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Tuning bandgap and surface 
wettability of NiFe2O4 driven by 
phase transition
Sheng-Kai Tong, Po-Wei Chi, Shu-Hsiang Kung & Da-Hua Wei

Stress variation induced bandgap tuning and surface wettability switching of spinel nickel ferrite 
(NiFe2O4, NFO) films were demonstrated and directly driven by phase transition via a post-annealing 
process. Firstly, the as-deposited NFO films showed hydrophilic surface with water contact angle (CA) 
value of 80 ± 1°. After post-annealing with designed temperatures ranged from 400 to 700 °C in air 
ambience for 1 hour, we observed that the crystal structure was clearly improved from amorphous-like/ 
nanocrystalline to polycrystalline with increasing post-annealing temperature and this phenomenon 
is attributed to the improved crystallinity combined with relaxation of internal stress. Moreover, 
super-hydrophilic surface (CA = 14 ± 1°) was occurred due to the remarkable grain structure transition. 
The surface wettability could be adjusted from hydrophilicity to super-hydrophilicity by controlling 
grain morphology of NFO films. Simultaneously, the saturation magnetization (Ms) values of NFO 
films at room temperature increased up to 273 emu/cm3 accompanied with transitions of the phase 
and grain structure. We also observed an exceptionally tunable bandgap of NFO in the range between 
1.78 and 2.72 eV under phase transition driving. Meanwhile, our work demonstrates that direct grain 
morphology combined with the stress tuning can strongly modulate the optical, surface and magnetic 
characteristics in multifunctional NFO films.

The heading of wetting characteristics of solid materials surface has been received much attention due to the 
demonstrating fundamental materials and many promising applications such as green device of environmental 
cleanup1,2 and photonic or optoelectronic devices3–5. Moreover, the surface wetting characteristics are usually 
determined by referring the major data from the measurement of contact angles, indicating the degree of water 
droplets on the solid surface, this also described the interaction between the solids and liquid. In general, the solid 
surface with large contact angles (>90°) is corresponded to hydrophobicity, in contract, with small contact angles 
(<90°) correspond to hydrophilicity. In addition, according to purpose in the 1930s and 1940s by Wenzel, Cassie 
and Baxter6,7, the surface morphology involving micro- or nano-scaled structure was found to play a key role in 
determining its wetting behavior. It can be understood that the chemical identity of a surface controls its wetting 
behavior such as carboxylic and hydroxyl functional groups constructing hydrophilic surfaces. On the other 
hand, the alkyl and perfluoroalkyl groups render surfaces in hydrophobicity. As opposed to easily understood 
that the surface wetting characteristic is generally governed by the chemical composition and the morphology of 
solid surface. Meanwhile, the polymetallic oxides with spinel-type structure have attracted much attention due 
to their chemical and thermal stability are suitable for various applications, such as in biomedical applications as 
contrast agents in diagnosis8,9 and magnetic-guided devices for targeted and pulsed release of active principles10. 
Among of all polymetallic oxides, the nanocrystalline nickel ferrite has unique magnetic properties including 
superparamagnetism and quantum tunneling of magnetization. Thus, it has been regarded as an excellent candi-
date in numerous application fields including catalysis11–13, sensor technology14,15, electromagnetic shielding16–19, 
water treatment20–23, and biomedical and biotechnology24–27. Fan et al. synthesized a carbon nanotube (CNT)/
NiFe2O4−S ternary hybrid material that simultaneously addresses the electron conduction, lithium ion diffusion, 
and polysulfide dissolution/shuttling problems to boost the performance of the S cathode in Li−S batteries28. Li 
et al. prepared the hierarchically porous structures of MFe2O4 (M = Co, Ni, Cu, Mn) nanofiber with the decreas-
ing mass transport resistances and the both increasing densities and reactivity of exposed electrocatalytic active 
sites that can be used for various applications in sensing, filtration and adsorption, metal air batteries, energy 

Institute of Manufacturing Technology and Department of Mechanical Engineering, National Taipei University of 
Technology (TAIPEI TECH), Taipei, 10608, Taiwan. Correspondence and requests for materials should be addressed 
to D.-H.W. (email: dhwei@ntut.edu.tw)

