at ωc, the Hamiltonian of 
Eq. (2) can be obtained as
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with the detunings Δa = ωa−ωc and Δ = ωp − ωc.
Considering the damping and environmental noise terms, the Heisenberg-Langevin equations of motion are 

read as follows:

Figure 1. Schematic diagram of an optomechanical system where the mechanical resonator is coupled to a two-
level system. The hybird optomechanical system is driven by a strong control field with frequency ωc. When the 
control field and a weak probe field with frequency ωp are incident upon the system, the output field is described 
by Sout with frequencies ωc ± nΔ where n is a positive integer. Through the transformation of the control field 
strength, the detuning between the cavity field and the control field, and the transition frequency of the two-
level system, we can get some novel features of the second-order sidebands.
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where γa, γb and γq are the corresponding decay rates of the cavity field, mechanical resonator and two-level sys-
tem. The environment noises of the cavity field, mechanical resonator and two-level system are described by a t( )inˆ , 
b t( )in
ˆ  and t( )îΓ (i = −, z), respectively.

In this work, we consider the mean response of the hybrid system. By making use of the lowest-order 
correlation-truncation approximation, the operators in Eqs. (4) to (7) are reduced to their expectation values, viz. 
〈 〉 =â a, ˆ〈 〉 =b b, σ̂ σ〈 〉 =− − and σ σ〈 〉 =z zˆ . In addition, we drop the environment noises because 
a t b t t t( ) ( ) ( ) ( ) 0in in z〈 〉 = 〈 〉 = 〈Γ 〉 = 〈Γ 〉 =−ˆ ˆ ˆ ˆ . The reduced Heisenberg-Langevin equations of motion then become
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We regard the probe field as a perturbation in the steady state provided by the control field on Eqs. (8–11), so the 
steady-state solutions can be obtained as M0(M = A,B, L,Z) which correspond to the values of the a, b, σ−, and σz, 
respectively.
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To describe the process of the second-order sideband generation, we define

A2 / , (16)a 2η γ ε= | − |−

which is dimensionless, as the efficiency of the second-order sideband generation, where the −A2  can be obtained 
from Eq. (18) by analytic solutions in the following method.

The reason of the appearance of the two-color second-order sideband generation in this hybrid 
optomechanical system. The physical interpretation of the OMIT effect42 is not applied to expound 
the appearance of two transparent windows in the hybrid system where the mechanical resonator is coupled 
to a two-level system. For the sake of comprehending the physical processes of two transparent windows and 
two-color second-order sidebands, for simplicity, the single-photon and single-phonon excitations are taken 
advantage of exemplifying the transmission of photons in Fig. 2 which is similar as in ref.34. A typical Λ-type 
three-level systems is composed of three states |0a, 0b〉, |0a, 1b〉, and |1a, 0b〉, where the subscripts a and b represent 
the photon and phonon states, respectively. However, the state |0a, 1b〉 is split into two dressed states43 |0a, 1b+〉 
and |0a, 1b−〉 when the mechanical resonator is resonantly coupled to a two-level system, where the effective res-
onant frequency of the mechanical resonator becomes ωb − g and ωb + g from ωb which leads to two transparent 
windows due to the resonant matching between optical beat frequency Δ and the effective mechanical frequency. 
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Here we consider the higher order upconverted processes42 of the control field that the control field absorbs two 
phonon or the anti-Stokes field absorbs a phonon to generate a second-order sideband which also exhibits two 
interference windows.

Figure 3(a) and (b) show |tp|2 and η vary with Δ by solving Eq. (18) and the defined expressions of tp and η. 
As clearly seen from Fig. 3(a), the value of the |tp|2 is very small at Δ = 0.9ωb, ωb and 1.1ωb where the probe field 
is almost completely absorbed and two transparent windows arise. At Δ = ωb, the input laser fields including 
the control field and the probe field are no longer resonant with the mechanical resonator, because the effective 
resonant frequencies of the mechanical resonator are ωb ± g after it is coupled to a two-level system. Even though 
Δa = ωb, the condition, under which a transparent window42 appears, can not be satisfied and the cavity field 
resonantly absorbs the probe field leading to a valley of the |tp|2. At Δ = 0.9ωb, or 1.1ωb, whose frequency interval 
is equal to the splitting width 2g, the value of the |tp|2 also reaches a valley arising from the Jaynes-Cummings 

Figure 2. Schematic diagram of the transmission of the photon with the input fields applied to the hybrid 
system. The single-photon and single-phonon excitations are used to illustrate the photon’s transmission. A 
typical Λ-type three-level systems consists of three states |0a, 0b〉, |0a, 1b〉, and |1a, 0b〉, where the subscripts a and 
b represent the photon and phonon states, respectively. However, the state |0a, 1b〉 is split into two dressed states 
|0a, 1b+〉 and |0a, 1b−〉 when a two-level system is resonantly coupled to the mechanical resonator.

