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Dynamic recruitment of ubiquitin 
to mutant huntingtin inclusion 
bodies
Katrin Juenemann1,2, Anne H. P. Jansen1, Luigi van Riel1, Remco Merkx3, Monique P. C. Mulder3,4, 
Heeseon An5,6, Alexander Statsyuk6, Janine Kirstein2, Huib Ovaa3,4 & Eric A. Reits1

Many neurodegenerative diseases, such as Huntington’s disease, are hallmarked by the formation of 
intracellular inclusion bodies (IBs) that are decorated with ubiquitin, proteasomes and chaperones. 
The apparent enrichment of ubiquitin and components involved in protein quality control at IBs 
suggests local ubiquitin-dependent enzymatic activity. In this study, we examine recruitment of 
ubiquitin to IBs of polyglutamine-expanded huntingtin fragments (mHtt) by using synthesized TAMRA-
labeled ubiquitin moieties. We show that intracellular TAMRA-ubiquitin is dynamic at mHtt IBs and 
is incorporated into poly-ubiquitin chains of intracellular substrates, such as mHtt, in a conjugation-
dependent manner. Furthermore, we report that mHtt IBs recruit catalytically active enzymes involved 
in (de)-ubiquitination processes based on novel activity-based probes. However, we also find that the 
overexpression of the GFP-ubiquitin reporter, unlike the endogenous ubiquitin and TAMRA-ubiquitin, 
becomes irreversibly sequestered as a ring-like structure around the mHtt IBs, suggesting a methodical 
disadvantage of GFP-tagged ubiquitin. Our data provide supportive evidence for dynamic recruitment 
of ubiquitin and ubiquitin (de)-conjugating activity at mHtt initiated IBs.

Targeting and degradation of misfolded proteins is key to cellular health and functioning, as accumulation of 
misfolded proteins can lead to aggregation and the formation of inclusion bodies (IBs). While many neurode-
generative diseases including Huntington’s disease (HD) are characterized by IBs, it is debated whether these 
structures represent the actual toxic species. Recently, it was shown that the inclusion body assembly deactivated 
a risk of apoptosis triggered by soluble mutant Huntingtin (mHtt) and initiated a cellular quiescence that led to a 
slower death by necrosis1.

The recruitment of active 26S proteasomes2, ubiquitin (Ub)3,4, chaperones but also numerous misfolded pro-
teins suggests that intracellular protein homeostasis is disrupted in HD5–8. Although several models have been 
proposed to explain the ubiquitin proteasome system (UPS) presence in IBs7,9,10, the reason for recruitment is 
still not known.

Ub accumulation at IBs can be found in postmortem human brain material, cell culture and in vivo models of 
HD4,11. HD is caused by a CAG repeat expansion in the Htt gene, leading to the synthesis of Htt with an extended 
polyglutamine stretch. A neuropathological hallmark of HD is the presence of Ub-positive IBs composed of 
mHtt N-terminal fragments containing the polyglutamine stretch12–14. Previously, we have shown that aggre-
gated mHtt N-terminal fragments are polyubiquitinated at its N-terminal region, suggesting Ub conjugation at 
IBs when mHtt is sequestered15. This is in agreement with another study showing that only a small percentage 
of soluble mHtt is indeed ubiquitinated5. However, soluble mHtt has a long half-life, indicating that mHtt is not 
efficiently targeted to the proteasome, leading to intracellular aggregation and IB formation by the intrinsically 
disordered structure16,17. Yet, accumulation of polyubiquitinated material, and UPS substrate reporters have been 
found in HD mouse models and postmortem human brain material, suggesting a link between the Ub system 
and the accumulation of mHtt4. One explanation of this accumulation could be an overload of the global protein 
folding capacity by substrate competition for the available chaperones and proteasomes, which in turn leads to 
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disturbances in Ub homeostasis when mHtt is expressed5,6,18. This process occurs during intracellular accumula-
tion of mHtt before IB formation and is accompanied by a delayed recruitment of GFP-tagged Ub to IBs5. Delayed 
ubiquitination of IBs was also observed in a HD mouse and C. elegans model, implying that formation of IBs and 
Ub recruitment are two independent processes happening one after another and not at the same time19,20. This 
model is supported by a recent study showing that ubiquitination of destabilized proteins is not required for these 
proteins to be sequestered into IBs7. However, the presence and pattern of Ub at IBs is not well understood and 
the mechanism underlying the recruitment and dynamics of Ub at already formed mHtt IBs remains unclear.

Here, we used Tetramethylrhodamine-labeled Ub (TAMRA-Ub) to investigate the dynamics of ubiquit-
ination of mHtt IBs in living cells. We show that intracellular TAMRA-Ub behaves like endogenous Ub and 
is recruited to IBs formed by mHtt. TAMRA-Ub is dynamic and covalently bound to substrates at IBs in a 
conjugation-dependent manner. Ub recruitment at IBs is, however, not dependent on a preceding ubiquitination 
of the aggregating protein mHtt, as shown using lysine-dead mHtt that cannot be ubiquitinated but forms aggre-
gates. Our data also show that IBs sequester catalytically active enzymes from the (de)-ubiquitination cascade. 
Furthermore, in contrast to TAMRA-Ub and endogenous Ub, overexpression of GFP-Ub does not exhibit the 
same intracellular behavior and is therefore not a suitable tool to study ubiquitination of IBs. This work contrib-
utes to a better understanding of intracellular Ub recruitment and dynamics at IBs by the development and usage 
of small fluorescently labeled Ub moieties.

Results
Fluorescent TAMRA-Ub behaves like endogenous Ub. To gain more insight into the dynamics of Ub, 
synthetic Ub labeled at the N-terminus with TAMRA (TAMRA-Ub) was introduced into living cells by electro-
poration in order to compare its cellular distribution and incorporation to endogenous Ub.

Microscopic analysis of Neuro-2A cells electroporated with TAMRA-Ub showed the intracellular distribution 
of TAMRA-Ub compared to endogenous Ub, stained with a Ub-specific antibody, one and 24 hours after electro-
poration (Fig. 1a). One hour after electroporation TAMRA-Ub was present in both the nucleus and cytoplasm, 
similar to endogenous Ub. However, within 24 hours after electroporation the TAMRA-Ub signal disappeared 
completely, suggesting degradation of the pool of fluorescent Ub. This is comparable to radioactive-labeled ubiq-
uitin in cells with a half-life of 10–20 hours21. In contrast, endogenous Ub signal remains due to constant newly 
synthesized Ub.

To test whether TAMRA-Ub is targeted for proteasomal degradation and reflects the behavior of endog-
enous Ub, cells were treated with the proteasome inhibitor Epoxomicin one hour after electroporation. Both 
TAMRA-Ub and endogenous Ub showed strong perinuclear accumulation after proteasomal inhibition, indicat-
ing Ub-enriched aggresome formation. These data are in agreement with previous observations demonstrating 
Ub-positive aggresome formation after proteasomal inhibition22,23.

