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Angiogenesis and evading immune 
destruction are the main related 
transcriptomic characteristics to 
the invasive process of oral tongue 
cancer
Juan Alberto Pérez-Valencia1, Francisco Prosdocimi1, Italo M. Cesari1, Igor Rodrigues da 
Costa1, Carolina Furtado2, Michelle Agostini3 & Franklin David Rumjanek1

Metastasis of head and neck tumors is responsible for a high mortality rate. Understanding its 
biochemistry may allow insights into tumorigenesis. To that end we carried out RNA-Seq analyses of 
5 SCC9 derived oral cancer cell lines displaying increased invasive potential. Differentially expressed 
genes (DEGs) were annotated based on p-values and false discovery rate (q-values). All 292 KEGG 
pathways related to the human genome were compared in order to pinpoint the absolute and 
relative contributions to the invasive process considering the 8 hallmarks of cancer plus 2 new defined 
categories, as well as we made with our transcriptomic data. In terms of absolute contribution, the 
highest correlations were associated to the categories of evading immune destruction and energy 
metabolism and for relative contributions, angiogenesis and evading immune destruction. DEGs 
were distributed into each one of all possible modes of regulation, regarding up, down and continuum 
expression, along the 3 stages of metastatic progression. For p-values twenty-six genes were 
consistently present along the tumoral progression and 4 for q-values. Among the DEGs, we found 
2 novel potentially informative metastatic markers: PIGG and SLC8B1. Furthermore, interactome 
analysis showed that MYH14, ANGPTL4, PPARD and ENPP1 are amenable to pharmacological 
interventions.

Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth most common cancer worldwide, with more 
than 600000 new cases per year1. Among these, the oral tongue squamous cell carcinoma (OTSCC) is the most 
prevalent cancer, with high incidence of metastasis to the lymph nodes of the neck2,3 being responsible for a 
decrease in the overall survival rates by nearly 50%4–6.

Even though considerable research efforts, so far there is as yet no clear consensus about the genetic alterations 
that underlie nodal metastasis and the metastatic process itself.

As a strategy to identify major patterns of expression, next generation sequencing (NGS) has been used to 
explore not only the genetic heterogeneity and gene expression of diverse types of cancer, but also those aspects 
related to tumor progression. In the present work we have examined the applicability of high throughput gene 
expression analyses as a resource to investigate major alterations in expression patterns of tumor cells as they 
increasingly acquire a metastatic phenotype. Besides, such an approach can reveal novel biomarkers of OTSCC.

To that end, we used as study model SCC-9 primary tumor (ATCC CRL-1629) as well as 4 cell lines derived 
previously established by Agostini and collaborators7: ZsG, SCC9-transduced with a green fluorescent protein; 
and 3 metastatic cell generations carrying the fluorescent protein. The cells displaying increasing invasive proper-
ties were referred to as LN1, LN2 and LN37,8.
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Frequently, the differentially expressed genes (DEGs) are selected by either t-test or post-test corrections, and 
subsequent analyses are made based on one of these selections. However, the quality of the results depends on the 
number of genes analyzed, based on cut-offs of fold change and statistical significance9. In the present study, we 
compared the impact of the standard statistics cut-offs on the analyses. In this manner we initially identified the 
DEGs using the student’s t-test (p-values) and its false discovery rate (FDR) correction (q-values). Then, all DEGs 
were divided according to the standard p- and q-values, setting the cut-off α = 0.05. DEGs were sorted as protein 
coding genes (PCG) and non-coding genes (NCG). Using the PCG, we obtained the related KEGG pathways and 
classified them according to the 8 consensual hallmarks of cancer: (i) auto-sustained proliferative signaling, (ii) 
ability to evade growth suppressors, (iii) mechanisms to resist cell death, (iv) enabling of replicative immortality, 
(v) angiogenesis induction, (vi) invasion and metastasis capacity, (vii) shift of energy metabolism, and (viii) eva-
sion of immune destruction10. We found 71 KEGG pathways related to other cancer types and chronic diseases. 
Based on the assumption that individual genes may take part in more than one pathway, the approach involving 
the hallmarks allowed us acknowledged alternative functions for each gene considered.

Furthermore, in undertaking to extend the observations pertaining to the individual contributions (absolute 
and relative) to invasion and metastasis, of genes sorted according to the hallmarks of cancer and including the 
two extra classes proposed by us, we matched the KEGG pathways associated to each hallmark against the 77 
KEGG pathways of the invasion and metastasis category.

The results indicated that the PCGs of DEGs involved in angiogenesis and immune destruction evasion dis-
played the highest contribution to metastasis in OTSCC for both p- and q-values data. In contrast, PCGs related 
to energy metabolism and other cancer types represented less the relative contributions to invasiveness. Energy 
metabolism was the second hallmark with highest number of shared genes with invasion and metastasis, while 
evading immune destruction was the first. The hallmark “other cancer types” had the lowest contributions to 
progression towards metastasis for both p- and q-values data. The results highlighted a strong correlation between 
the data analyses of uncorrected (Student’s t–test [p-values]) or corrected (FDR [q-values]) and their patterns of 
contributions to invasiveness.

