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Collagen-Binding Hepatocyte 
Growth Factor (HGF) alone or with 
a Gelatin- furfurylamine Hydrogel 
Enhances Functional Recovery in 
Mice after Spinal Cord Injury
Kentaro Yamane1,2, Tetsuro Mazaki1,2, Yasuyuki Shiozaki1,2, Aki Yoshida1, Kensuke 
Shinohara1,2, Mariko Nakamura3, Yasuhiro Yoshida4, Di Zhou5, Takashi Kitajima5, Masato 
Tanaka1, Yoshihiro Ito5, Toshifumi Ozaki1 & Akihiro Matsukawa2

The treatment of spinal cord injury (SCI) is currently a significant challenge. Hepatocyte growth 
factor (HGF) is a multipotent neurotrophic and neuroregenerative factor that can be beneficial for the 
treatment of SCI. However, immobilized HGF targeted to extracellular matrix may be more effective 
than diffusible, unmodified HGF. In this study, we evaluated the neurorestorative effects of an 
engineered HGF with a collagen biding domain (CBD-HGF). CBD-HGF remained in the spinal cord for 
7 days after a single administration, while unmodified HGF was barely seen at 1 day. When a gelatin-
furfurylamine (FA) hydrogel was applied on damaged spinal cord as a scaffold, CBD-HGF was retained 
in gelatin-FA hydrogel for 7 days, whereas HGF had faded by 1 day. A single administration of CBD-
HGF enhanced recovery from spinal cord compression injury compared with HGF, as determined by 
motor recovery, and electrophysiological and immunohistochemical analyses. CBD-HGF alone failed 
to improve recovery from a complete transection injury, however CBD-HGF combined with gelatin-FA 
hydrogel promoted endogenous repair and recovery more effectively than HGF with hydrogel. These 
results suggest that engineered CBD-HGF has superior therapeutic effects than naïve HGF. CBD-HGF 
combined with hydrogel scaffold may be promising for the treatment of serious SCI.

Spinal cord injury (SCI), often caused by physical trauma, is an insult to the spinal cord resulting in a physically 
and psychologically devastating clinical condition with irreversible neurological deficits and disabilities1. SCI 
occurs worldwide, with an annual incidence of 10 to 83 cases per million and typically impacts younger indi-
viduals, reducing the quality of life and with estimated lifetime costs of more than US $4 million per person2. 
New advances from preclinical and clinical studies offer potential neuroprotective and therapeutic possibilities3,4; 
however, due to the poor intrinsic regenerative capability of the spinal cord, treatment of SCI is still a signifi-
cant problem. A major challenge in repairing the injured spinal cord is how to regenerate tissue and encourage 
regrowth of severed axons with cellular and molecular therapies5,6, although several growth factors have been 
applied for the treatment of SCI6.

Hepatocyte growth factor (HGF), initially identified as a mitogenic factor for primary hepatocytes, is a 
multipotent neurotrophic and neuroregenerative factor with a wide variety of biological functions in the nervous 
system. The major role of HGF is to potentiate the response of developing neurons to specific signals7. HGF not 
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only promotes neurogenesis and oligogliogenesis by neural stem cells, it exhibits anti-apoptotic functions for neu-
rons and oligodendrocytes and inhibits glial scar formation7–11. HGF promotes endogenous repair and functional 
recovery after SCI in rats10 and marmosets12. Thus, HGF appears to be a viable approach for the treatment of SCI.