Received: 4 September 2017

Accepted: 19 December 2017

Published: xx xx xxxx

OPEN

mailto:dhwei@ntut.edu.tw


www.nature.com/scientificreports/

2ScIENTIfIc REPORTS |  (2018) 8:1338  | DOI:10.1038/s41598-018-19319-9

storage, solar cells, and many other objects29. Zeng et al. prepared flexible composite spinel-type metal oxide/ 
reduced graphene oxide (rGO) aerogel materials with much enhanced rate capability, long-term stability and 
any desired shape that can directly be used as binder-free anodes in lithium ion batteries (LIBs)30. Su et al. syn-
thesized MFe2O4 (M = Mg, Ni, Cu) magnetic nanoparticles by using hydrothermal method, which possessed 
peroxidase-like activity as well as catalase-like activity and used for various fields, such as biotechnology, medical 
diagnostics and environmental monitoring31.

Research works from past till now, most of groups have focused on zero-dimensional (0-D) materials formed 
by chemical synthesis method, and there is still quite limited research work about the two-dimensional (2-D) 
nanostructured NiFe2O4 films directly formed by physical method. On the other hand, the magnetron sputtering 
technique has attracted much attention due to its advantages for film growth with tunable characteristics, such 
as easy control for the preferred crystalline orientation and textured growth at relatively low temperature. The 
above properties are mainly affected by the kinetic energy of the particle bombardment from the plasma during 
the thin film deposition processes. However, many research works only focused on the physical factors of crystal 
size, shape and combination with other material characteristics32–35. Unfortunately, the work focused on the fun-
damental surface wetting characteristics of nanocrystalline spinel nickel ferrites films is still lacking. Lüders et al. 
demonstrated the spinel ferrite films growth onto SrTiO3 (STO) perovskite as a heterostructure that can be used 
as the monolithic spin-filter junctions for novel spintronics devices36. Kuschel et al. showed the Pt/NiFe2O4 bilay-
ers structure investigated by interface-sensitive x-ray resonant magnetic reflectivity (XRMR), and demonstrated 
that XRMR is sensitive to the spin polarization at the Pt/FM interface, independent of the Pt film thickness for 
spintronic applications37. On the other hand, as reported by many research groups38–41, the nickel ferrites films 
usually exhibited a lower saturation magnetization value, which plays a key for driving magnetoeletric device. 
Therefore, in order to solve this issue, a homemade target with composed of NiFe2O4 powder with 90 wt.% and 
NiFe powder with 10 wt.% was used. Moreover, to the best of our knowledge, our claimed method for preparing 
NiFe2O4 target was in order to enhance the magnetic properties of NiFe2O4 phase that has never been reported 
before in published NiFe2O4 literatures.

In this present article, the spinel NiFe2O4 films with significantly tunable wettability and bandgap associ-
ated with variable internal stress states (see in the Supporting Information, S1) were driven by crystalline phase 
transition via a directly post-annealing process. We observed that the as-prepared spinel NiFe2O4 films showed 
hydrophilic surface with water contact angle (CA) value of 80 ± 1°. After a post-annealing process with designed 
temperatures ranged from 400 to 700 °C in air ambience for 1 hour, the crystal structure was clearly transformed 
from amorphous-like/ nanocrystalline to polycrystalline with increasing the post-annealing temperature and this 
phenomenon can be attributed to the improved crystallinity and grain growth during the crystalline transition 
process. In addition, the super-hydrophilic surface with a CA value of 14 ± 1° was reached due to the remarkable 
grain structure transition from sub-nanograin to micrograin type. The surface wettability could be adjusted from 
hydrophilicity to super-hydrophilicity due to the varied surface free energy caused by controllable grain morphol-
ogy of NiFe2O4 nanostructured films combined with stress effect. On the other hand, all samples were displayed 
a typical magnetic hysteresis loop at room temperature and showed enhanced magnetization compared with 
that of traditional NiFe2O4 phase, moreover, the saturation magnetization (Ms) values increased with increasing 
post-annealing temperature. This research demonstrates that a direct crystalline transition combined with stress 
effect can strongly modulate the optical, surface and magnetic characters in spinel NiFe2O4 films and provide 
valuable multifunctional behaviors for potential novel applications.