The comparative analyses were applied to all the 11 types of gene regulation that DEGs possibly display, 
referred as clusters of gene expression (CoGE): (i) exclusive to parental cell line, (ii) exclusive to derived cell 
line, (iii) continuum (similar expression values), (iv) exclusive down regulated in parental cell line, (v) exclusive 
up regulated in parental cell line, (vi) exclusive down regulated in derived cell line, (vii) exclusive up regulated 
in derived cell line, (viii) common down regulated, (ix) common up regulated, (x) common down regulated in 
parental and up regulated in derived cell lines and (xi) common up regulated in parental and down regulated in 
derived cell lines. By comparing those clusters, we found 26 DEGs sequentially altered in the OTSCC model. Of 
these, 15 were down regulated; 1 was up regulated and 10 displayed only slight modifications of expression (con-
tinuum). Also, CoGE analyses showed differences between proliferation, metabolism and the mechanisms related 
to promotion of the metastatic process. This set of 26 genes may constitute biomarkers of OTSCC metastasis.

Results
The total amount of partial RNA sequences exceeded 100 million reads with 50–250 bp for each lineage. The 
experimental design, number of reads and number of human genes mapped are shown in Supplementary Table 1.

Tongue cancer differentially expressed genes represent almost all of the reported human KEGG 
pathways.  In order to understand main changes on gene expression along with the metastatic OTSCC pro-
gression we used the software Cufflinks to map the reads of the known human genes. The relative abundance 
metric parameter FPKM (Fragments Per Kilobase of exon per Million reads sequenced) was used to represent the 
value of gene expression on each dataset analyzed. To detect DEGs, we applied the Student’s t-test (p-values), and 
then, the FDR correction (q-values). The quality of the results depends on the amount of genes analyzed, which in 
turn is based on cut-offs and statistical significance9. This justified the use of both data, p- and q-values. We com-
pared the expression of genes between the parental versus its derived cell line. Regarding the p-value, 9169 DEGs 
were found between SCC9 vs. ZsG; 11597 between ZsG vs. LN1, 5011 between LN1 vs. LN2, and 8572 between 
LN2 vs. LN3. Regarding the q-values, 6728 DEGs were found between SCC9 vs. ZsG; 9874 between ZsG vs. LN1, 
284 between LN1 vs. LN2 and 5579 between LN2 vs. LN3 (Supplementary Table 2). Hereafter, only the identified 
DEGs will be discussed.

Expression ratios were obtained between parental and derived cell lines. Based on that, a ranking of all DEGs 
was produced (Supplementary Table 3). SCC9 cell line was used as the reference for ZsG transformed cells, how-
ever the following comparisons of transformed cell lines (TCLs) (ZsG vs. LN1, LN1 vs. LN2 and LN2 vs. LN3) will 
be discussed. Down and up regulated genes were identified for each comparison (Fig. 1A), and by matching those 
differentially expressed genes, we could classify them into 11-different clusters of gene expression (CoGE). These 
strategy allowed the identification of regulatory patterns among parental-derived changes on gene expression: (i) 
exclusive parental genes (FPKM > 0 in parental cell line and FPKM = 0 in derived cell line); (ii) exclusive derived 
genes (FPKM > 0 in derived cell line and FPKM = 0 in parental cell line); (iii) continuum (referring to those 
genes whose expression did not change significantly between parental and derived cell line displaying FPKM ratio 
0.8 ≥ x ≥ 1.2. Differences of 0.1 are common even in technical replicates, but differences of 0.3 are considered as 
significant variations. With that in mind, the value of 1 ± 0.2 was set as the limit for the continuum cluster. A 
similar approach was used for human neoplasms11); (iv) exclusive parental down regulated (FPKM ratio < 0.8); 
(v) exclusive parental up regulated (FPKM ratio > 1,2); (vi) exclusive derived down regulated (FPKM ratio < 0.8); 
(vii) exclusive derived up regulated (FPKM ratio > 1.2); (viii) common down regulated; (ix) common up regu-
lated; (x) common parental down regulated and derived up regulated; and (xi) common parental up regulated and 
derived down regulated (Table 1 and Fig. 1B).
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Using STRING12, we further categorized the DEGs for both p-values and q-values into protein coding 
genes (PCG) (Supplementary Tables 4A and 4B, p- and q-values, respectively) and non-coding genes (NCG), 
(Supplementary Tables 5A and 5B, p- and q-values, respectively). Also, STRING allowed the enrichment of the 
interactome of all differentially expressed PCG with KEGG pathways by assigning the molecular or biochemical 
pathways related to them (Table 1 and Supplementary Table 6). Supplementary Tables 6A (p- values) and 6B (q- 
values) show the KEGG pathways and genes related to each hallmark of cancer, related to each CoGE.

Table 1 reveals that there was no correlation between the number of PCG and KEGG pathways, for both p- and 
q-values. Concerning the KEGG pathways, the highest was 284 (corresponding to LN1 vs. LN2, exclusive parental 
down regulated, for both p- and q-values). This observation raised the question of how many KEGG pathways 
are related to the cDNA of the human genome. Using all the 35238 annotated genes, we followed the same proce-
dures, obtaining 292 KEGG pathways related to 7858 PCG (Supplementary Table 6C). With this approach almost 
all the pathways related to the human genome were included in our analysis. However, two of these were not 
detected: D-arginine and D-ornithine metabolism, and fatty acid elongation in mitochondria. The same strategy 
was applied to all 3717 DEGs found in our analyses of q-values (Supplementary Table 6D).