Previously, it was shown in vitro that synthetic Ub can form all Ub-linkage types24. To analyze whether 
TAMRA-Ub is incorporated into endogenous poly-Ub chains, Neuro-2A cells were lysed two hours after 
electroporation with TAMRA-Ub and loaded on a SDS-PAGE for in-gel fluorescence detection (Fig. 1b). We 
observed TAMRA-positive ubiquitinated material in the low and high molecular range, suggesting proper incor-
poration into poly-Ub linkages. Further analysis revealed that TAMRA-Ub incorporation into endogenous 
polyUb-linked chains is conjugation-dependent as shown by the conjugation-defective mutant TAMRA-Ub 
G76V containing a glycine to valine mutation at amino acid 76. Treatment of TAMRA-Ub wild type (wt) and 
the conjugation-deficient mutant (G76V) electroporated Neuro-2A cells with the proteasomal inhibitor MG132 
resulted in an increase of high molecular weight TAMRA-positive polyUb material in TAMRA-Ub wt cells 
only (Fig. 1c, upper panel). TAMRA-Ub G76V was not efficiently incorporated into polyUb chains as shown by 
Supplementary Fig. S1. To show TAMRA-Ub conjugation onto protein substrates directly, we performed an in 
vitro ubiquitination assay with S5a, a Ub substrate (see Supplementary Fig. S2). Here we could clearly show that 
TAMRA-Ub like Ub is conjugated as a mono-Ub to the protein S5a, confirming that the TAMRA moiety does 
not interfere with substrate ubiquitination. Together, this indicates that the N-terminal fluorescent label does not 
interfere with the Ub-conjugation process and that TAMRA-Ub is covalently bound to ubiquitinated substrates, 
indicating that TAMRA-Ub behaves like endogenous Ub and is therefore a suitable tool to study intracellular 
Ub-dependent processes.

Conjugation-dependent recruitment of TAMRA-Ub to mHtt IBs. To assess Ub localization at IBs, 
we studied TAMRA-Ub recruitment to mHtt IBs formed in two different HD cell models. Transiently trans-
fected Neuro-2A cells and stable striatal ST14A cells expressing Htt-exon1-97Q-H4 were electroporated with 
TAMRA-Ub, and 24 hours later stained with an anti-HA antibody to detect Htt IBs by confocal microscopy 
(Fig. 2a). In both neuronal cell lines TAMRA-Ub was found to be present in the core of the Htt IBs. To determine 
the correct optical section of the IB core, sectional profiling of the Z-stack was performed based on the anti-HA 
antibody staining of the IB. Note that the primary and secondary antibodies are not able to reach the dense core 
of the Htt IB rather forming a ring around it after fixation, whereas TAMRA-Ub is detectable in the core of the IB. 
However, when mHtt-transfected Neuro-2A cells were electroporated with TAMRA-Ub and treated with epox-
omicin TAMRA-Ub was mainly recruited to aggresomes induced by proteasome inhibition (see Supplementary 
Fig. S3). In contrast, when in a similar setup no proteasome inhibitor was added but cells were electroporated 
again with TAMRA-Ub and visualized within 1 hour by microscopy, both free TAMRA-Ub and TAMRA-Ub 
recruited into IBs was observed. Together, this indicates that in non-stressed cells free TAMRA-Ub is degraded in 
time, whereas mHtt IBs recruit TAMRA-Ub, which is prevented upon proteasome inhibition where TAMRA-Ub 
is recruited to epoxomicin-induced aggresomes.

To determine whether the recruitment of TAMRA-Ub to IBs requires covalent binding to sub-
strates, TAMRA-Ub wt and the mutant variant G76V were electroporated into Neuro-2A cells expressing 
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Htt-exon1-97Q-H4. In contrast to TAMRA-Ub wt, the conjugation-deficient mutant G76V was not recruited 
to IBs, indicating that conjugation is required for recruitment into IBs (Fig. 2b). The loss of diffuse TAMRA-Ub 
fluorescent signal in the cytoplasm indicates proteasomal degradation over time comparable with TAMRA-Ub 
wt (Fig. 1a). Quantification of TAMRA-Ub-positive Htt IBs in Neuro-2A cells revealed no TAMRA-Ub G76V 
co-localization with IBs compared to TAMRA-Ub wt (Fig. 2c).

Moreover, Neuro-2A cells treated with activity-based probe A3 (ABP A3), an E1 inhibitor of ubiquitin and 
Nedd8 pathways25, followed by cell lysis showed efficient inhibition of protein ubiquitination with a decrease of 
polyubiquitinated material (Fig. 2d). To test whether the inhibition of ubiquitination with ABP A3 reduces the 
amount of ubiquitinated proteins in the Htt IBs, a Filter trap assay was performed on Neuro-2A cell lysates with 
IBs formed by the protein Htt-exon1-97Q-H4. Levels of Ub-conjugated proteins in IBs were reduced despite 
unchanged mHtt levels detected by the HA antibody staining (Fig. 2e). These data indicate that ubiquitination of 
IBs is dependent on the active Ub-conjugation process rather than sequestration of non-conjugated Ub.

Figure 1. TAMRA-Ub behaves like endogenous Ub. (a) Confocal images of intracellular ubiquitin localization 
in Neuro-2A cells one and 24 hours after TAMRA-Ub electroporation. One hour after electroporation cells were 
treated with 50 nM epoxomicin and stained with an anti-Ub antibody after fixation. Nucleus was stained with 
DAPI. Scale bar: 5 µm. (b) Neuro-2A cell lysates were harvested two hours after electroporation of TAMRA-Ub 
and loaded on a SDS-PAGE gel. Fluorescent scan shows TAMRA-Ub incorporated in the poly-Ub tree. (c) 
Fluorescence scan and immunoblot of SDS-PAGE loaded with cell lysates of Neuro-2A cells electroporated with 
TAMRA-Ub wildtype (wt) or mutant TAMRA-Ub G76V. One hour after electroporation cells were treated with 
20 µM MG132 for additional two hours. Ubiquitinated proteins were detected by anti-Ub antibody. β-actin was 
used as a loading control.
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Figure 2. TAMRA-Ub is recruited into Htt IBs. (a) Confocal images of Htt-exon1-97Q-H4 protein expressed in 
transient transfected Neuro-2A cells and stable ST14A cells. 24 hours after transfection cells were electroporated 
with TAMRA-Ub and incubated for additional 24 hours. Fixed cells were immuno-stained with anti-HA 
antibody and nuclei were stained with DAPI. Scale bar: 3 µm. (b) Confocal images of Neuro-2A cells expressing 
wild type Htt-exon1-97Q-H4. Cells were electroporated with TAMRA-Ub wild type and the mutant variant 
G76V 24 hours after transfection and incubated for additional 24 hours. After fixation cells were stained with 
an anti-HA antibody and the nuclei were stained with DAPI. Scale bar: 2 µm. (c) Quantification of TAMRA-Ub 
positive IBs. Neuro-2A cells expressing Htt-exon1-97Q-C4 were electroporated with TAMRA-Ub wt and 
the mutant G76V 24 hours after transfection and were incubated for additional 24 hours. Cells were stained 
with FlAsH and fixed for microscopic analysis. The percentage of TAMRA-Ub and mutant TAMRA-Ub 
G76V positive Htt IBs was determined ***p < 0.001, (n = 180). Means and SD are shown. (d) Western blot 
of Neuro-2A cells expressing Htt-exon1-97Q-H4 were treated with the E1 inhibitor ABP A3 for 6 hours. 
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Recruitment of TAMRA-Ub to mHtt IBs is independent of mHtt ubiquitination. Next, we investi-
gated the ability of TAMRA-Ub to become conjugated to mHtt in IBs. In a previous study, we could show by using 
a formic acid-based aggregate solubilization protocol that aggregated mHtt-exon1 is ubiquitinated15. Our new 
data revealed incorporation of TAMRA-Ub into chains of Ub-Htt, shown by in-gel fluorescence of solubilized 
TAMRA-labeled Htt species (Fig. 3a). TAMRA-Ub Htt species had the same molecular weight as the HA-stained 
endogenous Ub-Htt conjugates, indicating proper TAMRA-Ub incorporation (asterisks).

