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Relapsing-Remitting Multiple 
Sclerosis diagnosis from 
cerebrospinal fluids via Fourier 
transform infrared spectroscopy 
coupled with multivariate analysis
Dilek Yonar1, Levent Ocek2, Bedile Irem Tiftikcioglu2, Yasar Zorlu2 & Feride Severcan1,3

Multiple sclerosis (MS) is a chronic, progressive, inflammatory and degenerative disease of central 
nervous system. Here, we aimed to develop a method for differential diagnosis of Relapsing-Remitting 
MS (RRMS) and clinically isolated syndrome (CIS) patients, as well as to identify CIS patients who will 
progress to RRMS, from cerebrospinal fluid (CSF) by infrared (IR) spectroscopy and multivariate analysis. 
Spectral analyses demonstrated significant differences in the molecular contents, especially in the lipids 
and Z conformation of DNA of CSF from CIS, CIS to RRMS transformed (TCIS) and RRMS groups. These 
changes enables the discrimination of diseased groups and controls (individuals with no neurological 
disease) from each other using hierarchical cluster and principal component analysis. Some CIS samples 
were consistently clustered in RRMS class, which may indicate that these CIS patients potentially will 
transform to RRMS over time. Z-DNA band at 795 cm−1 that is existent only in diseased groups and 
significant increase in carbonyl amount, decrease in amideI/amide II and lipid/protein ratios observed 
only for RRMS groups can be used as diagnostic biomarkers. The results of the present study shed light 
on the early diagnosis of RRMS by IR spectroscopy complemented with multivariate analysis tools.

Multiple sclerosis (MS) affects approximately 2.5 million people worldwide, ranking as one of the most prevalent 
neurodegenerative disease, and is the cause of disability among young adults especially in Europe and North 
America1. MS is a chronic, slowly progressive, inflammatory, demyelinating and degenerative disease of the cen-
tral nervous system (CNS), characterized by an autoimmune inflammation2–5. The pathogenesis of MS encloses 
the immune mediated degradation of myelin, which is a fatty sheath surrounding the nerve fibres of the CNS 
and the axons, and progressive neuronal degeneration. The exact etiology of the disease is still unclear, in part 
owing to a lack of sensitivity in current techniques used to detect the onset and progression of the disease at early 
time points6,7. The disease has substantial clinical heterogeneity, but most patients who continue to develop MS 
initially experience a single demyelinating event, referred as clinically isolated syndrome (CIS). Patients expe-
riencing CIS do not reveal evidence of the dissemination in time or space that is required for the diagnosis of 
multiple sclerosis, but are under high risk of developing this disease5,8. The clinical course of MS may follow 
different progression patterns, and one of them is the relapsing-remitting MS (RRMS) pattern that affects 85% of 
the MS patients. During the course of RRMS, patients experience periods of neurological dysfunction, named as 
relapses, which is followed by partial or complete clinical improvement (remissions)9. RRMS commonly begins 
with a CIS characterized by an acute or subacute episode of neurological disturbance due to a single white matter 
lesion located in the optic nerve, brainstem or spinal cord8,10. Prospective studies demonstrates that 60–70% of 
CIS patients develop a second clinically evident demyelinating event within 20 years and will, therefore, be diag-
nosed with clinically definite MS (CDMS)11,12. Clinical trials performed in CIS patients have shown that between 
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38% and 45% of untreated patients convert to CDMS within 2 years5,13. Therefore, it is important to differentiate 
the CIS and RRMS groups and also to identify CIS patients who will progress to RRMS.

Pathological conditions induce significant structural and functional alterations in biological systems. These 
alterations are directly reflected in the vibrational spectra of the studied samples and can be determined rapidly 
and sensitively without using any external agents by Fourier transform infrared (FTIR) spectroscopy14,15. Since 
the mid-IR spectrum represents the whole “-omics” of a biological sample, FTIR spectroscopy is a promising tool 
for the development of a clinically useful biomarker which reflects the onset and progression of a disease and 
ultimately enabling early identification of diseases. Hereby, FTIR spectroscopy has had an important role in the 
field of disease diagnostics in recent years16–19, especially when complemented with Attenuated Total Reflectance 
(ATR) due to its rapidity and ease to put into clinical practice. Furthermore, different chemometric methods such 
as Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) together with FTIR spectral 
measurements have been successfully used in screening and diagnosis20, providing highly sensitive and specific 
discrimination of diseases based on spectral differences. There is a great deal of literature on the applications of 
FTIR spectroscopy to neurological diseases such as Alzheimer’s disease (AD)21–24, Parkinson’s disease (PD)25–27, 
multiple sclerosis28–30, epilepsy31,32, bipolar disorder33, schizophrenia33,34, and depression35 in human and animal 
models. Protein misfolding and aggregation, to which FTIR spectroscopy is sensitive, are the hallmark of a num-
ber of neurological diseases36. It is now recognized that the aggregation of the amyloid β (Aβ) peptide is respon-
sible for the onset of some of the diseases. FTIR spectroscopy was used to identify the biochemical variations in 
the plasma of AD patients compared with those of control subjects and oxidative stress-dependent variations in 
AD plasma were revealed and AD patient serum from non-demented ones were distinguished by hierarchical 
classification23. In another study, it is revealed that plasma samples from cognitive impaired individuals exhibit a 
higher content of saturated lipids, carboxylic acids, reactive carbonyls, and other molecules related to oxidative 
stress and protein modifications21. A synchrotron FTIR microspectroscopic study aiming to analyze the Lewy 
bodies (LBs) in the brain of PD patients showed a shift in IR spectrum indicating the abundance of β-sheet-rich 
structure in LBs25. In a recent study, a clear discrimination between the bipolar, schizophrenic and control groups’ 
blood samples was obtained by FTIR spectroscopy and multivariate analysis methods33. All these studies strongly 
support that FTIR spectroscopy has potential in diagnosing and identifying disease states and may prove to also 
be of prognostic value37.