Figure 3. The probe field transmission and the efficiency of the second-order sideband generation. Calculation 
results of |tp|2 and η vary with Δ for |Ω|/2π  = 19.8 MHz in panels (a) and (b). η is as an function of the control 
field strength at three valley points Δ = 0.9ωb, ωb and 1.1ωb in panel (c), assuming g/2π = 10 MHz, γa/2π = 4 
MHz, ωq/2π = ωq/2π = Δa/2π = 100 MHz, γq/2π = 0.1 MHz, γb/2π = 1000 Hz, χ/2π = 10 MHz.
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coupling between the mechanical resonator and the two-level system. When Δ = 0.9ωb or 1.1ωb, nevertheless the 
Δa is no more equivalent to the effective resonant frequencies ωb ± g of the mechanical resonator, the condition 
that a transparent window can occur suffers destory, so the probe field is not reflected by the cavity but almost 
completely absorbed by the mechanical resonator, leading to |tp|2 reaching its minimum. The three valleys of the 
|tp|2 at Δ = 0.9ωb, ωb and 1.1ωb enable the formation of two transparent windows.

In Fig. 3(b), we display the efficiency η of the second-order sideband generation, where two-color 
second-order sidebands appear at frequencies Δ = 0.9ωb and 1.1ωb. Considering the interaction between the 
mechanical resonator and the two-level system, the single-phonon state is split into two corresponding dressed 
states with frequencies 0.9ωb and 1.1ωb. When the beat frequency Δ between the input laser fields is equal to 
the frequency 0.9ωb or 1.1ωb of the mechanical resonator, the mechanical resonator starts to oscillate coherently 
result in many anti-Stokes fields producing. Due to the condition of the OMIT effect ungratified, the anti-Stokes 
field further absorbs a phonon leading to the second-order sideband generation. However, for Δ = ωb = Δa, the 
probe field is almost completely absorbed by the cavity field resonance, which is not propitious to second-order 
sideband generation.

Figure 3(c) shows the efficiency η of the second-order sideband generation varies with the control field 
strength Ω for Δ = 0.9ωb, ωb and 1.1ωb, respectively. The efficiency η of the second-order sideband generation 
is always monotonous increase with the control field strength Ω for Δ = 0.9ωb or 1.1ωb. This process is different 
from the change of the efficiency η of second-order sideband generation in the previously mentioned optome-
chanical system42, where the value of η enhances when the control field strength is small, and with the control 
field strength increasing to some degree, the value of η begins to decrease. Thanks to the mechanical resonator 
coupled to a two-level system in the hybrid system, the resonant matching between the detuning Δa of the cavity 
field and the effective mechanical frequency suffers damage, leading to the probe field being absorbed by the 
mechanical resonator at Δ = 0.9ωb or 1.1ωb with the control field strength Ω increasing. This is advantage to pro-
duce a lot of anti-Stokes fields, which farther absorb a phonon to form a second-order sideband, and the efficiency 
η of the second-order sideband generation also gets enhanced. For Δ = ωb, the probe field is resonantly absorbed 
by the cavity field, which decreases the interaction between the input laser fields and the mechanical resonator, 
so the efficiency η of the second-order sideband generation has hardly changed for different values of the control 
field strength Ω.

The features of the two-color second-order sideband generation in this hybrid optomechanical 
system. Based on a general optomechanical system42, we take into account that the mechanical resonator is 
coupled to a two-level system, where the second-order sideband presents some novel features. In Fig. 4, the effi-
ciency η of the second-order sideband as a function of Δ for different values Δa is shown. It is found that by trans-
forming the detuning Δa between the control field and the cavity field, the switch between one- and two-color 
second-order generation can be realized. For Fig. 4(a), two-color second-order sidebands occur when Δa = ωb, 
which is the same as in Fig. 3(b).