To test whether mHtt ubiquitination at IBs is responsible for TAMRA-Ub recruitment to IBs, we expressed 
the mutant 3xR mHtt-exon1-H4, in which three arginines replace the three N-terminal lysine residues neces-
sary for Htt ubiquitination26 and subsequently stained the IBs with an anti-HA antibody (Fig. 3b). TAMRA-Ub 
was recruited to 3xR mHtt-induced IBs. Furthermore, solubilization of mHtt and 3xR mHtt aggregates reveal 
Ub-conjugation onto mHtt but not onto 3xR mHtt proteins with similar Ub staining independent of mHtt 
lysine residues (Fig. 3c), confirming previous data showing that ubiquitination of IBs is also dependent on 
co-sequestration of other ubiquitinated proteins and not solely on Htt ubiquitination15.

Together, these data suggest that TAMRA-Ub behaves like endogenous Ub and is conjugated to the intracellu-
lar substrate, mHtt at IBs, however, co-localization of TAMRA-Ub is rather dependent on TAMRA-Ub conjuga-
tion to co-sequestered proteins then conjugation to mHtt only.

TAMRA-Ub is dynamic at mHtt IBs. The mobility of polyglutamine-expanded proteins, such as 82Q-GFP and 
Htt-91Q-GFP, localized to the IBs is strongly reduced, showing no on/off rate when performing photobleaching exper-
iments7,27. To study dynamics of Ub at mHtt-induced IBs, TAMRA-Ub mobility was determined by FRAP, a technique 
that measures the mobility of fluorescent molecules in living cells by photobleaching a region of the fluorescent cell 
and record recovery of fluorescence due to diffusion, active transport, or the on/off rate of fluorescently-tagged pro-
teins from intracellular structures such as an IB. TAMRA-Ub-electroporated Htt-exon1-97Q-C4-expressing Neuro-2A 
cells were stained with FlAsH to locate TAMRA-Ub-positive Htt IBs in the cytoplasm (Fig. 4a). To measure dynamics 
of TAMRA-Ub at IBs, recovery of fluorescence was monitored for a time period of 20 minutes after photobleach-
ing. FRAP analysis at IBs clearly showed a significantly higher mobility of TAMRA-Ub compared to FlAsH-stained 
mHtt-exon1 with a mobile fraction of 99 ± 12% and 37 ± 3.5% (p < 0.001), respectively (Fig. 4b,c).

To test whether TAMRA-Ub mobility at IBs was dependent on Htt ubiquitination, the fluorescent recovery of 
FlAsH-stained mHtt-exon1 was compared to the ubiquitin conjugation -deficient mutant 3xR mHtt-exon1. We 
observed no significant difference in the mobile fraction of TAMRA-Ub at IBs formed by mHtt and 3xR mHtt, 
respectively (Fig. 4d,e). These data confirm our previous results, indicating Ub dynamics independent of Htt 
ubiquitination on IBs (Fig. 3b).

Ub is present in the core and periphery of the IBs in HD mouse models. In order to validate our find-
ings in vivo, we studied ubiquitination of Htt IBs in two different HD mouse models by immunofluorescence staining 
of mouse brain sections. Cortex tissue from the transgenic R6/2-HD model, expressing human mHtt-exon128, and 
the knock-in HdhQ150 model was used29. Due to the sectioning of tissues the core of intracellular inclusion bodies 
was accessible for staining with the S829 antibody that was raised against the N-terminus of polyglutamine-expanded 
Htt-exon130, in combination with a ubiquitin antibody. In both mouse models, ubiquitin is present in cytoplasmic 
and nuclear IBs, respectively (Fig. 5a,b). Furthermore, we measured equal fluorescent intensities of both antibody 
stainings, which overlap in the periphery and core of the IB confirming our cell-based studies with TAMRA-Ub that 
endogenous Ub is present in the core and periphery of the IBs in HD cell models (Fig. 2a).

IBs sequester catalytically active enzymes from the (de)-ubiquitination cascade. With the 
development of activity-based probes and novel inhibitors it has become possible to identify and localize enzymes 
involved in protein (de)-ubiquitination. The activity-based probe for E1-E2-E3 enzymes (Cy5-Ub-Dha) reacts 
with the active site cysteine residue, thereby trapping proteins involved in the E1-E2-E3 cascade31. Cy5-Ub-PA is 
a specific inhibitor of all three major DUB (deubiquitinating enzyme) families: UCH, USP and OTU, allowing the 
fluorescent labeling of intracellular DUBs.

Previous studies have shown that mHtt IBs are positive for Ub and proteasomes, suggesting UPS-related 
enzymatic activities within IBs2,32. To analyze whether IBs of mHtt-exon1-97Q-C4-transfected Neuro-2A cells 
recruit active (de)-ubiquitinating enzymes, cells were electroporated with chemically synthesized activity-based 
probes for the E1-E2-E3 enzyme cascade and DUBs. Confocal microscopy analysis of FlAsH-stained IBs revealed 
enrichment of catalytically active enzymes of the ubiquitination machinery within IBs (Fig. 6a). Interestingly, the 
DUB-activity probe labeled active cysteine protease DUBs recruited at IBs in ring-like structure in contrast to the 
E1-E2-E3 enzymes probe, suggesting that active DUBs are mainly present at the periphery of IBs.

Previously, it was shown that K63-linked polyubiquitin is associated with aggregates, probably playing a 
role in aggresome formation and/or clearance33,34. To further study recruitment of specific enzymes involved 
in protein (de)-ubiquitination at cytoplasmic IBs the K63-specific E3 ligase NEDD4.1 and the DUB USP5, were 
co-expressed with the mHtt-exon1 protein. Confocal microscopy analysis clearly showed NEDD4.1 and USP5 
co-localization with ReAsH-stained mHtt IBs (Fig. 6b). The co-sequestered DUB USP5 is mainly localized on 
the periphery of the IB, which is in agreement with the observed DUB activity probe staining of IBs (Fig. 6a). 

Ubiquitinated material was stained with the anti-ubiquitin antibody. β-actin was used as a loading control. (e) 
Filter trap assay (doublets) of mHtt aggregates from Neuro-2A cells transient transfected with the Htt-exon1-
97Q-H4 construct for 48 hours. ABP A3 exposure reduces the Ub moiety on SDS-insoluble mHtt aggregates 
detected by anti-HA and anti-Ub antibodies.
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Similarly, endogenous USP5 and NEDD4 are recruited into IBs, as shown by Filter trap assay (Fig. 6c). These 
results demonstrate that mHtt IBs recruit catalytically active proteins involved in protein (de)-ubiquitination.