Demyelination in MS causes significant alterations in FTIR spectrum of the affected areas, reflecting the deg-
radation of the myelin sheath and accumulation of the breakdown products. FTIR has been successfully used in 
the characterization of the white matter, grey matter and MS plaques from human CNS tissue and identification 
of the pronounced loss of lipids in MS plaques by using the alterations in the lipid bands30. The impact of free 
radical accumulation in the MS pathogenesis was studied by FTIR spectroscopy on demyelinated MS lesions29. 
The oxidation of protein and lipids at the MS lesions was pointed out, which supports the co-accumulation of 
free radicals in the pathogenesis of MS lesions. A recent study was designed using experimental autoimmune 
encephalomyelitis (EAE), animal model for MS, in combination with FTIR microspectroscopy along with artifi-
cial neural networks (ANNs) to gain further insight into the cellular and molecular mechanisms involved in the 
neuropathology of MS28. During the course of the disease progression, subtle biochemical and structural altera-
tions throughout the cerebellum and spinal cords of EAE not detected by conventional histological methods were 
observed by FTIR spectroscopy as an early indication of the clinical signs of EAE28. All these studies are limited 
to tissue sampling.

Although body fluid samples are ideal candidates in diagnosis of neurodegenerative diseases, their analysis 
using FTIR spectroscopy in this regard is missing. The spectroscopic analysis of body fluids in disease diagnosis 
is a rather feasible and straightforward method, not only for neurodegenerative diseases but also for cancer, dia-
betes, and arthiritis38–42. Cerebrospinal fluid (CSF) are promising body fluid for the identification and character-
ization of neurodegenerative diseases. Since its compartment is in close anatomical contact with brain interstitial 
fluid, CSF may directly reflect the biochemical changes related to neurodegenerative diseases, including MS43,44. 
The fact that many CNS diseases may show numerous discrete lesions similar to those of MS makes its diagnosis 
difficult. Hence, it is eminent to discover new methods that better discriminate MS from other CNS diseases.

In the present study, ATR-FTIR spectroscopy coupled with multivariate analysis methods were utilized to 
develop a new procedure for the diagnosis and differentiation of RRMS and CIS patients via cerebrospinal fluid 
and to determine any differences specifically related to disease progression based on the protein, lipid and nucleic 
acid profile of diseased groups. Pursuing such an evaluation will be of considerable value, because obtained infor-
mation will give new insights into the disease progression and thus, point out the potential targets for treatment.

Results and Discussion
In the current study, we performed ATR-FTIR spectroscopy to characterize and differentiate RRMS and CIS 
patients by CSF analysis. Figure 1A displays the typical FTIR spectra of the CSF samples for the groups under 
study in the 3750–750 cm−1 spectral region. Second derivative vector normalized FTIR spectra obtained from 
the control, CIS, TCIS and RRMS samples in different spectral regions, namely 3050–2800 cm−1 (C-H region), 
1800–1250 and 1250–750 cm−1 (1800–750 cm−1 fingerprint region) are presented in Fig. 1B,C and D, respectively. 
FTIR spectra of CSF samples originate in particular from characteristic absorption bands due to the vibrations of 
various biological molecules. The absorption bands labeled in Fig. 1 and their assignment according to the related 
literature37,45,46 are given in the supplementary material (Table S-2). As seen from Fig. 1, there are obvious spectral 
differences in the functional groups of the molecules such as lipids, proteins, RNA, DNA, and carbohydrates of 
the cerebrospinal fluids obtained from RRMS patients compared to the control and CIS patients. Therefore, fur-
ther investigation of the spectra was focused on the disease-induced changes. Variations in band positions give 
structural information about the relevant molecule, whereas variations in band intensity or more accurately area 
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under spectral bands are directly proportional to the concentration of the functional groups belonging to the 
relevant molecule (in accordance with Beer-Lambert law)47.

IR spectra consist of two main regions; the C-H and fingerprint regions. C-H region is chiefly associated with 
lipid spectral bands. The representative second derivative vector normalized spectra of the control, CIS, TCIS and 
RRMS study groups in the C-H region (3050–2800 cm−1) are presented in Fig. 1B. The intense antisymmetric and 
symmetric CH2 stretching vibrations (~2920 and 2850 cm−1, respectively) from aliphatic ‒CH2 functional groups 
stem from long hydrocarbon chains in lipids. In addition, there is a unique vibrational frequency of unsaturated 
lipids at ~3010 cm−1 assigned as olefinic C=CH stretching vibration. This band can be utilized for monitoring the 
content of unsaturated lipids48–50.