Results and Discussion
The surface wetting images and corresponding water contact angle for NiFe2O4 (NFO) nanostructured films 
without a post-annealing process and with 400, 500 and 700 °C of post-annealing conditions are as shown in 
Fig. 1(a–d). The values of water contact angles (CAs) are 80 ± 1°, 74 ± 1°, 44 ± 1° and 14 ± 1° for each sample A0, 
A400, A500 and A700 and the corresponding tendency as shown in Fig. 1(e), respectively. It can be clearly seen 
that the CAs for the samples A400, A500 and A700 dramatically decrease by 8%, 45% and 83% comparing to that 
of the as-deposited sample A0, respectively. The above results indicate that the NFO films after a post-annealing 
process become much more hydrophilic, and the surface wettability of NFO films can be controlled through a 
simple post-annealing process. Figure 1(e) also shows the surface free energy (SFE) of the designed NFO nanos-
tructured films without and with a post-annealing process. The surface free energy of each sample was calculated 
by the Fowkes–Girifalco–Good theory, which was mostly used to define the SFE of interface between tested non-
polar liquids and solid surfaces. Relating to the Fowkes method, the dispersive force or van der Waals force is the 
interaction at the interface between the droplet and solid surface. The Fowkes equation can be described as below:

γ γ γ γ γ= + − .2( ) (1)sl s l s
d

l
d 0 5

where γsl, γs and γl are the SFE corresponding to the solid-liquid interface, a solid surface, a measuring liquid, 
respectively. Where γl

d and γs
d are the dispersive portions of the surface tension for the liquid and solid surface, 

respectively. For further information, the combination of Eq. (1) with the Young’s equation that enables to calcu-
late the SFE of NFO by using a nonpolar liquid (deionized water, γl = 72.8 mJ m−2), which implies the γs

d and γl
d 

can be equal to γs and γl, respectively, hence the Girifalco–Good–Fowkes–Young (GGFY) equation could be 
simplified to the following formula:

γ γ θ= . +0 25 (1 cos ) (2)s
d

l

where θ is the measured contact angle between the solid surface and liquid. In this study, the surface wetting 
states were not only considered from the measured results of contact angles but also calculated the SFE values by 
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using GGFY equation to evaluate all designed NFO samples as shown in Fig. 1(e). At first, the hydrophilic wetting 
behavior for the NFO film without a post-annealing process (A0) has a surface energy value of 25.1 mJ/m2. Once 
NFO thin films after a post-annealing process became close to super-hydrophilic gradually, and the correspond-
ing surface energy values were varied from 30.1 mJ/m2 (A400), 53.2 mJ/m2 (A500) to 70.6 mJ/m2 (A700). The 
above results indicated that a strong relationship between the surface wettability and surface energy. It can be 
clearly seen that the CA value decreased with increasing surface energy for NFO thin films.

The surface wettability of many nanomaterials is almost driven by the tendency to reduce the total Gibbs free 
energy of the structure via reducing the surface energy part. The detailed description as claimed by our previous 
work, the aperture on the film surface could induce the air pocket forming and it will let the water drop and 
easily stand on the surface of as-deposited oxide films42. The aperture size and the roughness effect of NFO films 
without and with a post-annealing process will be investigated and discussed below. Therefore, the grain micro-
structure plays an important role in surface wettability for solid nanomaterials. It can be understood that after 
a post-annealing process, the grains of NFO could get more energy to grow up and then the volume of aperture 
may decrease because when the grains grow up that indicate the amount of the grain boundaries reduced. In other 
words, it means the number of trap will also decrease then the air pocket will lose, resulting in the CAs tending to 
much more hydrophilic than without post-annealing one. In order to confirm the micro-structural transition of 
the grain size and grain boundaries, all the NFO films were observed and checked by FE-SEM. Our present results 
indicate that the spinel NFO film with tunable surface energy have been successfully demonstrated and controlled 
by a simple post-annealing process.