KEGG pathways and protein-coding genes related to ‘Energetic metabolism’ and ‘Invasion and 
metastasis’ hallmarks were the most represented.  All 292 KEGG pathways of the human genome 
were distributed according to the 8 hallmarks of cancer: (i) auto-sustained proliferative signaling, (ii) ability to 
evade growth suppressors, (iii) mechanisms to resist cell death, (iv) enable replicative immortality, (v) angiogene-
sis induction, (vi) invasion and metastasis capacity, (vii) shift of energy metabolism and (viii) evasion of immune 
destruction10, using the PubMed database by manual curation. Because (ix) other cancer types and (x) chronic 
diseases we related to 71 KEGG pathways, these were added to the 8 hallmarks of cancer. Energy metabolism 
was the hallmark with the highest number of KEGG pathways (123), followed by invasion and metastasis (77), 
chronic diseases (52), proliferative signaling (39), resisting cell death and evading immune destruction (37), 
angiogenesis (24), evading growth suppressors (22), other cancer types (21) and replicative immortality (18).

The characteristic chosen to compare all other hallmarks was invasion and metastasis. Of the 77 KEGG path-
ways related to invasion and metastasis, 25 were shared with energy metabolism, 22 with immune destruction 
evasion, 18 with proliferative signaling, 13 with cell death resistance and angiogenesis, 11 with growth suppres-
sion evasion and 3 with replicative immortality. Also, other cancer types and chronic diseases pathways were 
compared to those belonging to the invasion and metastasis hallmark. We found 1 and 0 shared pathways respec-
tively, as depicted in Fig. 2A, upper left panel.

When the same comparison was carried out for p-values, a similar distribution was found except for an exclu-
sive pathway of energy metabolism: 97 out of 98, when LN2 and LN3 were compared (Fig. 2A, upper panel, in 
red). For q-values, 23 of 24 exclusive pathways were assigned to the category of resistance to cell death when LN2 
and LN3 were compared. There was a decrease in energy metabolism exclusive pathways, for the comparisons 
LN1 vs. LN2 (97 out of 98) and LN2 vs. LN3 (95 out of 98); and 51 out of 52 chronic diseases pathways when LN2 
vs. LN3 were compared (Fig. 2B, upper panel, in red).

In order to evaluate the absolute contributions of the genes associated to invasion and metastasis, the same 
approach was followed, using the related DEGs of each KEGG pathway identified by STRING. First, we compared 
all 35238 human genes against invasion and metastasis. The highest number of PCG was related to invasion and 
metastasis (3712) in which 1542 were shared with evasion of immune destruction followed by 1536 with energy 
metabolism, 1310 with proliferative signaling, 1126 with resistance to cell death, 1081 with angiogenesis, 1028 
with chronic diseases, 854 with evading growth suppressors, 590 with replicative immortality and 460 with other 
cancer types, with which it shared only one KEGG pathway (Fig. 2A, upper right panel).

We used the same approach for p-values, finding for ZsG vs. LN1, 2206 DEGs related to invasion and metas-
tasis. For LN1 vs. LN2, there were 2026 DEGs and for LN2 vs. LN3, 1745 DEGs (Fig. 2A, bottom panels right, 
middle and left, respectively). All 3 TCLs comparisons displayed the same pattern of contributions to invasion 
and metastasis.

Figure 1.  Regulation of the differentially expressed genes. (A) Exclusive, down regulated, continuum and up 
regulated for p- and q- values. (B) Clusters of gene expression after comparison of the regulated genes from 
parental and its derived cell lines. In white, DEGs without regulation of expression (exclusive to parental or to 
derived cell lines and continuum), in blue, down regulated DEGs and in red, up regulated DEGs; light purple, 
intersections between down regulated and up regulates DEGs.
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The same analyses were carried out for q-values. For that we used all 3717 DEGs found in our outcomes. The 
results are shown in Fig. 2B. The left upper panel displays the DEGs related to KEGG pathways and the upper 
right panel displays the DEGs associated to each hallmark of cancer. Of those, 2187 DEGs were related to invasion 
and metastasis. The related DEGs to invasion and metastasis are shown in Fig. 2B, where ZsG vs. LN1 displayed 
1977, LN1 vs. LN2 1.511, and LN2 vs. LN3, 1030 (bottom panels, right, middle and left, respectively).

‘Angiogenesis’ and ‘Evading immune destruction’ are the main hallmarks related to metas-
tasis.  Next we enquired the relative DEGs contributions of the hallmarks to invasion and metastasis. 
Accordingly, we compared all DEGs of each hallmark against those of invasion and metastasis, and looked for 
gene redundancy. This was carried out by matching each of the 11-CoGE to each of the 8 + 2 hallmarks of cancer. 

Differentially 
expressed genes

p-values q-values

ZsG vs. LN1 LN1 vs. LN2 LN2 vs. LN3 ZsG vs. LN1 LN1 vs. LN2 LN2 vs. LN3

PCG Path NCG PCG Path NCG PCG Path NCG PCG Path NCG PCG Path NCG PCG Path NCG

Exclusive parental 16 20 45 3 9 28 3 5 16 7 10 23 0 0 0 1 2 3

Exclusive derived 7 12 46 7 15 8 9 12 46 5 11 16 0 0 0 1 1 4

Continuum 665 252 51 401 251 23 98 191 6 466 241 23 0 0 0 6 10 0

Exclusive parental DW 236 229 191 999 284 767 340 226 171 213 227 116 1108 284 597 34 98 5

Exclusive parental UP 273 233 199 1028 275 541 68 136 121 245 219 100 1337 278 462 3 12 0

Exclusive derived DW 479 268 504 400 236 163 552 266 285 477 260 399 17 50 1 521 259 167

Exclusive derived UP 757 257 420 71 130 116 1130 278 759 751 260 335 3 7 0 1119 277 474

Common DW 70 130 19 148 179 43 146 190 18 60 123 11 16 27 2 25 72 3

Common UP 41 123 13 57 129 16 29 73 8 26 109 8 11 50 1 3 6 0

Common parental DW 
derived UP 724 265 242 45 92 54 494 247 142 619 261 127 4 11 1 22 53 2

Common parental UP 
derived DW 645 268 341 434 242 123 76 139 57 596 267 190 48 124 7 12 45 2

Table 1.  Number of protein coding genes (PCG), KEGG pathways (Path) and non-coding genes (NCG) 
differentially expressed for each cluster of gene expression between parent-derived cell lines of tongue 
metastatic progression, for p- and q-values.