HGF can be delivered by direct injection into the injury site10,12 and immobilised HGF can be localized and 
retained at the targeted site for longer periods, thus extending the functional half-life of this factor. We pre-
viously created a novel HGF fused to an additional collagen-binding domain (CBD) derived from fibronectin 
(CBD-HGF), which binds to collagen matrices13. As a tissue-engineering approach, scaffolds have been attract-
ing increasing attention14,15 as they provide an environment for cell attachment, proliferation and differentia-
tion. Furthermore, scaffolds can be used to achieve drug delivery with high loading efficiency at specific sites. 
Hydrogels are leading candidates for engineered tissue scaffolds due to their unique compositional and structural 
similarities to the natural extracellular matrix16. In addition, hydrogels are suitable biomaterials for drug and 
cell delivery16,17. We recently developed a gelatin derivative modified with furfurylamine (gelatin-FA), which 
is rapidly consolidated by visible light in the presence of Rose Bengal (RB)18. Gelatin-FA effectively delivered 
collagen-binding bone morphogenetic protein-4 (CBD-BMP4) not only cells but also to affected sites, enhancing 
osteogenesis18.

In the present study, we applied our tissue engineering strategies to SCI. We demonstrated that 
CBD-HGF enhanced recovery from spinal cord compression injury compared with HGF. CBD-HGF com-
bined with gelatin-FA hydrogel successfully promoted neural regeneration from a severe complete injury. 
Thus, a tissue engineering strategy composed of collagen-binding HGF and a gelatin scaffold is promising 
for the treatment of SCI.

Results
Binding capacity of CBD-HGF to spinal cord tissue.  We first asked whether CBD-HGF could enhance 
the tissue-binding capacity of HGF to spinal cord tissue. Fluorescently labelled native HGF or CBD-HGF were 
administered into spinal cords and examined using fluorescence microscopy after 1 and 7 days. Although HGF 
was barely seen on day 1, CBD-HGF showed a strong signal that remained until day 7 (Fig. 1a). Thus, CBD-HGF 
had a higher binding affinity to spinal cord than native HGF.

Next, we placed gelatin solutions (15% gelatin-FA and 0.05% RB) containing fluorescently labelled HGF 
or CBD-HGF onto spinal cords and photo-cross-linked them with visible light. Macroscopically, the gelled 
gelatin-FA remained for 7 days after implantation, and the implantation site was indistinguishable from the 
surrounding tissue on day 14 (Fig. 1b). Microscopically, HGF had diffused and faded by day 1, while a much 
stronger CBD-HGF signal was seen on day 1 relative to HGF and the signal was present at day 7 (Fig. 1c). To 
further confirm the binding capacity of CBD-HGF to gelatin-FA hydrogel, HGF and CBD-HGF were suspended 
in gelatin solutions, consolidated by visible light and then incubated in PBS. As shown in Fig. 1d, a higher level 
of CBD-HGF remained in gelatin-FA at each time point compared with HGF. Thus, gelatin-FA appeared to be a 
suitable scaffold for HGF-based tissue engineering.

Treatment of spinal cord compression injury by CBD-HGF.  The prolonged binding of CBD-HGF to 
spinal cords may promote recovery from SCI more effectively than unmodified HGF. To address this, mice with 
a compression injury were treated with a single administration of HGF or CBD-HGF and locomotor functional 
recovery was assessed using the Basso mouse scale (BMS). Mice exhibited complete hind limb paralysis immedi-
ately after the injury (score 0), after which the mice recovered spontaneously (Fig. 2a). Although HGF treatment 
failed to improve the BMS score compared with the no treatment control, CBD-HGF significantly augmented 
the BMS score relative to the control (Fig. 2a). Motor-evoked potential (MEP) analysis was then performed as 
an electrophysiological assessment. The MEP amplitude in healthy mice was 650.2 ± 68.4 mV (data not shown). 
At 6 weeks after injury, the amplitudes in the untreated, HGF and CBD-HGF groups were 232.0 ± 45.9 mV, 
229.0 ± 43.2 mV and 449.0 ± 61.5 mV, respectively (Fig. 2b). To investigate axonal growth, immunostaining for 
growth-associated protein 43 (GAP43; neuronal marker), myelin basic protein (MBP; oligodendrocyte/myelin 
marker) and glial fibrillary acidic protein (GFAP; astrocyte marker) was performed 6 weeks post-injury. The 
data in Fig. 3 demonstrated that both GAP43- and MBP-positive areas (Fig. 3a,b) in the CBD-HGF group were 
significantly larger than the other groups, while the GFAP-positive area (Fig. 3c) was significantly smaller, indi-
cating scar formation was limited after CBD-HGF treatment. These results indicate that a single administration of 
CBD-HGF is more effective than unmodified HGF for the treatment of compression injury and is accompanied 
by neural regeneration.