The top view SEM images for the NFO nanostructured films directly deposited onto glass substrates at room 
temperature (RT) and with a post-annealing process ranged from 400 to 700 °C as shown in Fig. 2(a–d). The cor-
responding four different states of grain structures were denoted as sub-nanograin, nanograin, sub-micrograin 
and micrograin types as shown in Fig. 2(a–d), respectively. The different grain structure was caused by only 
treating with a varied post-annealing temperature. The as-deposited NFO thin film shows the sub-nanograin 
structure as shown in Fig. 2(a). On the other hand, the nanograin structure can be observed after a post-annealing 
temperature of 400 °C as shown in Fig. 2(b). When the post-annealing temperatures were set at 500 and 700 °C, 
the sub-micrograin and micrograin structures of NFO formed as shown in Fig. 2(c) and (d), respectively. 
Figure 2(e–h) are the corresponding grain size histograms for evaluating average size and its distribution of the 
NFO nanostructured films without and with various post-annealing temperatures ranged from 400 to 700 °C. The 
grains size in fraction of sample A0 ranged from 10 to 18 nm, with an average size of 14 ± 4 nm as shown in the 
Fig. 2(e), which was denoted as sub-nanograin type. The grains size in fraction of sample A400 ranged from 17 
to 33 nm, with an average size of 25 ± 8 nm as shown in the Fig. 2(f), which was denoted as nanograin type. The 
grains size in fraction of sample A500 ranged from 33 to 55 nm, with an average size of 44 ± 11 nm as shown in 
the Fig. 2(g), which was denoted as sub-micrograin type. The grains size in fraction of sample A700 ranged from 

Figure 1. The water contact angle (CA) images for the NiFe2O4 (NFO) nanostructured films without a post-
annealing process and with 400, 500 and 700 °C of post-annealing conditions denoted as (a) A0, (b) A400, (c) 
A500 and (d) A700, respectively. (e) The CA and corresponding surface free energy (SFE) values for the above 
mentioned NFO nanostructured films.
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52 to 78 nm, with an average size of 65 ± 13 nm as shown in the Fig. 2(h), which was denoted as micrograin type. 
The above results can be attributed to provide the activation energy for leading to the grain transformation and 
the microstructure coarsening of the NFO thin films, which can be controlled through manipulating annealing 
temperature43,44. It can be observed that with increasing post-annealing temperature, a strong tendency for all 
grains with multiple domain coalesce and connect to each other to conjoin into a big grain as shown in Fig. 2. On 
the other hand, it is known that apertures can trap air inside and present onto the surface of NFO thin films. The 
surface wetting behavior of all samples exhibited with different degree of hydrophilic characteristics. In order to 
confirm the process of air-pocket forming or losing, the direct evidence to explain the surface wetting behavior of 
NFO thin films can be checked by AFM images.

Three-dimensional (3D) surface micrographs (5 μm × 5 μm) were observed by using AFM in tapping mode. 
The topological images of as-deposited NFO films and then post-annealing with different temperatures ranged 
from 400 to 700 °C as shown in Fig. 3(a–c). The surface topography shows the tendency of the average surface 
roughness values (root-mean-square, RMS) of NFO films increased with increasing the post-annealing tem-
perature. The average RMS values are 3.99, 9.05 and 24.5 nm corresponding to the samples A0, A500 and A700, 
respectively. From the above AFM results, it also indicated that the apertures were existed in the NFO nano-
structured films. In general, these abundant apertures were sufficient to build up the air pockets and directly 
affect the surface wettability to be hydrophobic characteristic from the typical Cassie–Baxter theory. Moreover, 
according to the water droplet onto the natural lotus leaves, it shows such a super-hydrophobic characteristic 
with water contact angle reached 160° due to their unique nanoscaled structures. In contrast, the wettability of 
all the samples shows hydrophilic and even super-hydrophilic in our work, because these air pockets existed in 
NFO nanostructured films were much fewer than general case for the “submicron-scaled” apertures. In addition, 
during the contact angle measurement, the water droplet will penetrate into the submicron-scaled apertures 
and substituting the air pockets partially then demonstrate the wettability as hydrophilic. Moreover, the size of 
apertures were taken into the average values of each sample (A0, A500 and A700) from the AFM line-profile 
analysis, and the measuring distance was from the center of each sample as shown in Fig. 3(d–f). According to the 
results, the values of average apertures size are 0.65, 0.98 and 1.54 μm, respectively. It indicated that the average 
aperture size were gradually increased from 0.65 to 1.54 μm due to the effect of grain growth that the amount of 
grain boundaries was simultaneously decreased and leading to the larger aperture size. The detailed relationship 
between average size of apertures and roughness for NFO nanostructured films can be evaluated (see in the 
Supporting Information, S2)