Figure 2.  Contributions of each hallmark of cancer to invasion and metastasis, based on the KEGG pathways 
from protein coding genes. The intersections show the number of KEGG pathways (upper left panels) or genes 
(upper right panels). (A) All 292 KEGG pathways of the human genome (upper left panel) or genes related 
to 35238 human cDNAs annotated in Ensemble (upper right panel) and the distribution of the differentially 
expressed genes in all-3 comparisons of transformed cell lines (bottom panels, ZsG vs. LN1 left, LN1 vs. LN2 
middle and LN2 vs. LN3 right), for p-values; (B) all 292 KEGG pathways of the human genome (upper left 
panel) or related to 3717 differentially expressed genes after FDR correction found in this study (upper right 
panel) and the distribution of the differentially expressed genes in all 3 comparisons of transformed cell lines 
(bottom panels, ZsG vs. LN1 left, LN1 vs. LN2 middle and LN2 vs. LN3 right) for q-values. In upper left panels 
were highlighted (in red) the changes of the number of KEGG pathways found in the transformed cell lines 
comparisons.
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Clusters of gene 
expression

p-values q-values

# of genes % of contribution # of genes % of contribution

ZsG vs. 
LN1

LN1 
vs. 
LN2

LN2 
vs. 
LN3

ZsG vs. 
LN1

LN1 vs. 
LN2

LN2 vs. 
LN3

ZsG vs. 
LN1

LN1 
vs. 
LN2

LN2 
vs. 
LN3

ZsG vs. 
LN1

LN1 vs. 
LN2

LN2 
vs. 
LN3

Invasion and metastasis

Exclusive Parental 9 3 1 100,0 100,0 100,0 4 0 0 100,0 100,0 100,0

Exclusive Derived 3 5 6 100,0 100,0 100,0 3 0 0 100,0 100,0 100,0

Continuum 381 252 60 100,0 100,0 100,0 269 0 2 100,0 100,0 100,0

Exclusive Parental DW 144 541 209 100,0 100,0 100,0 135 596 23 100,0 100,0 100,0

Exclusive Parental UP 149 658 43 100,0 100,0 100,0 131 850 3 100,0 100,0 100,0

Exclusive Derived DW 253 235 343 100,0 100,0 100,0 255 8 323 100,0 100,0 100,0

Exclusive Derived UP 500 42 645 100,0 100,0 100,0 494 1 638 100,0 100,0 100,0

Common DW 42 76 86 100,0 100,0 100,0 33 8 12 100,0 100,0 100,0

Common UP 24 37 20 100,0 100,0 100,0 15 9 1 100,0 100,0 100,0

Common Parental 
DW Derived UP 453 28 300 100,0 100,0 100,0 378 4 18 100,0 100,0 100,0

Common Parental UP 
Derived DW 343 287 44 100,0 100,0 100,0 319 35 10 100,0 100,0 100,0

Proliferative signaling

Exclusive Parental 2 1 0 100,0 100,0 0,0 2 0 0 100,0 0,0 0,0

Exclusive Derived 1 2 3 0,0 100,0 100,0 1 0 0 0,0 0,0 0,0

Continuum 185 125 23 70,8 75,2 78,3 134 0 1 72,4 0,0 0,0

Exclusive Parental DW 85 236 110 87,1 69,1 70,0 77 265 15 87,0 67,2 73,3

Exclusive Parental UP 90 367 23 67,8 73,0 82,6 77 514 2 68,8 74,1 100,0

Exclusive Derived DW 115 125 207 71,3 64,8 75,8 114 8 202 70,2 62,5 77,7

Exclusive Derived UP 292 23 329 71,6 87,0 69,6 302 1 347 72,2 0,0 67,4

Common DW 26 39 66 73,1 53,8 68,2 22 6 12 72,7 50,0 58,3

Common UP 17 25 13 64,7 88,0 76,9 14 7 1 64,3 100,0 100,0

Common Parental 
DW Derived UP 267 17 161 78,3 76,5 65,2 227 2 12 78,0 100,0 91,7

Common Parental UP 
Derived DW 149 181 29 63,1 74,0 89,7 139 26 7 63,3 73,1 85,7

Evading growth suppressors

Exclusive Parental 0 2 0 0,0 100,0 0,0 0 0 0 0,0 0,0 0,0

Exclusive Derived 1 0 3 100,0 0,0 100,0 1 0 0 100,0 0,0 0,0

Continuum 143 98 19 74,8 76,5 73,7 101 0 1 76,2 0,0 0,0

Exclusive Parental DW 63 160 89 92,1 76,9 73,0 54 179 10 90,7 76,0 80,0

Exclusive Parental UP 70 266 16 64,3 71,8 87,5 60 378 1 65,0 73,3 100,0

Exclusive Derived DW 85 97 154 75,3 67,0 74,7 86 6 143 77,9 66,7 77,6

Exclusive Derived UP 222 15 230 71,2 86,7 72,2 231 1 240 71,9 0,0 69,2

Common DW 15 23 43 73,3 56,5 72,1 13 4 7 69,2 50,0 71,4

Common UP 12 18 8 58,3 94,4 87,5 10 4 0 60,0 100,0 0,0

Common Parental 
DW Derived UP 182 10 114 78,0 80,0 64,9 158 1 10 78,5 100,0 90,0