Augmented anti-inflammatory responses by CBD-HGF.  Spinal cord injury initiates a robust 
immune response represented by the production of cytokines and chemokines and a coordinated recruit-
ment of leukocytes into the damaged site, which may result in further neural damage19. HGF is known to exert 
anti-inflammatory effects20. We confirmed that HGF suppressed the production of cytokines and chemokines 
from LPS-stimulated macrophages (Supplement data 1). We confirmed that HGF suppressed the production 
of cytokines and chemokines from LPS-stimulated macrophages (Supplemental data 1). We hypothesised that 
residual CBD-HGF could effectively induce an anti-inflammatory effect after a compression injury. As shown in 
Fig. 4, recruitment of neutrophils (Ly6G-positive, Fig. 4a) and macrophages (CD68-positive, Fig. 4b) was signif-
icantly reduced by CBD-HGF but not HGF treatment. T cell (CD3-positive) infiltration was barely detectable in 
all groups (data not shown). The expression of cytokines and chemokines in the spinal cord was then investigated. 
Compression injury induced the robust expression of several inflammatory cytokines and chemokines, all of 
which were significantly reduced by CBD-HGF but not by HGF (Fig. 5). Thus, CBD-HGF ameliorated inflam-
mation, possibly through reducing cytokine/chemokine responses. Altogether, these data suggest that residual 
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CBD-HGF promotes recovery from SCI more effectively than HGF through reduction of inflammatory responses 
after a compression injury.

Treatment of complete transection injury by CBD-HGF-loaded gelatin-FA hydrogel.  Complete 
spinal cord transection mimics the severest clinical cases of SCI in humans21. The above results prompted us 
to apply CBD-HGF to the treatment of complete transection injury. Immediately after spinal cord transection, 
the mice exhibited complete hind limb paralysis (BMS score 0). A single administration of CBD-HGF failed to 

Figure 1.  Binding capacity of CBD-HGF. Fluorescence-labelled CBD-HGF and HGF were administered into 
spinal cords (a) and gelatin-FA hydrogels were implanted into injured dura mater (b,c). At appropriate time 
intervals after the procedure, mice were killed and the sections were examined by fluorescence microscopy. 
(a,c) HiLyte Fluor 555-labelled CBD-HGF/HGF is shown in red. Representative photographs from each group 
(3 mice) are shown. (b) Representative gross appearance after the procedure (3 mice). (d) Gelatin-FA solution 
containing CBD-HGF or HGF (each 100 ng) was gelled by irradiation with visible light and incubated with 
PBS at 37 °C. Concentrations of HGF in the remaining gel were measured by ELISA (n = 4 each). *p < 0.05, 
**p < 0.01, ***p < 0.001.
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improve motor function, as compared to non-treated groups (Fig. 6a), leading to the idea that scaffold-based tis-
sue engineering may be necessary, as scaffold provides an environment for cell attachment, proliferation and dif-
ferentiation. For this, we employed a gelatin-FA hydrogel as a biocompatible scaffold. Mice subjected to complete 
spinal cord transection were treated with either HGF- or CBD-HGF-loaded gelatin-FA hydrogels, after which 
locomotor functional recovery was investigated. As shown in Fig. 6a, there were no significant differences in the 
BMS scores among non-treated, gelatin-FA and HGF-loaded gelatin-FA groups at each time point after transec-
tion. Interestingly, mice treated with CBD-HGF-loaded gelatin-FA showed significantly higher BMS scores than 
the other groups on day 7 and thereafter (Fig. 6a).