GFP-Ub becomes irreversible sequestered to mHtt IBs. To gain more insight in the dynamics and 
pattern of substrate ubiquitination, several studies employed Ub N-terminally tagged with a fluorescent fusion 

Figure 3. Aggregated mHtt is conjugated with TAMRA-Ub. (a) Insoluble fraction of Neuro-2A cell 
lysate 48 hours after transient transfection with Htt-exon1-97Q-H4. After 24 hours expression cells were 
electroporated with TAMRA-Ub and incubated for additional 24 hours. Formic acid-dissolved inclusion bodies 
were loaded on a SDS-PAGE and TAMRA signal of ubiquitinated mHtt (asterisks) was detected by fluorescence 
scan. mHtt proteins were detected on Western blot by anti-HA immunostaining. Non-electroporated cells 
expressing Htt-exon1-97Q-H4 were used as a control. (b) Confocal images of Neuro-2A cells expressing 
the mutant 3xR Htt-exon1-97Q-H4. Cells were electroporated with TAMRA-Ub wild type 24 hours after 
transfection and incubated for additional 24 hours. After fixation cells were stained with an anti-HA antibody 
and the nuclei were stained with DAPI. Scale bar: 2 µm. (c) Insoluble fractionation of Neuro-2A cell lysate 
48 hours after transient transfection with Htt-exon1-97Q-H4 or 3XR Htt-exon1-97Q-H4. Formic acid-dissolved 
inclusion bodies were loaded on a SDS-PAGE. Htt proteins and ubiquitinated material were detected on 
Western blot by anti-HA and anti-Ub immunostaining.
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Figure 4. Dynamics of TAMRA-Ub at mHtt IBs. a) FRAP analysis of TAMRA-Ub and FlAsH-stained Htt-
exon1-97Q-C4 at cytoplasmic IBs of Neuro-2A cells. 24 hours after transfection cells were electroporated 
with TAMRA-Ub and incubated for additional 24 hours. Red or yellow semi-circles indicate the region-
of-interest (ROI) that was photobleached (0 sec). White rectangles indicate non-bleached areas used as 
a control for photobleaching and normalization. Fluorescence recovery of either mHtt or TAMRA-Ub 
on cytoplasmic IBs was measured over time. Scale bar: 2 µm. (b) Analysis of fluorescent recovery in 
bleached areas indicates a higher mobility of TAMRA-Ub versus mHtt in IBs over time. (c) Quantitative 
analysis reveals a significantly higher fluorescent recovery of TAMRA-Ub compared to mHtt 20 min after 
photobleaching. ***p < 0.001. (d) Analysis of fluorescent recovery of TAMRA-Ub in bleached areas of 
mHtt and 3xR mHtt induced cytoplasmic IBs indicates similar ubiquitin mobility. (e) Quantitative analysis 
of TAMRA-Ub on mHtt IBs reveals no significant difference of fluorescent recovery of TAMRA-Ub on 
mHtt compared to 3xR mHtt 20 min after photobleaching. Means and SD are shown.
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protein5,35,36. These fusion proteins have been broadly used to study for example the behavior of Ub in context 
of protein trafficking, DNA repair, degradation and IB formation. Live cell imaging experiments showed that 
the mobile fraction of diffused GFP-Ub is slower compared to the conjugation-deficient mutant GFP-UbK0, G76V, 
indicating that the main pool of GFP-Ub is conjugated to substrates36.

The fluorescent protein GFP, with a size of 27 kDa, is approximately three times larger than the 8.5 kDa 
protein Ub, which could interfere with endogenous substrate ubiquitination or Ub chain formation (Fig. 7a). 
When Neuro-2A cells were transiently co-transfected with plasmids encoding GFP-Ub and Htt-exon1-97Q-C4, 
GFP-Ub formed a distinct ring around the mHtt IBs labeled by ReAsH with overlapping fluorescent signals in 
the periphery of the IB (Fig. 7b). This is in contrast to both TAMRA-Ub and endogenous Ub distribution in 
IBs in vitro and in vivo, respectively, where Ub can be found in both the core and periphery of the IBs (Fig. 2a,b 
and 5a,b). To test whether the formation of a GFP-Ub ring is due to expression time needed by the transiently 
co-transfected GFP-Ub plasmids, resulting in delayed recruitment to only the outer layer of mHtt, we transfected 
Neuro-2A cells with GFP-Ub first, followed by transfection with Htt-exon1-97Q-C4 24 hours later, and vice versa 
(Supplementary Fig. S4). In both cases Htt IBs exhibited similar GFP-Ub rings independent of a pre-existing 
GFP-Ub pool at the time of IB formation. In addition, co-transfection with different plasmid ratios of mHtt versus 

Figure 5. mHtt IBs in transgenic R6/2 and homozygous HdhQ150 mouse models are ubiquitin positive. 
Confocal images of ubiquitin co-stained with mHtt IBs in (a) 14-week-old R6/2 mouse brain and (b) 22-month-
old HdhQ150 mouse brain slices. Exemplary confocal pictures of mouse cortex tissue containing ubiquitin-
positive aggregates, note that ubiquitin antibody staining is present in the core of the aggregate and correlates 
with the intensity of the Htt antibody staining. IBs were stained with an anti-Ub antibody P4D1 and anti-Htt 
antibody S829. Nuclei were stained with DAPI. Scale bar upper panel is 8 µm; lower panel is 0.25 µm.
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GFP-Ub was performed to analyze whether GFP-Ub locatization depends on the intracellular level of GFP-Ub 
(see Supplementary Fig. S5). Since no differences in Htt IBs recruitment of GFP-Ub in a ring-like structure was 
observed, this indicates that the typical recruitment of GFP-Ub is not due to the levels or the timing of GFP-Ub 
expression.

To assess whether expression of GFP-Ub affects the endogenous ubiquitination of the substrate mHtt, 
Htt-exon1-97Q was co-expressed with GFP-Ub and GFP as control, respectively. After 48 hours cells were 
lysed and the IB containing insoluble fraction was isolated and dissolved with formic acid. In contrast to mHtt 
co-expressed with the GFP control, GFP-Ub co-expression lead to a decrease in mHtt ubiquitination in the low 
molecular range shown by the immunostaining with the antibody against the polyglutamine-stretch (Fig. 7c). 
Conjugation of GFP-Ub onto mHtt was shown with a GFP antibody (arrow). Moreover, GFP-Ub conjugates 
(asterisk) were detectable in the insoluble fraction of Neuro-2A cells expressing mHtt, which might represent 
GFP-Ub incorporation into polyUb chains of mHtt and other sequestered proteins. Further analysis concerning 
the dynamics of GFP-Ub at IBs by FRAP revealed that GFP-Ub is immobile compared to TAMRA-Ub with a 
mobile fraction of 11 ± 3.2% (p < 0.001), suggesting sequestration of GFP-Ub in a ring-like structure at mHtt IBs 
with no on/off rate in time (Fig. 7e,f), similar as what we observed before4.

Figure 6. mHtt IBs sequester active enzymes from the (de)-ubiquitination cascade. (a) Confocal images of 
Htt-exon1-97Q-C4 protein expressed in transient transfected Neuro-2A cells. 24 hours after transfection cells 
were electroporated with the Cy5-labeled activity-based probes Ub-Dha, which labels active E1-2-3 enzymes, 
and Cy5-Ub-PA, which labels active DUBs. One hour after electroporation cells were FlAsH-stained and fixed 
for imaging. (b) Confocal images of transient transfected Neuro-2A cells co-expressing Htt-exon1-97Q-C4 with 
GFP-NEDD4.1 and GFP-USP5, respectively. 24 hours after transfection cells were ReAsH-stained and fixed 
for imaging. Nuclei were stained with DAPI. Scale bar: 6 µm. (c) Filter trap assay (doublets) of mHtt aggregates 
from Neuro-2A cells transient transfected with the Htt-exon1-97Q-H4 construct for 48 hours. mHtt aggregates 
sequester endogenous NEDD4 and USP5. Aggregates are stained by anti-HA, anti-Ub, anti-NEDD4 and anti-
USP5 antibodies.
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These data indicate that the intracellular action of the fusion protein GFP-Ub on mHtt IBs is not equivalent to 
endogenous Ub or electroporated TAMRA-Ub. GFP-Ub becomes irreversibly sequestered around the IB, which 
is in contrast to our previous results in vivo. This indicates that overexpression of Ub N-terminally tagged with 
a fluorescent fusion protein is not a suitable tool to study intracellular Ub conjugation and dynamics at IBs and 
obtained data need to be considered carefully.