Remarkable changes in lipid-oriented spectral bands (# 4 and 6) for RRMS can be seen from Fig. 1B. These 
changes were intensity reduction and wavenumber shifts towards higher wavenumbers in the lipid bands (CH2 
antisymmetric and symmetric stretching) compared to the control, CIS and TCIS groups (Table 1). Altered CSF 
lipid content in MS patients, which may provide valuable insights into the diagnosis and pathogenesis of this dis-
order, has been previously reported in several studies51,52. Although some studies have reported an increase in CSF 
lipids, several others have reported a decrease in CSF cholesterol and lipid transfer proteins in MS patients53,54. In 
our study, there was also a reduction in the intensity of the olefinic =CH stretching band compared to the control 
as seen from Fig. 1B.

In order to investigate possible disease-induced variations, the molecular composition and structure of lipids 
were further analyzed by calculating the area ratios of several specific lipid functional groups to the total lipid 
content. For this purpose, unsaturated/saturated lipid, carbonyl/lipid and CH2 antisymmetric/total lipid ratios 
were calculated (Fig. 2). Total lipid content was calculated as the sum of CH2 antisymmetric and symmetric 
stretching bands, which correspond to saturated lipids. The carbonyl/lipid ratio, indicating the carbonyl ester con-
centration in lipids of the system, was calculated by taking the ratio of the area of the carbonyl ester band (~1732 
cm−1) (peak # 7) to total lipid. The carbonyl/total lipid ratio was significantly higher (p < 0.0001) in the RRMS 
group compared to other groups. The unsaturated/saturated ratio was calculated by taking the ratio of the area 
of the olefinic band (~3009 cm−1) to total lipid (sum of the saturated lipid bands). The olefinic/total lipid ratio, as 
an unsaturation index pointing out the content of double bonds in the lipid structure50,55, decreased significantly 
in all the diseased groups compared to the control group (p < 0.0001). The area ratio of CH2 antisymmetric 
stretching band to the total lipid was also calculated to obtain information about qualitative lipid acyl chain length 
changes. This ratio was quite lower (p < 0.0001) in the RRMS group compared to other groups, revealing the pres-
ence of shorter-chained lipids in the RRMS group relative to the control and CIS groups.

Figure 1. Representative IR spectra of the control, CIS, TCIS and RRMS patients’ CSF samples: (A) absorbance 
spectra in the 3750–750 cm−1 region (normalized with respect to the amide A band located at 3330 cm−1), (B) 
second derivative vector normalized spectra in the C-H region (3050–2800 cm−1), and second derivative vector 
normalized spectra in the (C) 1800–1250 cm−1, and (D) 1250–750 cm−1 ranges of the fingerprint region (the 
labeled peaks are assigned in Table S-2).
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Brain contains the second highest lipid content after adipose tissue and almost all brain lipids modify the 
structure, fluidity and function of cellular membranes. Disease processes result in alterations both in the content 
and composition of the brain lipids which contain various amounts of saturated, mono- and polyunsaturated 
fatty acids52,56,57. The inflammatory environment in demyelinating lesions leads to the generation of oxygen- 
and nitrogen-free radicals. Thus, oxidative stress is involved in the inflammation leading to demyelination and 
neurodegeneration in the pathogenesis of MS58,59. CNS can be affected from oxidative damage especially by 
means of polyunsaturated fatty acids which is susceptible to oxidative attack because of their double bond con-
tent. Increased degradation of polyunsaturated fatty acids may induce peroxidation of membrane lipids, which 
is usually accompanied by the formation of degradation products such as aldehydes, shorter-chained lipids and 
carbonyl compunds60. The decrease in the unsaturated/saturated lipid ratio may be due to the decrease in the 
olefinic content in the diseased groups’ cellular membrane lipids, consistent with increased lipid peroxidation. 
Moreover, the breakdown of lipid acyl chains was confirmed by the decrease in CH2/total lipid ratio of RRMS 
samples which indicates that the degradation products of lipids contain shorter-chained lipids. These reactions 
in lipid membranes are usually accompanied by the formation of a wide variety of products, including alkanes 
and carbonyl compounds. Since free radicals can also oxidize membrane proteins and the oxidation of proteins 

Bands

Wavenumber (cm−1)

Control CIS TCIS MS

Olefinic C=C-H stretching 3008.63 ± 0.40 3008.36 ± 0.49 3009.94 ± 0.84 3008.38 ± 0.39

CH2 antisymmetric stretching 2918.09 ± 0.44 2919.01 ± 0.93 2921.47 ± 1.00* 2922.29 ± 0.67****

CH2 symmetric stretching 2850.42 ± 0.16 2851.66 ± 0.63 2852.26 ± 0.64* 2852.72 ± 0.43***

Ester C=O stretching 1730.28 ± 0.14 1732.03 ± 0.44** 1732.35 ± 0.35*** 1731.20 ± 0.33

Amide I 1657.11 ± 0.25 1657.68 ± 0.33 1657.11 ± 0.33 1658.04 ± 0.22*

Amide II 1546.76 ± 0.39 1544.88 ± 0.49*** 1544.04 ± 0.24**** 1544.34 ± 0.14 ****

Bandwidth (cm−1)

Amide I 8.38 ± 0.29 7.98 ± 0.65 8.08 ± 0.43 10.99 ± 0.63**

Table 1. Changes in the wavenumbers of unsaturated and saturated lipid functional groups, amide I and 
II bands, and bandwidth values of the amide I vibrations. The degree of significance for the comparison of 
the diseased groups with respect to the control group was denoted as *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001.