For further assessment, mice treated with gelatin-FA hydrogel groups were only examined, because therapeutic 
efficacy was not found without the scaffold. An electrophysiological assessment was performed by measurement of 
MEP amplitude. Before transection, the MEP amplitude was 650.2 ± 68.4 mV (data not shown). At 8 weeks after 
transection, the amplitude of MEPs in the untreated, gelatin-FA, HGF-loaded gelatin-FA and CBD-HGF-loaded 
gelatin-FA groups were 28.6 ± 2.4 mV, 30.1 ± 5.6 mV, 72.2 ± 10.7 mV and 146.0 ± 21.1 mV, respectively (Fig. 6b). 
The MEP amplitude of the gelatin-FA + CBD-HGF group was significantly higher than that of the other groups, 
including gelatin-FA + HGF. Next, we measured axonal regeneration by retrograde tracing of Fluoro-Gold (FG), 
which demonstrated that the number of FG-labelled neurons in the gelatin-FA + CBD-HGF group was signifi-
cantly higher than in the other groups, including gelatin-FA + HGF (Fig. 6c). To further investigate axonal growth 
into the injury site, immunostaining for GAP43, MBP and GFAP was performed at 8 weeks after injury. As shown 
in Fig. 7, GAP43- and MBP-positive areas in the gelatin-FA + CBD-HGF group were significantly larger than the 
other groups (Fig. 7a,b). In contrast, the GFAP-positive area was significantly smaller (Fig. 7c). Altogether, these 
data suggest that gelatin-FA + CBD-HGF promotes recovery from complete transection injury more effectively 
than the other groups and that gelatin-FA appears to be a useful scaffold for severe SCI.

Discussion
Growth factors have been applied to SCI as a potential therapeutic strategy; however, most clinical trials have 
failed because of lack of efficacy and/or unacceptable side effects22. To enhance the efficacy and at the same time 
reduce adverse effects, it will require an approach that limits the diffusion of factors into non-target tissues. The 
goal of tissue engineering approaches is to deliver a functional factor in sufficient quantities and to limit diffu-
sion. Different approaches have been reported in animal models of SCI22–24; however, simpler methods to deliver 
growth factors to injury sites are desirable. In the present study, we applied CBD-HGF and gelatin-FA hydrogel 

Figure 2.  Treatment of spinal cord compression injury by CBD-HGF. Mice subjected to a compression injury 
were treated with a single administration of CBD-HGF or HGF. Untreated mice were used as controls. (a) Motor 
function recovery was assessed at 6 weeks after treatment using the BMS score (8 mice each per 3 groups). 
*p < 0.05, **p < 0.01 versus untreated control. (b) MEP analysis was performed as an electrophysiological 
assessment at 6 weeks after treatment (6 mice each per 3 groups). Left: Representative data from each group. 
Right: Quantitative data from the 3 groups; *p < 0.05.
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to animal models of SCI. CBD-HGF was retained in the spinal cord and in a biocompatible gelatin-FA hydro-
gel much longer than native HGF. We demonstrated that CBD-HGF, but not HGF, improves motor function 
after compression SCI. Although CBD-HGF alone failed to promote recovery from complete transection SCI, 
CBD-HGF combined with gelatin-FA hydrogel was effective for the treatment of complete transection SCI.

SCI causes irreparable severe motor and sensory dysfunction through primary mechanical damage and 
secondary damage caused by the subsequent inflammatory responses25. Infiltrating leukocytes produce tissue 
damage by releasing lysosomal enzymes, proteases and reactive oxygen species26,27. To lessen the damage, it is 
important to control the secondary inflammatory response. HGF exerts anti-inflammatory effects through the 
disruption of NF-κB signalling and the subsequent expression of NF-κB-dependent proinflammatory media-
tors20,28. In this study, we demonstrated that infiltrating leukocytes such as neutrophils and macrophages were 
reduced by a single administration of CBD-HGF, an event that was associated with decreased levels of cytokines 
and chemokines at the injury site. To reduce inflammation, methylprednisolone has been administered to patients 
with acute SCI; however, pooled evidence from four randomised, controlled trials and 17 observational studies 
does not demonstrate a significant long-term benefit29. This indicates that an anti-inflammatory approach by 
itself is insufficient for the treatment of SCI. HGF is also known to have neurotropic activities7,8,30. HGF exhibits 
anti-apoptotic functions for neurons and oligodendrocytes, and inhibits glial scar formation7–11. In this study, 