Figure 3(g) showed schematic diagrams to illustrate the different types of the water droplet on various solid 
surfaces for NFO nanostructured films, which were transformed from sub-nanograin, sub-micrograin to micro-
grain types. Tunable grain morphology accompanied with the stress variation that induced from hydrophilicity 
to super-hydrophilicity of spinel NFO nanostructured films (see in the Supporting Information, S1). So the above 
transformed surface wetting behavior has been clearly demonstrated and directly driven by phase transition via a 
post-annealing process. The samples A0 and A400 show hydrophilic wetting, which is due to the relative smooth 
surface and smaller grain size get less apertures that can not provide the trapping of air denoted as sub-nanograin 
and nanograin types. While increasing post-annealing temperature to 500 °C, the CA value drastically decreased 

Figure 2. Top view FE-SEM images for the samples (a) A0, (b) A400, (c) A500 and (d) A700 NFO 
nanostructured films, respectively. (e–h) Show the grain size histograms for evaluating average size and its 
distribution of the samples A0, A400, A500 and A700, respectively. The insets of (a–d) are the referred CA 
images for the samples A0, A400, A500 and A700, respectively.
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from 80° (A0) to 44° (A500), which is due to large grain size and more apertures provide more the trapping 
of air that reduces the contact area between water and smooth surface denoted as sub-micrograin type. The 
lowest contact angle value (14°) of NFO obtained while increasing post-annealing temperature up to 700 °C 
(A700), which was due to grain transformation from sub-micrograin to micrograin types and caused the CA 
decreased originated from the much less apertures formed. The hydrophobic or hydrophilic materials are usually 
prepared by modifying their surface with varied surface energy for tunable surface wetting characteristics. The 
surface characteristics for other oxide materials have also been claimed in our previous work45,46. In addition, 
this kind of surface nanostructures could not only be used for self-cleaning47–49, drug delivery50–54 and biological 
interactions55, but also could be used for other potential surface engineering such as oil-water separation56–58, 
self-dustproof surfaces59 and anti-fogging60.

The phase formation and crystalline orientation of the NFO nanostructured films without and with 
post-annealing temperatures ranged from 400 to 700 °C have been identified by using X-ray diffraction as shown 
in Fig. 4. It can be observed that no significant peaks are existed in the whole diffraction patterns (θ-2θ) of sam-
ple A0, indicating that the crystallization phase state of sample A0 exhibit an amorphous-like/ nanocrystalline 
structural feature, and it can be proved by SEM image from the Fig. 2(a). For the crystallization phase state 
of as-deposited NFO, this phenomenon can be attributed to the lack of nucleus activation energy to form the 
crystalline43. The diffraction pattern of the sample A400 shows the peaks of mixed phases with the (311) plane 
of standard spinel NFO and coexisted phase of NiFe with (110) facet (JCPDS no. 37-0474), which are located at 
35.7° and 44.6°, respectively. The NiFe peak is due to our designed NFO target composed of NiFe powder. On the 
other hand, upon post-annealing to 500 °C, the XRD pattern of sample A500 shows single spinel NFO phase with 
diffraction peaks located at 2θ = 35.7°, 37.3°, 43.4°, and 63°, which are well indexed to the crystal plane of spinel 
NFO (311), (222), (400), and (440), respectively. From the above results, the phase transition from coexisted 
phases with NFO and NiFe to single-phase spinel NFO occurred at a critical temperature of around 500 °C, which 
is due to the filling oxygen atoms combined with NiFe obtained enough driving force to produce the pure NFO 
grain structure during an optimum post-annealing process. It is noticeable that the intensity of all NFO diffrac-
tion peaks significantly increased with the increase of post-annealing temperature up to 700 °C (A700). Moreover, 