Figure 2. Bar graphs of the CH2 antisymmetric/total lipid, olefinic/total lipid, ester carbonyl/total lipid ratios 
of control and diseased CIS, TCIS, RRMS groups (The degree of significance for the comparison of the diseased 
groups with respect to the control group was denoted as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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causes the production of some additional carbonyls47, this may also contribute to the increase in the carbonyl 
ester/total lipid ratio. Hence, the higher carbonyl/lipid ratio that was detected in the RRMS patients also suggests 
the oxidation of lipids. The oxidation products of lipids have been successfully detected in vitro by FTIR spectros-
copy and the observed increase in carbonyl groups and degradation of acyl chains is consistent with our study61. 
Lipid peroxidation is of great significance since it modifies the physical properties of membranes, including its 
permeability to diverse solutes and the packing of lipids and proteins in membranes, which in turn, influences the 
function of biological membranes62.

The lipid acyl chain flexibility (order/disorder state of lipids) information, which is strongly dependent on the 
composition, hydration, and content of membrane proteins and other factors, can be determined from the var-
iations in the position of the antisymmetric and symmetric CH2 stretching bands. For example, a shift to higher 
wavenumber values implies a higher acyl chain flexibility indicating lipid disordering63,64. The wavenumber of the 
CH2 antisymmetric and symmetric stretching bands shifted significantly towards higher values with disease pro-
gression in comparison to the control (Table 1). This shift towards higher values implies that lipid order decreases 
and acyl chain flexibility increases for TCIS and RRMS patients. The bandwidth of CH2 antisymmetric or sym-
metric stretching bands gives information about membrane dynamics, since it is related to the motional rates of 
the lipid molecule64,65. No significant changes in the bandwidth values of CH2 antisymmetric stretching bands of 
diseased groups compared to the control group were observed.

The fingerprint region (Fig. 1C,D) consists of several spectral bands arising from the functional groups of 
proteins, lipids, carbohydrates and nucleic acids (RNA/DNA). As mentioned previously, the carbonyl amount was 
significantly higher (p < 0.0001) in the RRMS group compared to the other groups (Fig. 2). The amide I/amide II 
area and/or intensity ratio and the position of these absorptions are sensitive to protein structural and conforma-
tional changes15. A highly significant decrease in the wavenumber of the amide II band for all diseased groups and 
a slight but significant increase in the wavenumber of amide I band for the RRMS group were observed, indicating 
alterations in protein conformation (Table 1). Furthermore, a significant decrease was observed in the amide I/
amide II area ratio for the RRMS group, suggesting alterations in protein structures. Since the band area values of 
both amide I and amide II bands increased in the diseased groups (data not shown), the decrease in the amide I/
amide II area ratio may be due to higher increase in the content of N–H bending and C–N stretching relative to 
the content of C=O stretching in the proteins of RRMS patients’ CSF samples. Moreover, a significant broadening 
in the bandwidth of the amide I band (p < 0.01) was observed in the RRMS group in comparison to the control 
group (Table 1). In a previous study, proteins were thought to be oxidized at active MS lesion sites due to broaden-
ing in the amide I band29. The formation of additional carbonyls on some amino acid residues results from protein 
oxidation. It has been proposed that some of these carbonyls reside adjacent to amines and this might lead to a 
spectroscopic absorption and a broadening in the amide I band29,47. Accumulation of carbonylated proteins has 
been involved in the etiology and/or progression of several neurological disorders including Alzheimer’s disease, 
Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis66. In a recent study, Sadowska-Bartosz 
and colleagues aimed to ascertain oxidative stress in RRMS patients without treatment and they observed an 
elevated level of protein carbonyls in RRMS patients without treatment and confirmed the occurrence of protein 
oxidative damage in MS67.

The lipid to protein ratio can be obtained by taking the ratio of the areas of the bands arising from lipids and 
proteins. The ratio of the sum of the area under the CH2 antisymmetric and symmetric stretching bands to the 
sum of the area under the amide I and II bands was used to evaluate the lipid to protein ratio (Fig. 3). As seen 
from Fig. 3, the lipid/protein ratio decreased significantly in the CSF samples of the RRMS patients (p < 0.05) 
compared to the control group. This decrease might be attributed to a lower lipid and/or higher protein content, 
indicating an alteration in the lipid and protein metabolism in the RRMS group.