Common Parental UP 
Derived DW 90 136 19 73,3 75,0 89,5 86 17 5 74,4 82,4 80,0

Resisting cell death

Exclusive Parental 0 3 0 0,0 100,0 0,0 0 0 0 0,0 0,0 0,0

Exclusive Derived 1 2 2 100,0 50,0 100,0 1 0 0 100,0 0,0 0,0

Continuum 232 137 28 67,2 70,1 75,0 164 0 0 68,3 0,0 0,0

Exclusive Parental DW 65 236 115 78,5 64,4 76,5 67 264 12 71,6 63,3 58,3

Exclusive Parental UP 103 304 16 57,3 72,4 93,8 94 436 1 55,3 75,0 100,0

Exclusive Derived DW 111 157 177 63,1 66,2 74,6 109 7 163 64,2 42,9 75,5

Exclusive Derived UP 240 13 331 76,7 100,0 64,7 260 1 357 76,2 100,0 60,8

Common DW 20 33 40 70,0 57,6 85,0 16 2 7 62,5 100,0 71,4

Common UP 17 23 8 70,6 73,9 75,0 11 3 0 72,7 100,0 0,0

Common Parental 
DW Derived UP 214 9 188 72,4 66,7 62,8 181 1 4 73,5 100,0 75,0

Common Parental UP 
Derived DW 151 164 21 62,3 76,8 71,4 143 14 4 63,6 71,4 100,0

Continued
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Clusters of gene 
expression

p-values q-values

# of genes % of contribution # of genes % of contribution

ZsG vs. 
LN1

LN1 
vs. 
LN2

LN2 
vs. 
LN3

ZsG vs. 
LN1

LN1 vs. 
LN2

LN2 vs. 
LN3

ZsG vs. 
LN1

LN1 
vs. 
LN2

LN2 
vs. 
LN3

ZsG vs. 
LN1

LN1 vs. 
LN2

LN2 
vs. 
LN3

Replicative immortality

Exclusive Parental 0 0 0 0,0 0,0 0,0 0 0 0 0,0 0,0 0,0

Exclusive Derived 0 0 1 0,0 0,0 100,0 0 0 0 0,0 0,0 0,0

Continuum 136 85 17 58,1 63,5 70,6 95 0 1 58,9 0,0 0,0

Exclusive Parental DW 43 190 63 81,4 57,9 61,9 38 212 6 73,7 57,5 83,3

Exclusive Parental UP 68 199 11 47,1 60,8 72,7 59 278 1 44,1 60,8 100,0

Exclusive Derived DW 90 83 101 55,6 51,8 69,3 94 3 97 57,4 33,3 72,2

Exclusive Derived UP 170 10 233 58,2 70,0 53,6 246 1 235 56,9 0,0 51,1

Common DW 9 19 27 55,6 52,6 77,8 10 1 4 50,0 100,0 50,0

Common UP 11 11 9 63,6 81,8 77,8 9 2 0 44,4 100,0 0,0

Common Parental 
DW Derived UP 123 10 104 65,9 60,0 46,2 114 0 6 67,5 0,0 100,0

Common Parental UP 
Derived DW 117 98 11 58,1 59,2 63,6 110 12 2 59,1 83,3 50,0

Energy metabolism

Exclusive Parental 4 0 2 25,0 0,0 0,0 2 0 1 50,0 0,0 0,0

Exclusive Derived 3 3 2 33,3 66,7 50,0 3 0 0 33,3 0,0 0,0

Continuum 338 200 56 51,2 58,0 53,6 232 0 5 51,3 0,0 20,0

Exclusive Parental DW 120 626 147 59,2 48,7 54,4 115 674 22 60,0 47,9 59,1

Exclusive Parental UP 137 558 29 48,2 61,5 69,0 121 701 1 47,1 60,1 100,0

Exclusive Derived DW 291 183 294 47,8 49,7 58,2 299 13 275 49,2 38,5 56,7

Exclusive Derived UP 374 31 638 64,4 58,1 53,0 359 1 612 64,6 0,0 53,6

Common DW 30 61 75 56,7 36,1 49,3 27 4 10 51,9 0,0 20,0

Common UP 24 29 13 58,3 62,1 69,2 17 4 1 47,1 100,0 0,0

Common Parental 
DW Derived UP 379 22 221 59,4 50,0 56,1 325 1 11 55,1 100,0 72,7

Common Parental UP 
Derived DW 386 203 39 46,1 64,0 46,2 358 26 4 45,3 61,5 100,0