Figure 3. (a–c) show atomic force microscope (AFM) 3-D images with scanning size of all domain images 
fixed at 5 × 5 μm2. (d–f) are line profiles illustrating the NFO nanostructured films with different types of 
grain structure for the samples A0, A500 and A700 NFO films, respectively. (g) is the corresponding schematic 
diagrams of surface wetting behavior with different types for NFO nanostructured films.
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no diffraction peaks of other impurities such as α-Fe2O3 or NiO are observed from the XRD patterns. On the 
other hand, it has been clearly shown that the diffraction peaks become sharper and narrower with increasing 
post-annealing temperature, indicating the enhancement of crystallinity and grain size of the NFO phase, which 
is consisted with the observation as shown in Fig. 2. According to the above results, indexing that our prepared 
nanostructured films are belong to the inverse spinel structure with cubic symmetry of the Fd-3m (227) space 
group and matched well with those of standard NFO (JCPDS no. 89-4927).

The transmittance of the NFO nanostructured films without and with different post-annealing temperatures 
ranged from 400 to 700 °C as shown in Fig. 5(a). From the transmittance spectra, it can be observed that the sam-
ples A0, A400 and A500 represent an opaque characteristic with a visible light averaged transmittance value below 
approximately 5%. On the other hand, the value of averaged transmittance in visible light increased from 0% to 
about 42% while rising up the post-annealing temperature up to 700 °C. It can be understood that the higher 
transmittance was attributed to the higher crystallinity and the fewer defects such as oxygen vacancies, which 

Figure 4. XRD patterns for the samples A0, A400, A500 and A700 NFO nanostructured films, respectively.

Figure 5. (a) Optical transmittance spectra for the pure-bare glass substrate and the samples A0, A400, A500 
and A700 NFO nanostructured films, respectively. (b) Optical bandgap evaluated from the transmittance spectra 
using the Tauc’s equation for the samples A0, A400, A500 and A700 NFO nanostructured films, respectively.
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were filled with oxygen gas from rising post-annealing temperature under ambient air during the post-annealing 
process. During the post-annealing process, it indicates that the increased crystallinity is associated with the 
higher annealing temperature due to the much more energy causing the grain growth phenomenon. Besides, the 
much higher post-annealing temperature also leads to the residual stress relaxation in the NFO nanostructured 
films and finally induces the grain growth61,62 (see in the Supporting Information, S1).

In addition, the determination of optical bandgap of all the samples A0, A400, A500 and A700 for allowed 
direct transition can be evaluated from the transmittance spectra using the Tauc’s equation described as:

α ν = ν −( )E( h ) A h (3)g
2

where α is the absorption coefficient, h is Planck’s constant, ν is the frequency of the incident radiation, A is a 
constant and Eg is the allowed energy bandgap63–65. The Tauc’s plot of (αhν)2 versus photo energy (hν) of the 
NFO nanostructured films without and with different post-annealing temperatures ranged from 400 to 700 °C 
as shown in Fig. 5(b), and the average bandgap was estimated from the intercept of linear portion of the (αhν)2 
versus hν plots on hν axis. The bandgap values estimated from the plots for the samples A0, A400, A500 and A700 
are 1.78 eV, 1.88 eV, 2.46 eV and 2.72 eV, respectively. The bandgap values were significantly varied from 1.78 to 
2.72 eV with a tunable range by different post-annealing temperatures under phase transition driving. This tun-
able bandgap behavior can be generally interpreted as caused by the phase transition and the partial filled of the 
oxygen vacancies during post-annealing treatment66.