FTIR spectra of nucleic acids show a number of characteristic bands. As in other biomolecules discussed 
above, the integrated area of these bands also provides information about the concentration of nucleic acids. 
Nucleic acid/protein ratios of the control and diseased CIS, TCIS, RRMS groups are shown in Fig. 3 and the 
observed increase in this ratio of the diseased groups suggests an increased DNA/RNA content in the CSF sam-
ples of the patients. The ratio of the integrated absorbance values of the bands at 1080 and 1540 cm−1 were pro-
posed as a clinical parameter for the evaluation of the degree of malignancy in patients affected by B-chronic 
lymphatic leukaemia68. In a study with experimental autoimmune encephalomyelitis (EAE), an animal model 
for MS, IR images of cerebellum tissues collected during the progression of the disease confirms the dramatic 
decrease in lipids located within sites of the MS lesions and the formation of MS lesions accompanied by an 
increased content of nucleic acids also observed in our human study. Furthermore, similar to our results, in that 
animal model study they proposed lipid, protein, and nucleic acid bands as spectral markers for MS with the use 
of PCA and ANNs28.

Figure 4 shows the 885-750 cm−1 spectral region which includes two DNA related vibrations at 832 and 
795 cm−1 that can be attributed to the B-form helix conformation of DNA and guanine in a C3′ endo/syn confor-
mation, which is present in the Z conformation of DNA, respectively45,69. There was no significant change in the 
intensity or area of the B-form helix conformation of DNA, while there were quite significant changes for the Z 
conformation of DNA. The Z conformation of DNA band was not observed in the control CSF samples contrary 
to the diseased samples (Fig. 4). The integrated area of this band indicated increased content of Z conformation of 
DNA in the diseased groups which indicates conformational changes in native DNA with a tendency towards the 
formation of local left-handed Z structure. It is inferred that the changes in the Z conformation of DNA and its 
absence in the control CSF samples remarkably contribute to the discrimination of the diseased group from the 
controls and have potential diagnostic value.

In addition to the spectral characterization studies mentioned above, meaningful diagnostic information can 
be obtained rapidly with the application of multivariate analysis methods to infrared spectra. In this respect, 
unsupervised multivariate analysis methods such as HCA and PCA were performed to different spectral regions 
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to determine the most suitable spectral ranges that can be used as a marker for relapsing-remitting multiple 
sclerosis diagnosis. HCA was firstly applied to second derivative vector normalized IR spectra to differentiate dis-
eased groups from the control and from each other. The best results were achieved in the C-H and 815–785 cm−1 
spectral regions. Figure 5A and B shows the HCA results of the control vs. diseased groups in the 815–785 cm−1 
spectral region and CIS vs. RRMS (including TCIS) groups in the C-H spectral region (3025–2800 cm−1), respec-
tively. The dendrograms indicate a notable clustering of the groups under study. As seen from Fig. 5A, successful 
differentiation was obtained between the control and two different disease groups in the 815–785 cm−1 spectral 
region. The magnitude of similarity is the heterogeneity values in cluster analysis. Higher heterogeneity between 
the clusters demonstrates higher dissimilarity among analyzed groups. The highest heterogeneity greater than 25 
was observed in the differentiation of the control and diseased groups (Fig. 5A). When TCIS and RRMS groups 

Figure 3. Bar graphs of the amide I/amide II, lipid/protein and nucleic acid/protein area ratios of control and 
diseased CIS, TCIS, RRMS groups (The degree of significance for the comparison of the diseased groups with 
respect to the control group was denoted as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

Figure 4. IR absorbance spectra of CSF samples from control, CIS, TCIS and RRMS patients in the 885–750 cm−1 
spectral range normalized with respect to the amide I band located at 1657 cm−1 and changes in the band area of 
the band related to Z conformation DNA (795 cm−1) in subpanel (The degree of significance for the comparison of 
the diseased groups with respect to the control group was denoted as *p < 0.05, **p < 0.01).
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were considered together, the HCA results revealed that most of the RRMS and TCIS samples were successfully 
clustered in the same group. The heterogeneity value for the differentiation of CIS and RRMS group was observed 
as 7. In order to measure the efficiency of the discrimination, sensitivity and specificity values based on the 
obtained clusters were calculated. The sensitivity and specificity values (95 and 92%, respectively) indicate much 
better discrimination of the diseased groups from the controls when compared to those (88 and 40%, respec-
tively) of the diseased groups from each other. As can be seen from Fig. 5B some CIS samples were also clustered 
in RRMS group. These samples should be followed up because they may transform to RRMS over time. This also 
causes to the low specificity value for the differentiation of RRMS and TCIS groups from the CIS group.