Figure 7. The action of overexpressed GFP-Ub on mHtt IBs is not equivalent to TAMRA-Ub. (a) Scheme of 
GFP-Ub versus TAMRA-Ub. (b) Confocal images of transient transfected Neuro-2A cells co-expressing Htt-
exon1-97Q-C4 and GFP-Ub. 48 hours after transfection cells were ReAsH-stained and fixed for imaging. Scale 
bar: 5 µm. (c) Insoluble fraction of Neuro-2A cell lysate 48 hours after transient co-transfection of cells with 
Htt-exon1-97Q and either GFP or GFP-Ub. Formic acid-dissolved aggregates were loaded on a SDS-PAGE 
and immunoblotted with the antibodies anti-polyQ and anti-GFP. A band of the size of mono-ubiquitinated 
GFP-Ub-mHtt was detected (arrow) next to GFP-Ub in a high molecular range (asterisk). (d) FRAP analysis 
of GFP-Ub in cytoplasmic IBs of Neuro-2A cells 48 hours after transfection. Fluorescence recovery of GFP-Ub 
on cytoplasmic Htt IBs was measured over time. Red semi-circle indicates where bleaching was directed. White 
rectangle indicates non-bleached area used as a control for photobleaching and normalization. Scale bar: 5 µm. 
(e) Analysis of fluorescent recovery in bleached areas of Htt IBs indicates a higher mobility of TAMRA-Ub 
versus GFP-Ub over time. (f) Quantitative analysis reveals a significantly higher fluorescent recovery of 
TAMRA-Ub compared to GFP-Ub 20 min after photobleaching. ***p < 0.001. Means and SD are shown.
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Discussion
HD is a well-studied polyglutamine disease and an ideal model to investigate the composition and dynamics of 
IBs formed by aggregation-prone N-terminal fragments of mHtt and co-sequestered proteins. The presence of 
Ub, active proteasomes, chaperones and sequestered proteins that are in a nonnative state at IBs, indicates that 
intracellular protein homeostasis is disrupted2,5–8,11. However, the mechanism underlying the recruitment and 
dynamics of Ub at already formed mHtt IBs remains unclear.

In the present study, we have shown that TAMRA-Ub, a newly developed fluorescently labeled tool to 
study intracellular Ub kinetics, is dynamic at mHtt IBs and is recruited in a conjugation-dependent manner. 
TAMRA-Ub is a synthetic Ub derivative, which is incorporated into endogenous Ub chains and able to form all 
Ub-linkage types. This makes it a suitable tool for studies to follow intracellular Ub conjugation. Furthermore, 
TAMRA-Ub is conjugated onto substrates forming mono-ubiquitinated protein species (Supplementary Fig. S2). 
The advantage of using TAMRA-Ub is the introduction of the synthetic polypeptide to cellular systems for post-
translational protein modification analysis at any desired time point and the small molecular weight of the fluoro-
phore (0.51 kDa) in comparison with the already small Ub protein (8.5 kDa), which should not interfere with its 
function.

Interestingly, TAMRA-Ub is distributed throughout the entire IB and not in a ring around it. This is in 
contrast to the ring-like distribution of the chaperone Hsp70 but also proteasomes that were initially within 
the core of IBs but redistributed towards the periphery in time2,37. We confirmed this result with immunos-
taining of mouse brain sections in two different HD mouse models, where the core of intracellular IBs was 
accessible for the Ub antibody. These data show that the core of mHtt-induced IB is amongst others com-
posed of ubiquitinated proteins. Both the TAMRA-Ub conjugation-deficient mutant G76V and the treat-
ment of cells with the E1 inhibitor ABP A3 proved that Ub recruitment to IBs is conjugation-dependent, 
as shown before7. In this work, Ub fused to YFP was immobilized when recruited to IBs, with no exchange 
between IB and the cytosol or within the IB itself. In contrast, our FRAP analysis clearly showed that there 
is TAMRA-Ub mobility over a time period of 20 minutes, suggesting the reversible recruitment of ubiquiti-
nated proteins, or continuous ongoing (de)-ubiquitination events within the IB, leading to the exchange of 
Ub itself between the IB and the cytoplasm. In addition, our data show that active DUBs and enzymes from 
the ubiquitination cascade are co-sequestered at IBs corroborating the possibility that Ub (de)-conjugation 
occurs at IBs directly. This is in accordance with our previous study, which already showed enzymatic activ-
ity at IBs by staining of mHtt IBs in cell culture and the R6/2 mouse model with activity-based probes for 
catalytic activity of proteasomes2. There is no strong evidence yet that recruited 26 S proteasomes associated 
with polyubiquitinated proteins at IBs are capable of dissociating these aggregated proteins for proteolysis. 
However, it was recently shown that the proteasome shuttle factor UBQLN2 acts with the HSP70-HSP110 
disaggregase machinery to clear protein aggregates via the 26 S proteasome38. Alternatively, IBs can be 
cleared by macroautophagy in a ubiquitin-dependent manner, as lysine 63-linked ubiquitination promotes 
the formation and autophagic clearance of IBs associated with neurodegenerative diseases. Similar to pro-
teasomal degradation, this should be preceded with a disaggregation event in order to target insoluble mHtt 
for clearance by autophagy as IBs are too large to be cleared by autophagy34.

To differentiate between direct mHtt ubiquitination at IBs and ubiquitination of other sequestered substrates, 
the conjugation-deficient mutant 3xR mHtt was expressed, showing that IBs formed by this mutant are still also 
positive for Ub15,26. While FRAP analysis of IBs can only measure the entire FlAsH-stained IBs discrimination 
between mainly immobile mHtt and a fraction of dynamic, soluble mHtt species being recruited, is not possi-
ble. However, our data clearly shows that Ub dynamics on IBs formed by mHtt and the 3xR mHtt mutant are 
comparable.

Soluble mHtt is not efficiently targeted by the 26 S proteasome as apparent by its long half-life, and the lack of 
efficient ubiquitination for proteasomal degradation leads to intracellular aggregation driven by the intrinsic dis-
ordered structure of mHtt5,15,16. Other studies investigated the targeting of Htt to the UPS by analyzing Htt tagged 
with a fluorescent protein or by performing native immunoprecipitations to pulldown ubiquitinated Htt from 
cells or tissue, however, the influence of the fusion protein on Htt degradation and the co-immunoprecipitated 
Ub conjugates associated with Htt might lead to misinterpretation of results39,40. Previously, we could show that 
aggregated mHtt is polyubiquitinated at IBs, suggesting that N-terminal mHtt fragments become ubiquitinated 
at IBs15,17. Inhibition of the proteasome did not increase mHtt levels at IBs, suggesting that the ubiquitination 
linkages are insufficient for proteasomal recognition, or that polyubiquitinated mHtt remains irreversibly seques-
tered in IBs and that proteasomes are unable to target or extract aggregated mHtt. Both models might explain 
our findings of the presence of Ub-conjugated mHtt and active enzymes involved in the protein ubiquitination 
process at IBs. Why DUB activity is mainly present in the periphery and E1-E2-E3 activity throughout the IB, and 
whether this recruitment is a specific mechanism will be interesting to explore. Co-sequestration of the specific 
E3 enzymes ITCH, TRAF6, UBE3A, UHRF2 and Parkin with mHtt IBs was shown by fluorescent staining in 
cellular models of HD32,40–44. Whether these proteins are involved in the ubiquitination of mHtt at the IB site is 
still unknown.