Figure 3.  Axonal growth after spinal cord compression injury. Mice subjected to a compression injury were 
treated with a single administration of CBD-HGF or HGF. Untreated mice were used as controls (4 mice each 
per 3 groups). Immunohistochemistry for GAP43 (a), MBP (b) and GFAP (c) at the injury sites was performed 
6 weeks post-injury. Left: Representative photographs from each group. The scale bar indicates 500 µm (solid 
line) and 50 µm (dotted line). Right: Immunopositive areas were measured under a microscope and percent area 
is shown. *p < 0.05, **p < 0.01, ***p < 0.001.
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we demonstrated that CBD-HGF significantly promoted axonal growth (increased GAP43- and MBP-positive 
areas), while limiting scar formation (reduced GFAP-positive area), as compared to HGF. Thus, in addition to its 
anti-inflammatory properties, retained CBD-HGF at the sites appears to recover SCI through neuroprotective 
activities.

Severe SCI often causes tissue damage leading to severe and permanent neurological deficits. Restoration 
of tissue continuity across tissue damage in severe injury lesions requires the implantation of scaffolds as ori-
ented bridging structures that promote tissue remodelling31,32. The ideal scaffolds are biocompatible and can be 
designed to incorporate immobilised molecules, including growth factors, as drug delivery devices. CBD-HGF 
alone failed to improve recovery from complete transection injury; however, a combination strategy using a 
gelatin-FA hydrogel and CBD-HGF was effective for the treatment of transection injury. Because the bind-
ing capacity of CBD-HGF to hydrogels was equal to tissue, gelatin-FA hydrogels appear to provide an optimal 

Figure 4.  Leukocyte infiltration after spinal cord compression injury. Mice subjected to a compression injury 
were treated with a single administration of CBD-HGF or HGF. Untreated mice were used as controls (5 mice 
each per 3 groups). Immunohistochemistry for Ly6G (a) and CD68 (b) at the injury sites was performed 6 
weeks post-injury. Upper: Representative photographs from each group. The scale bar indicates 100 µm (a) and 
200 µm (b). Lower: The numbers of cells were counted under a microscope. *p < 0.05, **p < 0.01.
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environment in tissue regeneration. Electrophysiological and retrograde tracing outcomes and immunohisto-
chemical studies demonstrated that the combination strategy provided structural guidance for axonal regener-
ation and prevented the formation of scar tissue. Thus, CBD-HGF retained in the scaffolds possibly promoted 
recovery from complete SCI. Gelatin is a biocompatible, biodegradable and manoeuvrable material with no 
harmful effects. Photo-cross-linkable gelatin can be used to form scaffolds in situ from injectable solutions and 
visible light18,33. Treatment strategies using photo-cross-linkable gelatin-FA hydrogel with CBD-HGF may be 
beneficial for the treatment of serious spinal cord damage after SCI.

There are several concerns that were not addressed in this study. We believe the anti-inflammatory properties 
of CBD-HGF are important in the functional recovery from compression injury; however, the precise mecha-
nism(s) and the degree of contribution remain unclear. It will be important to determine whether CBD-HGF 
combined with a gelatin-FA hydrogel could further enhance the functional recovery from compression injury. In 
the transection model, how gelatin-FA hydrogel supports tissue repair and when gelatin-FA hydrogel is absorbed 
and replaced by regenerated tissue remain unknown. Although CBD-HGF in combination with a gelatin-FA 
hydrogel was effective for the treatment of transection injury, the functional recovery was not fully satisfactory. 
Recent animal studies have shown that hydrogels and stem cell-based therapies enhance functional recovery 
after SCI31,34,35. Very recently, Takano et al. has demonstrated that HGF plays a key role in the enhanced func-
tional recovery after neural stem cell transplantation observed in aged mice with SCI36. An attractive question is 
whether a combination strategy with stem cells and CBD-HGF in gelatin-FA hydrogel could generate an additive 
or synergistic effect to increase the recovery from complete SCI. Further studies are necessary to address these 
possibilities.