The clustering of the spectra obtained from the control and diseased groups was further analyzed by PCA. 
PCA results are presented as score and loading plots. Scores plot displays the distribution of samples in the PC 
space and the loading plots identify the regions of the spectrum which are responsible for the clusters appear-
ing in the scores plot of CSF samples. The positive and negative peaks observed in the loading plots indicate 
that these peaks strongly affect the principal components and so contribute to the discrimination of the groups 
under study. PC analysis was applied to mean-centered, second derivative and vector normalized IR data. Firstly, 
mean-centered PCA was conducted over the range of 4000–650 cm−1 for all groups and their loading plots are 
given in supplementary material (Fig. S-1). These plots clearly showed that the spectral differences between the 
groups occurred dramatically in the 3025–28000 cm−1 and 850–750 cm−1 regions. PCA score plots and the cor-
responding loading plots of these spectral ranges are given in Fig. 6. For the separation of the diseased groups 
from the control group, the best clustering was found by using the combination of the C-H region and the region 
related to Z conformation of DNA. The PCA score plots shown in Fig. 6A and B demonstrated that the clusters 
of CIS and RRMS (TCIS included) samples were clearly separated from the control group. The evaluation of the 

Figure 5. Hierarchical clustering (HCA) of CSF samples for (A) CO, CIS, TCIS and RRMS groups in the 
815–785 cm−1 spectral region, and (B) CIS, TCIS and RRMS groups in the 3025–2800 cm−1 spectral region 
from second derivative vector normalized IR spectra.
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scores plot for control-CIS and control-RRMS (TCIS included) groups demonstrated 86% of the variation to be 
accounted by the first principal component (PC-1) (Fig. 6A,B). The clusters of CIS were distinguished from the 
control along PC-2 (Fig. 6A). The clusters of RRMS (TCIS included) were distinguished from the control along 
PC-1 and PC-3 (Fig. 6B). For the separation of the diseased groups from each other, a part of the C-H region 
(2950–2830 cm−1) was used. The PCA score plot shown in Fig. 6C indicated that the clusters of CIS and RRMS 
(TCIS included) groups differentiated from each other with a slight overlapping of CIS samples in the RRMS 
group. Moreover, the RRMS cluster (TCIS included) was distinguished from the CIS group along PC-1 (Fig. 6C). 
The evaluation of the scores plot for CIS-RRMS (TCIS included) groups demonstrated 70% of the variation to be 
accounted by the first principal component (PC-1) (Fig. 6C). The obtained notable biomolecular changes in the 
lipids and Z conformation of DNA from spectral evaluation enables the discrimination of the groups from each 
other.

The leave-one-out type cross validation (LOOCV) was performed for all PCAs in the present study. The 
obtained score plots from the calibration and cross validation sets were compared so that prediction errors are 
kept at the minimum level70. The PCA score plots obtained from the calibration set (blue) and the corresponding 
leave-one out cross validation (red) for the groups under study are given in supplementary material (Fig. S-2). 
Since the calibration and cross validation results were very close to each other, it can be said that the PCA model 
obtained is reliable.

In order to identify local models for different classes and to predict a probable class membership for new 
observations, Soft Independent Modeling of Class Analogy (SIMCA) approach, a supervised classification tool, 
was performed. For this classification process, the second derivative vector normalized pre-processed data was 
used in the C-H spectral region (3000–2800 cm−1) following the discrimination results obtained by PCA. Prior 
to SIMCA classification, PCA models for CIS (n = 15) and RRMS (n = 35) classes were developed as the train-
ing data set. CIS samples in the training data set were chosen from CIS samples which are diagnosed as CIS by 
neurological examinations. Subsequent to the set up of models, SIMCA classification was carried out for the 
test group (TCIS samples) and the residual distances were calculated. A test sample is then assigned to a certain 
class, if the residual distance to the particular model is below the statistical limit for that class. If the residual 
distance of a sample exceeds the upper limit for every class in the data set, the sample would not be assigned to 
any of the classes, since it is considered either an outlier or a result of a class not represented in the data set71,72. 

Figure 6. PCA scores and loading plots for FTIR spectra of (A) Control and CIS samples in the 3025–2800 
and 813–775 cm−1 spectral regions, (B) Control, RRMS and TCIS samples in the 3000–2800 and 815–780 cm−1 
spectral regions and (C) CIS, RRMS and TCIS samples in the 2950–2830 cm−1 spectral region.
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The Cooman’s plot, which enabled the sample-to-model distances to be plotted against each other for the two 
models (RRMS and CIS models) at 10% significance level, and the classification table of TCIS group at the same 
significance level are shown in Fig. 7. Cooman’s plot can be seen in this figure and a model distance greater than 
8 indicates that the two models are quite different and the groups are distinguished. However, a relatively slight 
overlapping occurred, indicating some common characteristic parameters between CIS and RRMS groups. This 
result may indicate that some of the CIS patients may transform to MS over time. It seems from Cooman’s plot 
and the classification table that 10 of 15 patients from the TCIS group were classified as RRMS at a 10% signifi-
cance level and the other 5 patients fell outside the statistical limits (in the upper right corner) which means that 
these 5 patients belong to neither of the models72. This indicates that these samples belong to a class that has not 
been used in the classification or they may simply be outliers. The model was created by assuming that all the 
samples in the CIS model were exactly CIS. Since it is known from the results of this study that a total of nine CIS 
patients will develop RRMS over time, SIMCA classification may be clearly affected by these outliers and even 
incorrectly classify a number of good observations.