Thus, by investigating the accumulation of Ub-conjugates at IBs, our results show that IBs are far from static 
structures that irreversibly sequester proteins, as (de)ubiquitination is continuous ongoing. For the first time, 
we showed that IBs harbor enzymatically active proteins involved in the (de)-ubiquitination process. Further 
research is needed to elucidate possible mechanisms by which Ub-conjugation of aggregated proteins at IBs might 
be involved in chaperone-mediated disaggregation by specific intracellular disaggregation complexes in order to 
target these proteins to ubiquitin-specific clearance pathways synergistically.
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Methods
Constructs. Wild type and 3xR mutant variant of Htt-exon1-97Q with an H4- (His-HA-HA-His) or C4- 
(Tetracysteine) tag were previously described17. GFP-Nedd4.1 was kindly provided by P. Hordijk (VUMC, 
Amsterdam, The Netherlands). GFP-USP5 was kindly provided by S. Urbé (University of Liverpool, UK) and 
GFP-Ub was generated as described previously3.

Generation of ST14A cell line stably expressing mHtt. ST14A cells, previously derived from rat 
embryonic striatum45, were used to generate a stable cell line expressing the N-terminal fragment of mHtt 
with the H4-tag. Htt-exon1-97Q-H4 was cloned into the pLenti6.3-DEST vector for expression in cells using 
the ViraPower Lentiviral Expression Systems (Invitrogen). Transduction was performed by infection with viral 
supernatant from the 293FT producer cell line. Blasticidin (10 μg/ml) was used for selection of stably transduced 
cells. Single colonies were screened for Htt expression by western blot.

Cell culture and transfection. Neuro-2A and ST14A cells were maintained in DMEM supplemented with 
10% fetal calf serum, 1 mM glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin in a humidified incu-
bator with 5% atmospheric CO2. Neuro-2A cells were cultured at 37 °C and ST14A cells at 33 °C. Cells were 
seeded in 35 mm2 culture dishes and transfected with either Polyethylenimine (Neuro-2A cells) or Lipofectamine 
2000 (ST14A cells) according to the manufacturer’s instructions (Polysciences Europe). The E1 activating enzyme 
activity-based probe (ABP) A3 was a kind gift from A. Statsyuk (Northwestern University) and dissolved in 
DMSO46. Neuro-2A cells were transfected and incubated for 48 hours. ABP A3 was added to the cells for the last 
6 hours of incubation with an endconcentration of 250 nM. Treatment with DMSO served as a control.

Ubiquitin Synthesis. Wild type (wt) and mutant (G76V) TAMRA-ubiquitin (TAMRA-Ub), deubiquitinat-
ing enzyme (DUB) activity probe Cy5-Ub-PA and the activity-based E1-E2-E3 probe Cy5-Ub-Dha were synthe-
sized as described previously24,31,47,48. Powder of synthesized TAMRA-Ub and DUB activity-based probe were 
dissolved in 10 μl DMSO then 10 μl ddH2O was added and subsequently diluted to 1 ml with mannitol buffer to 
prepare a 100 μM working solution for cell electroporation. The activity-based probe Cy5-Ub-Dha was first dis-
solved in 10 μl DMSO and added to 1 ml mannitol buffer to prepare a working solution of 5–50 mg/ml.

Electroporation. Electroporations were performed in a 35 mm2 dish using the Bio-rad Gene pulser II 
Electroporation machine supplemented with a Bio-rad radio frequency (RF) module and a Petri Pulser electrode 
(BTX Harvard Apparatus). After removing the medium, cells were washed two times with warm (37 °C) phosphate 
buffered saline (PBS) followed by two washes with cold (4 °C) mannitol buffer (2 mM HEPES, 15 mM K2HPO4/
KH2PO4, 250 mM mannitol, 1 mM MgCl2, pH = 7.2). After in-dish electroporation, the cells were incubated with the 
synthetic Ub polypeptides dissolved in mannitol buffer on ice for five minutes, followed by two times washing with 
cold (4 °C) mannitol buffer and warm (37 °C) PBS. Warm conditioned medium was put back on the cells to increase 
survival. Due to extreme light sensitivity of the fluorophores, all procedures were performed in the dark. One hour 
after electroporation, cells were either incubated with 50 nM epoxomicin (Sigma-Aldrich) for additional 23 hours 
or 20 μM MG132 for one hour followed by either 4% PFA fixation on coverslips for live cell analysis or cell harvest.

SDS-PAGE and immunoblotting. For SDS-PAGE and subsequent Western blotting cells were harvested in 
lysis buffer (50 mM Tris/HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton-X100, 20 mM NEM, supplemented 
with complete mini protease inhibitor cocktail (Roche)). After protein concentration was determined with a 
Bradford protein assay, total cell lysates were boiled for 10 min at 99 °C with 1× laemmli sample loading buffer 
and loaded onto a SDS-PAGE gel. TAMRA-Ub was detected with in gel fluorescence using a Typhoon imager 
(GE Healthcare) with the 580 BP 30 filter. For immunoblotting proteins were transferred to a nitrocellulose mem-
brane (0.45 µm pore size, Schleicher & Schuell) and blocked with 5% milk, incubated with primary antibodies 
anti-polyQ (1:1000, Sigma-Aldrich 3B5H10), anti-HA (1:1000, Sigma- Aldrich, H3663), polyclonal rabbit anti-GFP 
(1:1000, kindly provided by J. Neefjes, NKI, The Netherlands), anti-β-actin (1:1000, Santa Cruz, SC-130656) and 
anti-ubiquitin (1:100, Sigma-Aldrich, U5379), and subsequently incubated with secondary antibodies IRDye 680 or 
IRDye 800 (1:10,000; LI-COR Biosciences). Infrared signal was detected using the Odyssey imaging system (Licor). 
For Soluble/insoluble fractionation and Filter trap assay cells were harvested and lysed according to the protocol 
described before15. For the Filter trap assay aggregates were spotted onto a cellulose acetate membrane (0.2 µm pore 
size, Whatman) in doublets. For antibody staining membranes were treated like Western blot membranes and were 
incubated with primary antibodies anti-HA (1:1000, Sigma- Aldrich, H3663), anti-ubiquitin (1:100, Sigma-Aldrich, 
U5379), anti-NEDD4 (1:500, Proteintech, 21698-1-AP) and anti-USP5 (1:500, Proteintech, 66213-1-lg), and subse-
quently incubated with secondary antibodies IRDye 680 or IRDye 800 (1:10,000; LI-COR Biosciences).

ReAsH and FlAsH staining. Cells were transfected with the appropriate C4-tag containing plasmids. 
Cells were cultured on glass coverslips, rinsed with pre-warmed 1× PBS buffer and labeled for 30 min with 
pre-warmed DMEM containing 1 μM ReAsH or FlAsH (kindly provided by H. Overkleeft, University Leiden, 
The Netherlands) and 10 μM 1,2-ethanedithiol (EDT, Sigma-Aldrich) at 37 °C. After staining cells were washed 
twice with 1× PBS for subsequent analysis.

Mouse models and tissue preparation. Brain sections from 14-week-old R6/2 mice28 and 22-month-old 
homozygous HdhQ150 mice29 were prepared as described previously49. All experimental procedures performed 
on mice were conducted under a project license from the Home Office and approved by the King’s College London 
Ethical Review Process Committee in the UK, and are in accordance with relevant guidelines and regulations. Mice 
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were anesthetized by i.p, injection of 100 µl sodium pentobarbital and perfused with 4% PFA in 0.1 M sodium phos-
phate buffer (NaH2PO4, pH 7.4). After dissecting the brains from the skull, brains were post-fixed in 4% PFA at 4 °C 
overnight and stored in 0.1 M NaH2PO4/0.5% PFA until further use. Brains were washed with PBS and incubated in 
20% sucrose/PBS overnight. Subsequently, brains were frozen on dry ice and stored at −80 °C.