Now we mainly focus on the Fig. 4(b) and (c). When Δ = 0.9ωb in Fig. 4(b), the efficiency η of second-order 
sideband generation greatly reduces in comparison with in Fig. 4(a), and the value of η is close to 0 reaching 
a local minimum at Δ = 0.9ωb. However at Δ = 1.1ωb, the value of the efficiency η of second-order sideband 
generation reaches a peak. So we can only obtain a obvious second-order sideband in Fig. 4(b). The condition of 

Figure 4. The efficiency η of the second-order sideband generation is as a function of Δ for different 
detunings between the control field and the cavity field. (a) Δa = ωb, (b) Δa = ωb − g and (c) Δa = ωb + g with 
|Ω|/2π  = 19.8 MHz. The other parameters are the same as in Fig. 3.
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Δa = 0.9ωb = Δ in Fig. 4(b) can be used to realize the OMIT effect42. Considering the transmission of the probe 
field under the condition of Δa = 0.9ωb = Δ, a transparency window can also appear in a general optomechanical 
system42 if the control field strength is strong enough, however the efficiency η of the second-order sideband 
generation gets suppressed. This is why in Fig. 4(b), the value of the efficiency η of second-order sideband gen-
eration is reduced to 0 at Δ = 0.9ωb when the control field strength reaches strong enough. The only difference is 
that the resonant frequency of the OMIT effect is changed from the frequency ωb of the mechanical resonator to 
one of effective resonant frequency 0.9ωb of the mechanical resonator, when the mechanical resonator is coupled 
to the two-level system. At Δ = 1.1ωb, the probe field is absorbed by the mechanical resonator to generate the 
anti-Stokes fields and not reflected by the cavity. The anti-Stokes fields in the optical cavity and the control field 
carry on exciting the mechanical resonator, which is benefited for second-order sideband generation at Δ = 1.1ωb.

Figure 4(c) shows the efficiency η of the second-order sideband varies with the Δ for Δa = 1.1ωb. The basic 
principle in Fig. 4(c), where only a extrusive second-order sideband generates at Δ = 0.9ωb, is the same as in 
Fig. 4(b). It is worth noting that the position of the second-order sideband generation exchanges between two 
effective resonant frequencies of the mechanical resonator, because the resonant frequency among the detuning 
Δa of the cavity field, the beat frequency Δ of the input laser fields and the effective frequency of the mechanical 
resonator has changed from 0.9ωb in Fig. 4(b) to 1.1ωb in Fig. 4(c). In the light of above analysis, we can reach a 
conclusion that detuning Δa between the cavity field and the control field is an operable variable to realize the 
switch between the one- and two-color second-order sideband generation.

In what follows, it is shown that not only the above detuning Δa enables the switch between the one- and 
two-color second-order sideband generation but also the transition frequency ωq of the two-level system is an 
important parameter for whether the two-color second-order sidebands generate. In Fig. 5, the efficiency η of the 
second-order sideband generation is plotted as a function of the detuning Δ between the probe and control fields 
and the transition frequency ωq of the two-level system.

Firstly, when we observe the case that the detuning between the transition frequency ωq of the two-level sys-
tem and the frequency ωb of the mechanical resonator is larger than the coupling strength g, such as 
ωq = 0.5ωb = 5g or ωq = 1.5ωb = 5g, and the value of Δ approaches the frequency ωb of the mechanical resonator, 
only a second-order sideband generates. Because if the detuning gq b ω ω| − | , the coupling between the 
mechanical resonator and the two-level system does not work, so the transmission of photons remains unaffected 
although the mechanical resonator is coupled to a two-level system. It is found that the appearance of two-color 
second-order sidebands is under the condition that the transition frequency ωq of the two-level system is (near) 
resonant with the frequency ωq of the mechanical resonator, viz. ω ω| − | ≤ gq b . Only the two-level system is res-
onantly coupled to the mechanical resonator, can the two-color second-order sidebands occur.

In Fig. 5, the second-order sideband generation arises from the directly two-phonon upconverted process of 
the control field and one-phonon upconverted process of the first-order sideband (anti-Stokes field). For the up 
conversion of the frequencies, the efficiency η of the second-order sideband generation is very low with maximum 
3%. If we consider the Stark field from the down converted process of the control field exciting the mechanical 
resonator, the Stark sideband further absorbs a phonon to generate a second-order sideband, whose efficiency 
is higher. In general, the down converted process of the frequencies is easier than the up converted process of 
the frequencies. As shown in Fig. 4(a), we observe that the efficiency η of second-order sideband at Δ = 0.9ωb 
is higher than the efficiency η of second-order sideband at Δ = 0.9ωb. Regardless of the control field and the 
first-order sideband going through the up or down converted process to generate second-order sidebands, the 
condition that the two-level system is resonantly coupled to the mechanical resonator must be satisfied for the 

Figure 5. The efficiency η of the second-order sideband generation is as a function of Δ and the transition 
frequency ωq of the two-level system. |Ω|/2π  = 19.8 MHz and the other parameters are the same as in Fig. 3.
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appearance of two-color second-order sidebands. Therefore, there is another variable the transition frequency ωq 
of the two-level system utilized to switch the one- and two-color second-order sideband generation.