The classification model performance can be visualized by the plot of Receiver Operating Characteristic 
(ROC) curve that shows how the true positive rate changes with the false positive rate. Since the classification 
methods produce probability values representing the degree to which class the objects belong, the statistics like 
true and false positive rates can be directly obtained from the outputs of the method. The resulting ROC curve 
is given in Fig. 8. The obtained area under the ROC curve (AUC) value was 0.86 (95% confidence interval [CI], 
0.82–0.89) (p < 0.0001), indicating that CIS and RRMS patients are well separated with this classification model. 
The AUC value is quite similar to those of MRI results from MS patients given in the literature by other groups, 
where the reported values are 0.82 and 0.8373,74. The results of the present study reveal that, in MS diagnosis and 
CIS to RRMS transformation, due to its low cost, rapidity and sensitivity, infrared spectroscopy can be used as a 
complementary technique to MRI which is a golden standard.

Conclusion
The results of the current study demonstrated that the biomolecular composition and structure of CSF sam-
ples for diseased groups (MS and CIS) differs from the control samples. The biomolecular differences such as 
disease-induced peroxidation of membrane lipids, protein oxidative damage and increased content of nucleic 
acids have diagnostic significance and enable the discrimination of diseased CSF samples from each other. For 
example, significant increase in carbonyl amount and significant decrease in amideI/amide II and lipid/protein 
ratios were observed only for RRMS groups and, therefore can be used as diagnostic biomarkers for accurate 
diagnosis of RRMS groups. The observation of a new band in the diseased groups located at 795 cm−1 belonging 
to guanine C3′-endo/syn conformation in the Z-DNA that is non-existent in the control CSF samples was an 
important spectral output of the present study. Therefore, it has been shown that this band can be used as a bio-
logical marker for the diagnosis of RRMS and CIS from individuals that have no neurological disorders. A very 
successful separation of TCIS and RRMS groups from the CIS group with high sensitivity was obtained by HCA 

Figure 7. Cooman’s plot of RRMS (red), CIS (blue) and TCIS (green) samples and the classification table of 
TCIS samples at 10% significance level.
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and PCA scores. Moreover, 10 of 15 TCIS samples were accurately identified by SIMCA analysis. A total of nine 
CIS samples were consistently clustered in the multiple sclerosis class which may be an indication that these CIS 
patients may also transform to MS over time as we have observed in a follow-up process. This suggests that FTIR 
spectroscopy coupled with multivariate analysis can be used in early diagnosis of RRMS.

It is advised that patients should be treated as early as possible after a first clinical demyelinating event (FCDE) 
and previous studies have shown that early treatment with first stage therapeutics has beneficial effects in patients 
with a FCDE for reducing the risk of developing MS. Early diagnosis of CIS patients who may definitively con-
vert to MS is important, because time of conversion to clinically definite MS (CDMS) will be postponed by early 
treatment of the correct patient.

In conclusion, computational and statistical analyses of FTIR spectra might reflect the disease-induced 
changes long before they become visible to the neurologist.

Material and Methods
Patients and sample collection. All participants provided written informed consent and all experimen-
tal protocols were approved by the Izmir Tepecik Education and Research Hospital Local Ethics Committee 
(Approval No. 2013-24). All methods were performed in accordance with the relevant guidelines and regulations 
of the ethical committee approvals. A total of 24 cerebrospinal fluid (CSF) samples from control individuals and 
65 CSF samples from relapsing-remitting multiple sclerosis (RRMS, n = 35) and clinically isolated syndrome 
(CIS, n = 30) patients, who fulfilled the criteria defined by McDonald75, were collected. Of the 30 patients who 
were diagnosed with CIS, it was determined that 8 (26,66%), 6 (20%), 6 (20%), 6 (20%) and 4 (13,33%) had hem-
ispheric, brain stem, spinal, optic and cerebellar symptoms, respectively. CIS patients were carefully diagnosed 
and selected via magnetic resonance imaging (MRI) examination, by making sure that there were no lesions 
in the central nervous system of those patients who had optic neuritis and there was a single lesion clarifying 
the occurrence of hemispheric, brain stem, cerebellar and spinal symptoms. The number and localisation of 
T2 hyperintense lesions on T2-weighted FLAIR MRIs in patients with RRMS were fulfilling the 2010 revised 
McDonald’s criteria. Control individuals were patients treated for orthopedic problems such as meniscus tears, 
femur fractures, however they were not diagnosed with any neurological disease. Expanded disability status scale 
(EDSS) and demographic data of the groups under study are given in Table 2.

Oligoclonal bands (OCBs) were investigated in the CSF of all control and diseased patients by isoelectric 
focusing technique. OCBs positivity (type 2 and 3) was detected in 46% and 77% of the CIS and MS groups’ 
patients, respectively and in none of the control group patients. The patients were followed up for 24 months. 
After the follow-up period, 15 CIS patients developed RRMS which was denoted as transformed CIS (TCIS). 
OCBs were negative in 4 of these patients.

In order to collect CSF, the lumbar puncture technique was used. A needle was inserted into the space between 
two vertebrae in the lower (lumbar) spine and then it was carefully moved into the CSF filled space surrounding the 
spinal cord. Approximately 3 milliliters CSF was dripped out into a vial when the needle was in place. The collected 
CSF samples were then centrifuged for 10 min at 1500 rpm and the supernatant was removed. The centrifuged CSF 
samples were stored at −80 °C until FTIR experiments and their spectra were acquired within 2 months.