Immunostaining of mouse tissue. Staining procedures are performed as described previously49. In short, 
coronally cut 10 µM thick sections of mouse brain cortex were post-fixed with 4% PFA for 15 min, subjected to 
antigen retrieval with 10 mM sodium citrate and 0.05% tween-20 at 85–95 °C for 10 min. Subsequently, sections 
were rinsed with PBS, blocked and permeabilized with 1% BSA, 2% FBS and 0.4% Triton X-100 in PBS for one 
hour. Brain sections were incubated overnight with primary antibodies against N-terminal Htt (S829, a kind 
gift of G, Bates King’s College, UK, 1:100)30 and anti-ubiquitin P4D1 (Santa Cruz, 1:100). Sections were subse-
quently washed and incubated with secondary antibodies anti-mouse Alexa488 or anti-goat Cy3 (1:700 Jackson 
ImmunoResearch Laboratories) for one hour. Finally, sections were embedded in Vectashield containing DAPI 
to stain nuclei (Vector Laboratories). All procedures were performed at room temperature.

Immunostaining of cultured cells. One day prior transfection and/or electroporation cells were seeded 
on glass coverslips in a 35 mm2 dish. For antibody staining cells were fixed with 4% PFA and washed three times 
with PBS. Coverslips were blocked for 20 min with PBS containing 2% FBS, 1% BSA and 0.4% Triton-X100. After 
incubation with primary antibodies anti-HA (H3663, Sigma-Aldrich, 1:200) and anti-ubiquitin P4D1 (Santa 
Cruz, 1:100, sc-8017) for two hours, coverslips were washed three times with PBS and incubated with secondary 
antibody (anti-mouse-Alexa488, Jackson Laboratories) for one hour. Lastly, coverslips were washed three times 
with PBS and mounted on object glasses using ProlongGold mounting medium with DAPI (Life technologies, 
P36931). All procedures were performed at room temperature.

Fluorescence microscopy and FRAP experiments. Images were taken using the Leica SP8-SMD con-
focal microscope with a 63× oil objective using UV (405 nm) and white light lasers (450–650 nm). For live cell 
imaging cells were seeded on glass coverslips in 35 mm2 plates and grown overnight as previously described. The 
next day cells were transfected with DNA constructs and stained with ReAsH or FlAsH, one hour prior to imaging. 
For FRAP (Fluorescence recovery after photobleaching) analysis on mHtt IBs, defined region of interest (ROI) of 
fluorescently-tagged Ub and ReAsH- or FlAsH-stained mHtt IBs were bleached at 100% laser power, and fluorescent 
recovery within this ROI was measured at 37 °C in time. Each FRAP analysis consisted of taking two pre-bleach 
images, five immediate post-bleach images every 0.863 seconds, followed by ten post-bleach images every 30 seconds 
and fifteen post-bleach images every 60 seconds in order to reduce the number of images needed.

For each FRAP experiment half of the circular aggregate was defined as ROI that was photobleached. For 
normalization an adjacent non-bleached area was used as a control for general photobleaching and background 
fluorescence at the corresponding time points. The values were normalized to pre-bleach and the first post-bleach 
was set to zero. For FRAP data analysis normalization between independent experiments was performed.

Statistical analysis. All values were obtained from minimum three independent experiments and expressed 
as mean ± SD. Statistical analysis was performed using two-tailed Student’s t-test. p < 0.05 was considered sta-
tistically significant.

References
 1. Ramdzan, Y. M. et al. Huntingtin Inclusions Trigger Cellular Quiescence, Deactivate Apoptosis, and Lead to Delayed Necrosis. Cell 

reports 19, 919–927 (2017).
 2. Schipper-Krom, S. et al. Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies. FEBS letters 588, 

151–159 (2014).
 3. Raspe, M. et al. Mimicking proteasomal release of polyglutamine peptides initiates aggregation and toxicity. Journal of cell science 

122, 3262–3271 (2009).
 4. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 

1990–1993 (1997).
 5. Hipp, M. S. et al. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington’s disease. The Journal of cell biology 

196, 573–587 (2012).
 6. Bennett, E. J. et al. Global changes to the ubiquitin system in Huntington’s disease. Nature 448, 704–708 (2007).
 7. Bersuker, K., Brandeis, M. & Kopito, R. R. Protein misfolding specifies recruitment to cytoplasmic inclusion bodies. The Journal of 

cell biology 213, 229–241 (2016).
 8. Yu, A. et al. Protein aggregation can inhibit clathrin-mediated endocytosis by chaperone competition. Proceedings of the National 

Academy of Sciences of the United States of America 111, E1481–1490 (2014).
 9. Dantuma, N. P., Groothuis, T. A., Salomons, F. A. & Neefjes, J. A dynamic ubiquitin equilibrium couples proteasomal activity to 

chromatin remodeling. The Journal of cell biology 173, 19–26 (2006).
 10. Schipper-Krom, S., Juenemann, K. & Reits, E. A. The Ubiquitin-Proteasome System in Huntington’s Disease: Are Proteasomes 

Impaired, Initiators of Disease, or Coming to the Rescue? Biochemistry research international 2012, 837015 (2012).
 11. Gutekunst, C. A. et al. Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. The Journal of 

neuroscience: the official journal of the Society for Neuroscience 19, 2522–2534 (1999).
 12. Schilling, G. et al. Characterization of huntingtin pathologic fragments in human Huntington disease, transgenic mice, and cell 

models. Journal of neuropathology and experimental neurology 66, 313–320 (2007).
 13. Juenemann, K. et al. Modulation of mutant huntingtin N-terminal cleavage and its effect on aggregation and cell death. Neurotoxicity 

research 20, 120–133 (2011).
 14. Lunkes, A. et al. Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and 

nuclear inclusions. Molecular cell 10, 259–269 (2002).
 15. Juenemann, K., Wiemhoefer, A. & Reits, E. A. Detection of ubiquitinated huntingtin species in intracellular aggregates. Frontiers in 

molecular neuroscience 8, 1 (2015).
 16. Tsvetkov, A. S. et al. Proteostasis of polyglutamine varies among neurons and predicts neurodegeneration. Nature chemical biology 

9, 586–592 (2013).



www.nature.com/scientificreports/

1 4Scientific RepoRtS |  (2018) 8:1405  | DOI:10.1038/s41598-018-19538-0

 17. Juenemann, K. et al. Expanded polyglutamine-containing N-terminal huntingtin fragments are entirely degraded by mammalian 
proteasomes. The Journal of biological chemistry 288, 27068–27084 (2013).

 18. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).
 19. Gong, B., Kielar, C. & Morton, A. J. Temporal separation of aggregation and ubiquitination during early inclusion formation in 

transgenic mice carrying the Huntington’s disease mutation. PloS one 7, e41450 (2012).
 20. Skibinski, G. A. & Boyd, L. Ubiquitination is involved in secondary growth, not initial formation of polyglutamine protein aggregates 

in C. elegans. BMC cell biology 13, 10 (2012).
 21. Carlson, N. & Rechsteiner, M. Microinjection of ubiquitin: intracellular distribution and metabolism in HeLa cells maintained 

under normal physiological conditions. The Journal of cell biology 104, 537–546 (1987).
 22. Kawaguchi, Y. et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. 