In conclusion, we employed CBD-HGF and photo-cross-linkable gelatin-FA as a tissue-engineering approach. 
Our engineered CBD-HGF promoted in vivo axonal regeneration even by a single injection at the targeted site. 

Figure 5.  Cytokine and chemokine mRNA expression of after spinal cord compression injury. Mice subjected 
to a compression injury were treated with a single administration of CBD-HGF or HGF. Untreated mice were 
used as controls (4 mice each per 3 groups at each time point). Cytokine and chemokine mRNA expression at 
the injury sites was quantitated by qRT-PCR at 24 and 72 h after injury. The expression levels of each mRNA 
were normalised to Gapdh and the relative expression levels were compared with normal spinal cords. *p < 0.05, 
**p < 0.01, ***p < 0.01.
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They are many ways to enhance the release of HGF using continuous injection, virus vector or HGF overex-
pressing mesenchymal stem cells9,10,12. We believe that our fusion protein is better than others as CBD-HGF can 
localize longer at the designated site, resulting in effective neural recovery by a single low dose administration. 
In combination with gelatin-FA scaffold, CBD-HGF improved recovery from severe complete transection injury. 

Figure 6.  Treatment of spinal cord transection injury by the combination of CBD-HGF with or without a 
gelatin-FA hydrogel. Mice subjected to a transection injury were treated with a single injection of CBD-HGF or 
HGF alone, or a combination with gelatin-FA hydrogel (gelatin-FA hydrogel alone, gelatin-FA hydrogel + CBD-
HGF or gelatin-FA hydrogel + HGF). Untreated mice were used as controls. (a) Motor function recovery was 
assessed at 8 weeks after injury using the BMS score (15 mice each per 6 groups). **p < 0.01, ***p < 0.01, versus 
the untreated group. (b) MEP analysis was performed as an electrophysiological assessment at 8 weeks after 
injury (5 mice each per 4 groups). Left: Representative data from each group. Right: Quantitative data from the 
4 groups. **p < 0.01, ***p < 0.001. (c) Retrograde tracing was performed using Fluoro-Gold at 8 weeks after 
injury (5 mice each per 4 groups). Left: Representative data from each group. The scale bar indicates 500 µm. 
Right: Quantitative data from the 4 groups. ***p < 0.001.
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Gelatin-FA may provide an optimum environment for neural regeneration and synergistic effects with CBD-HGF. 
Thus, CBD-HGF combined with hydrogel scaffold may be promising for the treatment of serious SCI.

Methods
Reagents.  HGF fused to an additional collagen-binding domain derived from fibronectin (CBD-HGF) was 
prepared by a baculovirus expression system as described13. Control human HGF was purchased from R&D 
Systems (Minneapolis, MN, USA). CBD-HGF and HGF were labelled with HiLyte Fluor 555 (Dojindo Molecular 
Technologies, Inc., Kumamoto, Japan)37. Porcine skin gelatin (G2500), furfurylamine (FA) and Rose Bengal (RB) 
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Gelatin-FA was prepared as described18. Anti-GAP43, 
anti-GFAP, anti-MBP and anti-CD68 were purchased from Abcam (Cambridge, UK). Anti-Ly6G and anti-CD3 
antibodies were from BioLegend (San Diego, CA).