Other cancer types

Exclusive Parental 2 0 0 50,0 0,0 50,0 1 0 0 0,0 0,0 0,0

Exclusive Derived 2 0 2 0,0 0,0 0,0 0 0 0 0,0 0,0 0,0

Continuum 85 65 20 61,2 69,2 68,0 68 0 0 64,7 0,0 0,0

Exclusive Parental DW 32 100 43 68,8 61,0 73,7 27 115 6 70,4 59,1 100,0

Exclusive Parental UP 30 180 10 60,0 71,7 66,7 26 253 2 57,7 70,8 100,0

Exclusive Derived DW 47 52 88 63,8 57,7 66,7 47 1 93 63,8 100,0 73,1

Exclusive Derived UP 148 9 137 74,3 55,6 75,8 152 0 158 77,0 0,0 58,2

Common DW 15 15 24 73,3 40,0 64,7 12 1 2 50,0 0,0 50,0

Common UP 6 9 2 33,3 77,8 42,9 7 2 0 57,1 100,0 0,0

Common Parental 
DW Derived UP 127 5 71 60,6 80,0 62,2 108 0 6 19,4 0,0 83,3

Common Parental UP 
Derived DW 61 94 8 50,8 69,1 54,3 58 12 0 56,9 83,3 0,0

Chronic diseases

Exclusive Parental 4 1 0 75,0 100,0 0,0 3 0 0 100,0 0,0 0,0

Exclusive Derived 1 1 2 100,0 100,0 50,0 1 0 1 100,0 0,0 0,0

Continuum 172 128 27 65,1 68,8 59,3 130 0 0 65,4 0,0 0,0

Exclusive Parental DW 98 245 80 67,3 50,6 75,0 88 268 6 73,9 50,4 83,3

Exclusive Parental UP 87 353 23 62,1 70,3 60,9 84 456 0 58,3 71,9 0,0

Exclusive Derived DW 115 100 176 53,0 74,0 70,5 114 3 172 50,9 100,0 72,1

Exclusive Derived UP 249 29 343 75,1 58,6 58,3 258 1 331 76,0 0,0 63,1

Common DW 24 32 47 62,5 53,1 72,3 20 5 7 60,0 20,0 28,6

Common UP 15 20 9 66,7 80,0 66,7 10 4 1 70,0 75,0 0,0

Common Parental 
DW Derived UP 239 13 133 69,9 61,5 71,4 203 2 6 67,5 100,0 100,0

Common Parental UP 
Derived DW 151 133 29 47,0 75,9 72,4 142 11 6 48,6 72,7 83,3

Continued
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Panels 1 and 3 depicted in Table 2 (p- and q-values, respectively) contain the gene number of each CoGE related 
to each 8 + 2 hallmarks. See also Supplementary Tables 7A (p-values) and 7B (q-values), which show the KEGG 
pathways and their related gene IDs for each CoGE. In addition, panels 2 and 4 of Table 2 show the percentage 
contributions of each hallmark to invasion and metastasis, distributed into each CoGE. This information allowed 
us to recognize which hallmark was the closest to the invasive process. The number of genes for each hallmark is 
described in section 2.

Summary of cell line comparisons:

ZsG vs. LN1.  The exclusive LN1 up regulated CoGE within the invasion and metastasis hallmark displayed the 
highest number of DEGs (500 for p-values and 494 for q-values). The lowest number of DEGs was related to other 
cancer types and replicative immortality. The hallmarks with highest contributions to invasion and metastasis 
were angiogenesis, evasion of immune destruction and evasion of growth suppressors, whereas the lowest con-
tributions were energy metabolism and other cancer types. Results suggested that ZsG cells displayed the highest 
proliferative capacity and resembled “neurodegenerative diseases” more closely than LN1 cells. In contrast, LN1 
cells were matched to other cancer types besides having a different cytoskeleton regulation and interactions with 
the extracellular matrix (ECM) than ZsG cells (Supplementary Tables 7A and 7B and Table 2).

LN1 vs. LN2.  The CoGE displaying the highest number of DEGs was exclusive in LN1 up regulated concerning 
the invasion and metastasis hallmark for both p- and q-values, represented by 658 and 850 genes, respectively. 
The lowest numbers of DEGs were related to other cancer types and replicative immortality, displaying some 
CoGE without DEGs. The highest hallmarks contributions were evading immune destruction, angiogenesis, 
proliferative signaling and resisting cell death, while the lowest corresponded to energy metabolism and other 
cancer types. We concluded based on the KEGG pathways of each CoGE, that both LN1 and LN2 cell lines had 
features associated with the invasive process although resorting to different mechanisms, in which LN1 cells used 
inflammatory and proliferative processes to become invasive, whereas LN2 cells relied on strategies to become 
refractory to the immune system (Supplementary Tables 7A and 7B and Table 2).

Clusters of gene 
expression

p-values q-values

# of genes % of contribution # of genes % of contribution

ZsG vs. 
LN1

LN1 
vs. 
LN2

LN2 
vs. 
LN3

ZsG vs. 
LN1

LN1 vs. 
LN2

LN2 vs. 
LN3

ZsG vs. 
LN1

LN1 
vs. 
LN2

LN2 
vs. 
LN3

ZsG vs. 
LN1

LN1 vs. 
LN2

LN2 
vs. 
LN3

Angiogenesis

Exclusive Parental 2 2 0 100,0 100,0 0,0 2 0 0 100,0 0,0 0,0

Exclusive Derived 1 3 0 100,0 100,0 0,0 1 0 0 100,0 0,0 0,0

Continuum 118 81 19 82,2 87,7 89,5 84 0 1 82,1 0,0 0,0

Exclusive Parental DW 71 178 61 88,7 73,0 83,6 67 189 8 92,5 75,1 100,0

Exclusive Parental UP 43 297 20 86,0 85,2 100,0 40 387 3 82,5 85,3 100,0

Exclusive Derived DW 93 57 169 77,4 91,2 85,2 88 5 162 73,9 100,0 87,7

Exclusive Derived UP 210 18 233 83,8 94,4 78,1 213 2 234 85,4 50,0 82,1

Common DW 24 21 45 91,7 90,5 86,7 20 4 7 90,0 75,0 85,7

Common UP 12 24 13 75,0 91,7 92,3 8 9 3 75,0 88,9 33,3

Common Parental 
DW Derived UP 219 12 94 87,2 100,0 90,4 188 2 7 86,2 100,0 100,0