On the other hand, there are many groups in order to realize the bandgap variation of the oxide nanostruc-
tures. Chen et al. claimed the blue-shift of ZnO nanorods accompanied by varying in the nanometer size range67. 
Chi et al. observed the bandgap shift of ZnO nanostructured films accompanied by changing in size variation 
combined with internal stress effect46. Figure 6 shows a plot of grain band gap E(gap, grain) versus the grain size of 
NFO. The solid curve is theoretical fit of equation (see in the Supporting Information), while the symbols are 
the values of grain size estimated from SEM images (Fig. 2) and their corresponding bandgap energies evaluated 
from Tauc’s plot. As shown in Fig. 6, it can be observed that the bandgap energy for the NFO nanostructured 
films with different grain types evaluated from the Tauc’s plot almost fits the theoretical curve. It is demonstrated 
that the bandgap energy show theoretical variation with the grain size. In addition, our results also clearly show a 
bandgap-tunable effect caused by a key factor of internal stress of NFO film via a post-annealing treatment. The 
above obtained result leads to the conclusion that the variable grain type induced by different internal stress state 
of the film and the corresponding bandgap of the NFO nanostructured films appears to be related to their grain 
size on the morphology associated with tunable stress. So based on previous works, the bandgap shifting of the 
NFO nanostructured films in our present work can be attributed to the quantum-size confinement effect com-
bined with relaxation of internal stress under phase transition driving via a post-annealing treatment. Therefore, 
the stress/strain modification of material is another possibility for bandgap variation.

In order to determine the magnetic behavior of NFO nanostructured films without and with different 
post-annealing temperatures ranged from 400 to 700 °C, all the magnetic properties have been measured at room 
temperature with the magnetic field in the plane of the NFO film as shown in Fig. 7. The hysteresis (M-H) loops 
for samples A0 and A400 are typically superparamagnetic at room temperature as shown in Fig. 7(a). While 
increasing post-annealing temperature over 500 °C, the NFO films exhibit soft magnetic characteristic under 
phase transition driving, which is closer towards ferromagnetic nature due to enhanced crystallization quality of 
pure NFO spinel phase assemblies confirmed by the XRD identification as shown in Fig. 4. The corresponding 
magnetic data for all NFO nanostructured films including in-plane saturation magnetization (Ms), remanent 
magnetization (Mr), and remanent squareness ratio (Mr/Ms) values as a function of the NFO films without and 

Figure 6. Plot of E(gap, grain) obtained from Tauc’s plot as a function of the grain size (grain radius) for A0, 
A400, A500 and A700 NFO nanostructured films.
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with different post-annealing temperatures ranged from 400 to 700 °C are shown in Fig. 7(b),(c) and (d), respec-
tively. The saturation magnetization (Ms) values of samples A0, A400, A500 and A700 are increased from 70, 
101, 203 to 273 emu/cm3 as shown in Fig. 7(b). The remanent magnetization (Mr) values of samples A0, A400, 
A500 and A700 are increased from 14, 33, 78 to 138 emu/cm3 as shown in Fig. 7(c). The remanent squareness 
ratio (Mr/Ms) values of samples A0, A400, A500 and A700 are increased from 0.2, 0.32, 0.38 to 0.5 as shown in 
Fig. 7(d). It can be clearly observed that the Mr and Mr/Ms values of all the samples increased with rising up the 
post-annealing temperatures ranged from 400 to 700 °C following the increasing tendency of Ms. During the crys-
tallization process associated with driving by phase transition, the magnetic property of the NFO films changes 
from superparamagnetic to ferromagnetic behavior.

Based on the comparison of the Ms value with the previously published literatures38–41,68, the saturation mag-
netization of ideal bulk NFO is 270 emu/cm3, our claimed NFO nanostructured films can exhibit excellent mag-
netic properties with higher saturation magnetization close to theoretical value. The magnetic coercivity (Hc) 
values of NFO nanostructured films without and with post-annealing temperature are increased from 150 Oe 
(A0) to 292 Oe (A700). Furthermore, it is possible to produce nearly ideal ferromagnetic nanostructured assem-
blies using the spinel NFO phase. On the other hand, the larger grain size leads the better crystallinity, which 
induces the better magnetocrystalline anisotropy and finally leads the high saturation magnetization and coerciv-
ity, and the similar results also be found by many iron oxide based materials69,70. From the above results, it indi-
cates that the better crystallinity can effectively induce the increment of saturation magnetization. The saturation 
magnetization increment in our study can be attributed to the additive NiFe powder with optimum 10 wt.% in 
our novelty design target at the beginning.