Mice.  Female C57Bl/6 mice (8–9 weeks old) were obtained from Charles River Laboratories (Kanagawa, 
Japan). The mice were housed in a temperature-controlled environment with a 12 h light/12 h dark cycle and 
allowed free access to water and food. The animal care and use committee at the Okayama University approved 

Figure 7.  Axonal growth after spinal cord transection injury. Mice subjected to a transection injury were 
treated with gelatin-FA hydrogel alone, gelatin-FA hydrogel + CBD-HGF or gelatin-FA hydrogel + HGF. 
Untreated mice were used as controls (5 mice each per 4 groups). Immunohistochemistry for GAP43 (a), MBP 
(b) and GFAP (c) at the injury sites was performed 8 weeks post-injury. Left: Representative photographs from 
each group. The scale bar indicates 500 µm (dotted line) and 50 µm (solid line). Right: Immunopositive areas 
were measured under a microscope and percent area is shown. *p < 0.05, ***p < 0.001.
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all experimental protocols for this study. All experiments were performed in accordance with relevant guidelines 
and regulations.

In vivo imaging of CBD-HGF.  Mice were anesthetised by intraperitoneal injection of ketamine (100 mg/kg). 
A complete laminectomy was performed at T9 and fluorescently labelled CBD-HGF or HGF was intrathecally 
injected (2 µl) into the spinal cord. In the case of the combination strategy with the gelatin scaffold, a complete 
laminectomy was performed at T8-T9. A 3 mm-diameter hole was made in the dura mater with a microscalpel 
and 15 µl of gelatin solution (15% gelatin-FA with 0.05% RB in PBS) was applied and gelled by irradiation with 
visible light (Luminar Ace LA-HDF158A, Hayashi Watch-works Co., Tokyo, Japan) for 1 min. We showed that 
gelatin-FA hydrogels had higher elasticity and flexibility compared to existing gelatin hydrogels18. The fascia and 
the skin were sutured separately. All mice were anesthetised, then euthanized by transcardial perfusion with 4% 
PFA at 1, 3 or 7 days after substance administration. The spinal cords and surrounding tissues were removed, 
embedded in optimal cutting temperature compound, frozen and sectioned in the sagittal plane at 12 µm on a 
cryostat. The tissue sections were evaluated by fluorescence microscopy.

CBD-HGF in gelatin-FA hydrogel in vitro.  A total of 60 µl of gelatin solution (15% gelatin-FA and 0.05% 
RB in PBS) containing CBD-HGF or HGF (each 100 ng) was added to a 96-well enzyme-linked immunosorbent 
assay (ELISA) plate and then gelled by irradiation with visible light for 1 min. The samples were incubated with 
200 µl of PBS at 37 °C and remaining hydrogels were harvested at 1, 3, 5 and 7 d. The hydrogels were mechanically 
disrupted after adding 140 µl of PBS. Concentrations of HGF in the solutions were measured by ELISA (R&D 
Systems, Minneapolis, MN).

Spinal cord injury models.  We employed two models of SCI: a compression and a transection model. For 
the compression model, mice were subjected to laminectomy at T9 and the spinal cord was compressed with a 
vascular clip (10 g force, 1 min)38 under anaesthesia. Immediately after the injury, mice were intrathecally injected 
with 2 µl of either PBS, CBD-HGF or HGF (each 1 µg). The fascia and the skin were then sutured separately. For 
the transection model, the spinal cord and nearby tissues were completely transected with a microscalpel after 
laminectomy at T939. The injury site was implanted with 15 µl of gelatin solution (15% gelatin-FA and 0.05% RB in 
PBS), gelatin solution with unmodified HGF (1 µg) or gelatin solution with CBD-HGF (1 µg), and gelled by irradi-
ation with visible light for 1 min. Untreated injured spinal cord tissue was used as a control. The fascia and the skin 
were sutured separately. At appropriate intervals after the treatment, mice were euthanized and the spinal cords 
were resected. For immunohistochemistry, tissues were fixed in 4% paraformaldehyde and embedded in paraffin. 
For mRNA expression, samples were immediately frozen in liquid nitrogen and stored at −80 °C until use.