In order to further verify the role of the coupling strength g between the two-level system and the mechanical 
resonator in the appearance of the two-color second-order sideband generation, Fig. 6 shows the efficiency η of 
the second-order sideband generation for different values of the coupling strength g. The blue curve shows the 
value of the η reaches its local minimum within a frequency window corresponding to about the line width of the 
cavity at Δ = ωb, which can also take place when the mechanical resonator is not coupled to a two-level system in 
an optomechanical system42. In fact, if the strength of the control field reduces appropriately, and the strength of 
the control field does not reach the condition of the appearance of OMIT, only a second-order sideband generates 
at Δ = ωb.

For other curves in Fig. 6, two-color second-order sidebands can be obtained when the two-level system is 
resonantly coupled to the mechanical resonator for relatively large coupling strength between the mechanical res-
onator and the two-level system. The splitting width of these two-color second-order sidebands is equal to 2 g that 
results from the Jaynes-Cummings coupling between the mechanical mode and the two-level system. That is to 
say, by transforming the coupling strength g between the mechanical mode and the two-level system, we can get 
two-color second-order sidebands at different frequencies of the output spectra. In addition, the different values 
of the coupling strength g also have an effect on the efficiency η of two-color second-order sideband generation. 
For example, the efficiency η of two-color second-order sideband generation at the coupling strength g/2π = 10 
MHz is the highest, which illustrates the coupling strength should be moderate.

Discussion
In summary, we have expounded the second-order sideband generation in a hybrid system, consisting of an 
optical cavity and a mechanical resonator coupled to a two-level system via Jaynes-Cummings interaction. We 
give the explanation to two-color second-order sideband generation distinguished from one-color second-order 
sideband generation in the physical mechanism. It can be seen how to achieve the switch between one- and 
two-color second-order sideband generation by shifting the transition frequency ωq of the two-level system and 
the detuning Δa between the cavity field and the control field, whose strength also affects the efficiency η of 
two-color second-order sideband generation. The two-color second-order sidebands at different frequencies of 
the output spectrum can be observed from the second-order upper sidebands by controlling the coupling param-
eter g between the mechanical resonator and the the two-level system. Our finding of two-color second-order 
sideband generation maybe be an enlightenment of multi-color second-order sideband generation when the 
mechanical resonator is coupled to multi-level systems.

It is very difficult for us to get an exactly analytical solution on nonlinear Eqs. (8–11). In the parameter config-
uration of OMIT, when the control field and the probe field are incident upon the optomechanical system, there 
are output fields with frequencies ωc ± nΔ where n is positive integer. Instead of consideration on all frequencies 
of output fields, we are interested in the situation of the second-order sideband generation with n = 2. Here we 
use the perturbation method to deal with the Eqs. (8–11), where the probe field is regarded as a perturbation on 
the stable system kept by the control field. We assume:

Figure 6. The efficiency η of the second-order sideband generation varies with the Δ for different values of the 
coupling strength g between the mechanical resonator and the two-level system. |Ω|/2π  = 19.8 MHz and the 
other parameters are the same as in Fig. 3.
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Then, substituting Eq. (17) to Eqs. (8–11), we can obtain sixteen equations, half of which describe the first-order 
sideband generation and other parts describe the second-order sideband generation. The concrete manifestation 
of equations are as follows:
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In particular, it is pointed out that because σz is a Hermitian operator, the relation Z Z0 0=⁎ , =+ −⁎Z Z1 1 , 
Z Z2 2=+ −⁎  are applied to Eq. (18) to simplify calculation.

After some derivation, we can obtain the values of −A1  and −A2  to describe the features of main output fields. 
By using the input-output relation:44

S e a
2 2

2 ,
(19)

out
a a

i t
aγ

ε
γ

γ+
Ω

+ =− Δ

the output fields can be described as follows:

S c c e c e c e c e , (20)out
i t i t i t i t

0 1 1 2
2

2
2= + + + ++ Δ − − Δ + Δ − − Δ

where c A2 / 2a a0 0γ γ= − Ω , c A2 a1 1γ=+ +, c A2 / 2a a1 1γ ε γ= −− − , γ=+ +c A2 a2 2 , c A2 a2 2γ=− −. The 
transmission of the probe field is defined as = −

γ ε−

t 1p
c2 /

2
a 1  which is used to discuss the phenomenon of 

OMIT.
The output field with frequencies ωc ± 2Δ is part of the output field with frequencies ωc ± nΔ and it has been 

studied in different optomechanical systems27,42. The term of ∆− −c e i t
2

2  and ∆+c e i t
2

2  individually describes the side-
band process of second-order upper and lower. In this paper we primarily discuss about the amplitude of the 
second-order upper sideband and of course one can use same method to give a discussion on the characteristic of 
the second-order lower sideband.
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