Conclusions
In summary, the spinel NiFe2O4 (NFO) nanostructured films have been successfully fabricated on glass substrates 
by homemade target using radio-frequency magnetron sputtering system without introducing any oxygen gas 
during deposition process. The surface wettability of NFO nanostructured films could be tuned from hydro-
philic state (80 ± 1° and SFE = 25.1 mJ m−2) to super-hydrophilic state (14 ± 1° and SFE = 70.6 mJ m−2) through 
the remarkable transition of grain morphology. The super-hydrophilic surface can be used for many potential 
applications, such as the oil-water separation, anti-fogging and the self-dustproof surface in order to separate 
the pollutants from natural environment. In addition, the optical bandgap values were significantly varied in the 
range between 1.78 and 2.72 eV with technical tunability by different post-annealing temperatures under phase 
transition driving. The above transformed behaviors combined with relaxation of internal stress have been clearly 
demonstrated and directly driven by phase transition via a simple post-annealing process. Due to the enhanced 
crystallization quality associated with phase transition driving by increasing post-annealing temperature, all NFO 
films displayed a typical magnetic hysteresis loop and the increment of magnetization. In addition, the saturation 
magnetization (Ms) values at room temperature could increased up to 273 emu/cm3 that can be attributed to the 
optimum NiFe powder with 10 wt.% addition in our designed target, and the soft magnetic thin films are needed 
for developing microinductors and microtransformers. Finally, a simple method has been reported here that 
the surface wettability and optical bandgap of NFO films can be tuned directly driven by phase transition via a 
post-annealing process for various potential applications.

Figure 7. (a) The in-plane hysteresis loops measured at room temperature for the samples A0, A400, A500 
and A700 NFO nanostructured films, respectively. The corresponding (b) saturation magnetization (Ms), (c) 
remanent magnetization (Mr), and (d) remanent squareness ratio (Mr/Ms) values for the samples A0, A400, 
A500 and A700 NFO nanostructured films, respectively.
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Methods
Fabrication of NiFe2O4 nanostructured films. The NiFe2O4 (NFO) nanostructured films directly depos-
ited onto glass substrates at room temperature were employed by radio-frequency (RF) magnetron sputtering sys-
tem. In order to enhance the saturation magnetization of the NFO nanostructured films, a homemade target with 
composed of NiFe2O4 powder with 90 wt.% and NiFe powder with 10 wt.% was fabricated and used in this study. 
The target size is with 0.075 m diameter and 0.006 m thickness. All the substrates were set parallel to the target. 
The Corning-1737 glass substrates (7 × 7 mm2) were rinsed in deionized water, ultrasonically cleaned in ethanol 
and acetone to remove organic contamination then dried in hot air before they load into the sputtering vacuum 
chamber. The sputtering chamber was pumped down to a base pressure of 5 × 10−7 torr. Pure argon was filled into 
sputtering chamber sequentially with the low working pressure of 10 mtorr. The NFO thin films were deposited 
with RF power fixed at 50 W with a deposition rate of 5 nm/min. After NFO film deposition, the as-prepared films 
were annealed under 400, 500 and 700 °C in furnace with fully ambient air for 60 min, then cooling down to the 
room temperature. Thus, in this article, the as-deposited films without annealing process and with 400, 500 and 
700 °C of annealing conditions are denoted as A0, A400, A500 and A700, respectively.

Characterizations. The crystal structure and crystallinity of the NFO thin films were characterized by X-ray 
diffraction (XRD) with Cu Kα radiation (λ = 1.54 Å) in the range of 2θ = 30–70°. The surface morphology and 
microstructure of the NFO nanostructured films were observed by field emission scanning electron microscopy 
(FE-SEM). The surface topography and roughness values of NFO nanostructured films were further analyzed by 
the atomic force microscope (AFM). The magnetic properties were measured by a vibrating sample magnetom-
eter (VSM) with an applied field of 10 kOe at room temperature. The wettability of NFO thin films was estimated 
from the contact angle (CA) of water droplets (10 μl) onto each sample surface. The tolerance of contact angle 
measurement was affected by image quality with using charge-coupled device (CCD) to capture the image of 
water droplets and curve fitting function by CA software, which was estimated to be about ±1 degree. On the 
other hand, the corresponding surface free energy (SFE) could also be calculated and obtained at the same time.
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