Common Parental UP 
Derived DW 95 122 21 71,6 86,1 95,2 84 13 7 72,6 92,3 100,0

Evading immune destruction

Exclusive Parental 2 3 0 50,0 100,0 0,0 1 0 0 0,0 0,0 0,0

Exclusive Derived 2 2 2 100,0 100,0 100,0 2 0 0 100,0 0,0 0,0

Continuum 211 137 32 80,6 85,4 96,9 152 0 0 82,2 0,0 0,0

Exclusive Parental DW 92 301 122 87,0 86,0 75,4 86 330 7 87,2 83,0 85,7

Exclusive Parental UP 83 404 21 79,5 89,6 81,0 75 533 1 81,3 89,3 100,0

Exclusive Derived DW 157 114 219 80,9 82,5 89,0 150 4 215 82,0 75,0 87,4

Exclusive Derived UP 287 27 368 90,9 81,5 86,7 284 2 336 89,8 50,0 87,8

Common DW 20 43 55 90,0 67,4 94,5 15 1 6 86,7 100,0 100,0

Common UP 15 26 9 86,7 88,5 100,0 9 6 2 88,9 100,0 50,0

Common Parental 
DW Derived UP 283 13 135 88,7 76,9 85,9 243 2 9 88,5 100,0 88,9

Common Parental UP 
Derived DW 185 165 35 84,3 89,1 82,9 173 17 7 83,8 88,2 100,0

Table 2.  Number of differentially expressed genes (DEGs) for each comparison between the transformed cell 
lines in 11-clusters of gene expression into the 8 + 2 hallmarks of cancer (panels 1 and 3) and percentages of the 
genetic contribution of each hallmark of cancer to the invasion and metastasis process (panels 2 and 4). DW: 
down regulated; UP: up regulated, for Clusters of Gene Expression.
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LN2 vs. LN3.  The CoGE exclusive LN3 up regulated displayed the highest number of DEGs for p-values (645) 
and q-values (638). The lowest numbers of DEGs were related to other cancer types and replicative immortal-
ity, with some CoGE without DEGs. Following invasion and metastasis, the hallmarks most represented were 
evading immune destruction, angiogenesis, evading growth suppressors and proliferative signaling in that order. 
Those with the least contributions were energy metabolism and other cancer types. Based on the KEGG pathways 
for each CoGE, we suggest that LN2 cells, rather than LN3 cells, showed a remarkable similarity to other cancer 
types, while the LN3 cell line was closer to high invasive capacity through angiogenesis stimulation and ability to 
avoid the immune system (Supplementary Tables 7A and 7B and Table 2).

In order to identify the global contributions of each hallmark of cancer to invasion and metastasis, we 
obtained the mean of percentages of 11-CoGE and ranked them accordingly (Fig. 3). We found that the processes 
most closely related to invasion and metastasis were angiogenesis, evading immune destruction, evading growth 
suppressors and proliferative signaling, with genetic contributions from more than 68% for p-values and almost 
48% for q-values. Energy metabolism and other cancer types were less relevant, with contributions of almost 50% 
and 37% of their DEGs (p- and q-values comparisons, respectively) (Table 2).

MYH14, ANGPTL4, ENPP1 and PPARD are possible OTSCC biomarkers and potential targets 
for interference studies.  Next we looked for specific genes in our model trying to pinpoint novel OTSCC 
or metastasis biomarkers. Accordingly, we checked 11-CoGE of each cell line comparison, finding 26 common 
DEGs displaying the same type of regulation (Table 3) along with the OTSCC model of increasing metastatic 
potential. They were sorted as 15-downregulated, 10-continuum and 1 up regulated. These genes were classified 
using Panther® software to analyze whether they were eligible as biomarkers for OTSCC and/or for metastasis.

First, we concentrated on the 15-downregulated genes, and found that only angiopoitein related protein 4 
(ANGPTL4) was associated to biological adhesion acting as a signaling molecule. Amiloride-sensitive sodium 
channel subunit alpha (SCNN1A) and Ras-related protein Rab-17 (RAB17) participate in biological regulation. 
Myosin 14 (MYH14), which acts as G-protein modulator by way of the actin binding motor protein and as a cell 
junction protein, as well as RAB17, are related to cellular component organization and biogenesis. Regarding 
cellular processes, six genes, solute carrier family 28 member 3 (SLC28A3), gap-junction alpha-5 protein (GJA5), 
netrin receptor UNC5B (UNC5B), ANGPTL4, MYH14, and RAB17 were detected. Five genes were associated 
to developmental processes, namely ANGPTL4, MYH14, UNC5B, transcription cofactor vestigial-like protein 
1 (VGLL1) and FYVE, RhoGEF and PH domain-containing protein 3 (FGD3), which acts as guanyl-nucleotide 
exchange factor. Four genes were related to cellular localization, SCNN1A, SLC28A3, MYH14 and RAB17. 
Concerning metabolic processes, we detected lipase member H (LIPH), which acts as esterase, phospholipase 
and storage protein. Two genes were related to multicellular organismal process, SCNN1A and MYH14. LIPH 
was associated to cell proliferation and motility. Within the group of 15-downregulated genes, ANGPTL4 is a 
classical biomarker for metastasis. Five genes were not found in the Panther database. Therefore, we used Gene 
Ontology to find out their biological functions. Two of them had receptor functions, plexin domain containing 
2 (PLXDC2) and neuromedin U (NMU), that acts as neuromedin U receptor binding. Other two genes with 
binding properties, radical S-adenosyl methionine domain containing 2 (RSAD2) acting as a self-association 
protein and as iron-sulfur cluster binding, and coxsackie virus and adenovirus receptor (CXADR) identical pro-
tein binding and integrin binding. Finally, sciellin (SCEL) takes part in the assembly or regulation of proteins in 
the cornified envelope.