Figure 8. ROC curve obtained from the classification test results based on infrared spectra.

Patient and Control Samples Age Gender (M/F) EDSS Mean ± SD

RRMS (n = 35) 34.08 ± 8.20 6/29 2,22 ± 0.83

CIS (n = 30) 32.00 ± 10.73 11/19 1,08 ± 0,19

TCIS: CIS → RRMS (n = 15) 33.71 ± 11.05 6/9 1,78 ± 0,82

Control (n = 24) 36.80 ± 13.35 14/10 —

Table 2. Demographic and EDSS data of the groups under study.
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ATR-FTIR spectroscopy. Frozen CSF samples were thawed in an ice-filled box before the measurements 
and afterwards they were directly put on the ATR crystal and scanned. ATR-FTIR spectra of all samples were 
collected by one-bounce ATR mode of a Perkin Elmer Spectrum100 spectrometer (Perkin Elmer Inc., Norwalk, 
CT, USA) equipped with a Universal ATR accessory. 2 µl of the CSF samples were placed on a Diamond/ZnSe 
crystal plate and dried with a mild nitrogen gas flux for 5 min to remove excess unbound water. This process was 
repeated two more times (a total of 6 µl of CSF) in order to get reasonable absorbance values. The IR spectra of the 
samples were scanned in the 4000–650 cm−1 wavenumber region and 200 scans were taken for each interferogram 
with 4 cm−1 resolution at room temperature. The spectrum of air prior to sample spectra acquisition was recorded 
as a background under identical conditions as the samples and subtracted automatically from all the spectra to 
eliminate the effects of water molecules in the air. Recording the spectra and data manipulations were performed 
with Perkin Elmer Spectrum software version 10.03.06. From each sample three randomly taken independent 
samples (6 µl of CSF each) were prepared and then scanned to check the reproducibility of the identical spectra. 
The average spectra of these replicates were used in further data analysis. These average spectra were baseline 
corrected and then normalized with respect to the amide A band for visual demonstration. The band positions 
were measured according to the center of mass. The bandwidth values of the CH2 asymmetric stretching band 
were measured at 75% of height of the peaks’ maximum from baseline corrected spectra.

Multivariate Analysis Methods. Unsupervised multivariate analysis methods, namely PCA and HCA, 
were applied to discriminate the samples based on spectral differences and SIMCA, a supervised multivari-
ate analysis method, was performed to classify the clinically isolated syndrome samples which transformed to 
relapsing-remitting multiple sclerosis.

The obtained FTIR data for the CSF samples under study were imported into The Unscrambler X 10.3 (CAMO 
Software Inc., Oslo, Norway) and PCA was applied to mean-centered, second derivative and vector normal-
ized data. Initially, mean-centered PCA was conducted over the range of 4000–650 cm−1 for all groups and the 
best spectral regions were decided from the loading plots in the 4000–650 cm−1 region as 3025–2800 and 815–
775 cm−1 for the discrimination of the groups. PCA results are presented as score and loading plots.

For the determination of spectral differentiation between groups under study, HCA was performed by OPUS 
5.5 software (Bruker Optics GmbH). The analyses were performed on second derivative vector normalized spec-
tra that were smoothed nine points with the Savitzky–Golay algorithm76. The results are displayed as a dendro-
gram constructed using Ward’s algorithm for hierarchical clustering in two dimensions. In order to evaluate the 
success of discrimination, the sensitivity and specificity values were calculated from hierarchical clustering of 
FTIR spectra in different spectral ranges by using the equations given in the supplementary material (Table S-1). 
While the sensitivity measures the proportion of actual positives which are correctly identified, the specificity 
measures the proportion of negatives which are correctly identified77.

In order to identify local models for possible groups and to predict a probable class membership for new 
observations, SIMCA approach, a supervised classification technique, was performed using The Unscrambler X 
(CAMO Software, Inc.) program. SIMCA results are given by sample-to-model distances plot and classification 
table of test groups. Detailed information about multivariate analysis methods is given in the supplementary 
material.

Statistics. The results were expressed as mean ± standard error of mean (SEM). The data were evaluated 
using a normality test to decide whether the parametric or nonparametric statistical test should be used. Since 
the data showed normal distribution, RRMS and CIS groups versus the control group were analyzed using the 
one-way ANOVA and Dunnett’s multiple comparison tests in GraphPad Prism 6 (GraphPad Software, Inc.). 
p < 0.05 was considered as statistically significant. The degree of significance for the comparison of the diseased 
groups with respect to the control group was denoted as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

ROC curve analysis, performed with GraphPad Prism 6 (GraphPad Software, Inc.), was used to assess the 
predictive ability of the classification methods employed. ROC curve, the true positive rate (i.e., sensitivity) versus 
false positive rate (i.e., 1-specificity), was plotted using the statistical data obtained by classification method based 
on IR spectroscopic data. The area under the ROC curve (AUC) is a measure of classification model performance 
that indicates a successful classification model, if it is close to 1.
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