Cell 115, 727–738 (2003).
 23. Johnston, J. A., Ward, C. L. & Kopito, R. R. Aggresomes: a cellular response to misfolded proteins. The Journal of cell biology 143, 

1883–1898 (1998).
 24. El Oualid, F. et al. Chemical synthesis of ubiquitin, ubiquitin-based probes, and diubiquitin. Angewandte Chemie 49, 10149–10153 (2010).
 25. An, H. & Statsyuk, A. V. An inhibitor of ubiquitin conjugation and aggresome formation. Chemical science 6, 5235–5245 (2015).
 26. Steffan, J. S. et al. SUMO modification of Huntingtin and Huntington’s disease pathology. Science 304, 100–104 (2004).
 27. Kim, S., Nollen, E. A., Kitagawa, K., Bindokas, V. P. & Morimoto, R. I. Polyglutamine protein aggregates are dynamic. Nature cell 

biology 4, 826–831 (2002).
 28. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype 

in transgenic mice. Cell 87, 493–506 (1996).
 29. Lin, C. H. et al. Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Human molecular genetics 10, 

137–144 (2001).
 30. Sathasivam, K. et al. Centrosome disorganization in fibroblast cultures derived from R6/2 Huntington’s disease (HD) transgenic 

mice and HD patients. Human molecular genetics 10, 2425–2435 (2001).
 31. Mulder, M. P. et al. A cascading activity-based probe sequentially targets E1-E2-E3 ubiquitin enzymes. Nature chemical biology 12, 

523–530 (2016).
 32. Chhangani, D., Upadhyay, A., Amanullah, A., Joshi, V. & Mishra, A. Ubiquitin ligase ITCH recruitment suppresses the aggregation 

and cellular toxicity of cytoplasmic misfolded proteins. Scientific reports 4, 5077 (2014).
 33. Hao, R. et al. Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains. Molecular cell 

51, 819–828 (2013).
 34. Tan, J. M. et al. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated 

with neurodegenerative diseases. Human molecular genetics 17, 431–439 (2008).
 35. Stenoien, D. L., Mielke, M. & Mancini, M. A. Intranuclear ataxin1 inclusions contain both fast- and slow-exchanging components. 

Nature cell biology 4, 806–810 (2002).
 36. Dantuma, N. P. & Bott, L. C. The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the 

solution. Frontiers in molecular neuroscience 7, 70 (2014).
 37. Gillis, J. et al. The DNAJB6 and DNAJB8 protein chaperones prevent intracellular aggregation of polyglutamine peptides. The 

Journal of biological chemistry 288, 17225–17237 (2013).
 38. Hjerpe, R. et al. UBQLN2 Mediates Autophagy-Independent Protein Aggregate Clearance by the Proteasome. Cell 166, 935–949 

(2016).
 39. Li, X. et al. Inhibiting the ubiquitin-proteasome system leads to preferential accumulation of toxic N-terminal mutant huntingtin 

fragments. Human molecular genetics 19, 2445–2455 (2010).
 40. Bhat, K. P., Yan, S., Wang, C. E., Li, S. & Li, X. J. Differential ubiquitination and degradation of huntingtin fragments modulated by 

ubiquitin-protein ligase E3A. Proceedings of the National Academy of Sciences of the United States of America 111, 5706–5711 (2014).
 41. Mishra, A. et al. E6-AP promotes misfolded polyglutamine proteins for proteasomal degradation and suppresses polyglutamine 

protein aggregation and toxicity. The Journal of biological chemistry 283, 7648–7656 (2008).
 42. Zucchelli, S. et al. Tumor necrosis factor receptor-associated factor 6 (TRAF6) associates with huntingtin protein and promotes its 

atypical ubiquitination to enhance aggregate formation. The Journal of biological chemistry 286, 25108–25117 (2011).
 43. Tsai, Y. C., Fishman, P. S., Thakor, N. V. & Oyler, G. A. Parkin facilitates the elimination of expanded polyglutamine proteins and 

leads to preservation of proteasome function. The Journal of biological chemistry 278, 22044–22055 (2003).
 44. Iwata, A. et al. Intranuclear degradation of polyglutamine aggregates by the ubiquitin-proteasome system. The Journal of biological 

chemistry 284, 9796–9803 (2009).
 45. Cattaneo, E. & Conti, L. Generation and characterization of embryonic striatal conditionally immortalized ST14A cells. Journal of 

neuroscience research 53, 223–234 (1998).
 46. An, H. & Statsyuk, A. V. Development of activity-based probes for ubiquitin and ubiquitin-like protein signaling pathways. Journal 

of the American Chemical Society 135, 16948–16962 (2013).
 47. Ekkebus, R. et al. On terminal alkynes that can react with active-site cysteine nucleophiles in proteases. Journal of the American 

Chemical Society 135, 2867–2870 (2013).
 48. de Jong, A. et al. Ubiquitin-based probes prepared by total synthesis to profile the activity of deubiquitinating enzymes. 

Chembiochem: a European journal of chemical biology 13, 2251–2258 (2012).
 49. Jansen, A. H. et al. Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific. Glia 65, 

50–61 (2017).

Acknowledgements
This work was funded by a Hersenstichting fellowship (K.J) and by an AMC PhD scholarship (A.J). We thank G.P. 
Bates and D.L. Smith (King’s College London) for HD mouse tissue.

Author Contributions
K.J. and E.R. designed the experimental setup. K.J., A.J. and L.R. performed experiments. R.M., M.M. and H.A. 
synthesized the Ub-conjugates and activity probes. A.S., J.K. and H.O. provided tools and reagents, and discussed 
the data.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-19538-0.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://dx.doi.org/10.1038/s41598-018-19538-0


www.nature.com/scientificreports/

1 5Scientific RepoRtS |  (2018) 8:1405  | DOI:10.1038/s41598-018-19538-0

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Dynamic recruitment of ubiquitin to mutant huntingtin inclusion bodies
	Results
	Fluorescent TAMRA-Ub behaves like endogenous Ub. 
	Conjugation-dependent recruitment of TAMRA-Ub to mHtt IBs. 
	Recruitment of TAMRA-Ub to mHtt IBs is independent of mHtt ubiquitination. 
	TAMRA-Ub is dynamic at mHtt IBs. 
	Ub is present in the core and periphery of the IBs in HD mouse models. 
	IBs sequester catalytically active enzymes from the (de)-ubiquitination cascade. 
	GFP-Ub becomes irreversible sequestered to mHtt IBs. 

	Discussion
	Methods
	Constructs. 
	Generation of ST14A cell line stably expressing mHtt. 
	Cell culture and transfection. 
	Ubiquitin Synthesis. 
	Electroporation. 
	SDS-PAGE and immunoblotting. 
	ReAsH and FlAsH staining. 
	Mouse models and tissue preparation. 
	Immunostaining of mouse tissue. 
	Immunostaining of cultured cells. 
	Fluorescence microscopy and FRAP experiments. 
	Statistical analysis. 

	Acknowledgements
	Figure 1 TAMRA-Ub behaves like endogenous Ub.
	Figure 2 TAMRA-Ub is recruited into Htt IBs.
	Figure 3 Aggregated mHtt is conjugated with TAMRA-Ub.
	Figure 4 Dynamics of TAMRA-Ub at mHtt IBs.
	Figure 5 mHtt IBs in transgenic R6/2 and homozygous HdhQ150 mouse models are ubiquitin positive.
	Figure 6 mHtt IBs sequester active enzymes from the (de)-ubiquitination cascade.
	Figure 7 The action of overexpressed GFP-Ub on mHtt IBs is not equivalent to TAMRA-Ub.