Assessment of motor function recovery.  Motor recovery after SCI was evaluated by the Basso mouse 
scale (BMS)40. The scale ranges from 0 (no ankle movement) to 9 (complete functional recovery). BMS scores 
were recorded at 7 days and then every other week after SCI by two independent examiners who were blinded to 
the experimental conditions. Hind-limb motion was used to assess coordinated movement and stepping. When 
differences in the BMS score between the right and left hind limbs were observed, the average of the two scores 
was used. All experiments were performed in accordance with relevant guidelines and regulations.

Electrophysiological evaluation.  Electrophysiological analyses were performed at 8 weeks after SCI, 
as described41,42. Under anaesthesia, motor-evoked potentials (MEPs) were elicited by stimulation of the spinal 
cord at the occipito-cervical interspace. Recording electrodes in the hind-limb were placed on the muscle belly 
(recording) and the distal tendon of the muscle (reference). The ground electrode was placed subcutaneously 
between the coil and the recording electrodes. Stimulus intensity was adjusted to 10–20% above the voltage at 
which the maximum amplitude of the initial peak of the evoked response was observed. The amplitude (µV) was 
measured from the initiation point of the first wave to its highest point.

Retrograde tracing.  To trace neural connectivity of the spinal cord after transection injury, retro-
grade tracing was carried out43. At 8 weeks after transection of the spinal cord at T9, mice were subjected 
to another laminectomy at T12, followed by injection of 0.5 µl of 4% retrograde tracer Fluoro-Gold (FG; 
Fluorochrome, LLC, Denver, CO) into the spinal cord. Three days after FG injection, the mice were tran-
scardially perfused with 4% PFA. Brainstems were dissected and placed in 30% sucrose for cryopreserva-
tion. Serial frozen coronal sections were cut, and numbers of FG-labelled neurons in the red nucleus were 
counted under fluorescence microscopy.

Quantitative real-time PCR (qRT-PCR).  Samples were homogenized in Lysis buffer (Quickgene, Fujifilm, 
Tokyo, Japan), and total RNA was isolated according to the manufacturer’s instructions. Extracted RNA was 
reverse-transcribed using ReverTra Ace qPCR RT kit (Toyobo Life Science, Osaka, Japan) and qRT-PCR was per-
formed using the TaqMan 7500 sequence detection system (Applied Biosystems, Foster city, CA). The expression 
of IL-1b, IL-6, TNFa, CXCL1, CXCL10, CCL2 and Gapdh genes was analysed by Taqman gene expression assays 
(Applied Biosystems). The expression level of each gene was normalized to that of the Gapdh gene and presented 
as fold change over the expression of the control gene.

Immunohistochemistry.  Immunostaining was carried out using the Histofine Simple Stain MAX-PO 
kit (Nichirei Biosciences Inc., Tokyo, Japan), according to the manufacturer’s instructions. In brief, sections 
for microscopy (4 µm) were treated with 0.3% H2O2 in methanol and then incubated with primary antibodies 
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overnight at 4 °C. Sections were rinsed and incubated with peroxidase-labelled polymer at room temperature for 
30 min. As a chromogen, diaminobenzidine (DAKO, Carpinteria, CA) was used. Stained cells were counted using 
microscopy and ImageJ software.

Statistics.  Data were analysed using StatMate IV software version 4.01 (Advanced Technology for Medicine 
and Science, Tokyo, Japan). All data were expressed as mean ± SEM. An unpaired two-tailed Student’s t-test was 
used to evaluate the differences between groups for the in vitro collagen binding analysis. One-way ANOVA 
followed by the Tukey-Kramer test for multiple comparisons was used for immunohistochemistry, electrophysi-
ological evaluation and retrograde tracing. Repeated-measures two-way ANOVA followed by the Tukey-Kramer 
test was used for the BMS analysis. For all analyses, p-values smaller than 0.05 were considered significant.
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