The single up regulated gene, ENPP1, was classified as part of the metabolic process, being a nucleotide phos-
phatase and pyrophosphatase enzyme.

Inspection of the ten continuum genes revealed one gene related to cellular component organization or bio-
genesis, syntaxin-6 (STX6), which acts as a SNARE protein. Four genes were related to cellular processes, signal 
recognition particle receptor subunit beta (SRPRB), peroxisome proliferator-activated receptor delta (PPARD), 
GPI ethanolamine phosphate transferase 2 (PIGG) and STX6. Four genes were classified within the localization 
group: charged multivesicular body protein 6 (CHMP6) that acts as transfer/carrier protein; transmembrane 
emp24 domain containing protein 2 (TMED2), which acts as transfer/carrier protein and as vesicle coat protein; 
SRPRB and STX6. Also, 2 genes related to metabolic process, PPARD and PIGG were found. Only one gene was 
related to multicellular organismal process, PPARD, a member of the proliferator-activated receptor family PPAR 
involved in the development of several chronic diseases. Four genes were not found in the Panther database, 
so we used Gene Ontology to search for their biological functions. Two were related to cell death, death asso-
ciated protein kinase 3 (DAPK3), which displays protein homodimerization activity and transferase activity of 
phosphorus-containing groups; and second mitochondria-derived activator of caspase (SMAC/DIABLO), which 
activates caspases by binding to inhibitor of apoptosis proteins. Two genes were related to transport functions, 
sodium/potassium/calcium exchanger 6 mitochondrial (SLC8B1) acting as a cation transporter, and transient 
receptor potential cation channel subfamily C member 4 associated protein (TRPC4AP), related to phosphatase 
binding.

To better understand the relationship between the above 26 highlighted genes, we investigated whether they 
interacted with each other using STRING. Four genes RAB17, FGD3 (down regulated), STX6 and CHMP6 (con-
tinuum) (Fig. 4) were found to be linked.

Based on the most common biomarkers of squamous cell carcinoma reviewed by Scanlon et al.13, we selected 
all the expressed genes related to epithelial-mesenchymal transition (EMT) in our OTSCC model (Supplementary 
Table S7). In order to understand the relationship between those genes, we used STRING, which displayed 5 
sub-clusters, grouping as (i) cadherins, (ii) laminins, collagen and integrins, (iii) integrins and laminins, and 
two clusters of collagen (iv, v) (Fig. 4). Interestingly, when we analyzed those genes grouping with our list of 26 
highlighted genes, we found that the up regulated gene ENPP1 clustered with a collagen sub-cluster; ANGPTL4, 
a down regulated gene grouped with the integrins of a sub-cluster of laminins and integrins. MYH14, another 
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down regulated gene, grouped with the sub-cluster of cadherins. Finally, PPARD, a gene of the continuum group, 
clustered with fibronectin and the sub-cluster of laminins, also exhibited higher affinity for the transcription fac-
tors SNAIL1 and SNAIL2, TWIST and LEF1, the most important transcription factors of the EMT of HNSCC13. 
Therefore, those 4 genes stand out as potential targets for oral cancer therapy.

To validate some of the common DEGs displaying altered expression, we selected 4-down regulated, 
1-continuum and 1-up regulated genes (Table 3, highlighted genes). We carried out RT-PCR and plotted the 
results relative to Ct (threshold cycle), as well as to the transcriptomic data (FPKM) (Fig. 5). The results showed 
that down regulated genes enhance their Ct values along with the metastatic progression. This means that less 
aggressive cells display higher expression, whereas the most aggressive stages exhibited a lower degree of expres-
sion; in contrast, up regulated gene ENPP1 displayed a continuum pattern, as well as PPARD, a continuum gene.

Figure 3.  Individual contributions and percentages, (in parenthesis), of each hallmark to the invasive process. 
The total percentages are the mean of the 11-percentages of the clusters of gene expression (CoGE) for each 
hallmark, for (A) p-values, and (B) q-values.
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Clinical data is consistent with our 4 potential therapeutic targets expression.  In order to high-
light the expression of these 4 potential therapeutic genes in patients of head and neck cancer, data from The 
Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/) of 248 clinical tumors were used to support our 
observations. In this regard, we analyzed the 4 genes proposed as possible molecular targets (ANGPTL4, MYH14, 
PPARD and ENPP1, Fig. 6, red lines) in terms of levels of gene expression: low, continuum and high. Considering 
that metastasis is the major factor in cancer lethality, we found a remarkable correlation between up and down 
regulation of selected genes and the survival rate of cancer patients. Low expression of genes ANGPTL4 and 
MYH14 correlates with high lethality (Fig. 6A and B, in red). Nevertheless, the up regulation of gene ENPP1 cor-
relates with high lethality as shown in Fig. 6C, in red. In addition, gene PPARD whose expression did not change 
(continuum) appears to have no correlation with the survival rate plots (Fig. 6D, in red).

Discussion
Here, we sequenced and analyzed the transcriptomic data of 5 cell lines of OTSCC, characterized by their pro-
gressively increasing invasive capacity. The sequencing was made for 3 independent experiments for each cell 
line. Similar studies14,15 have reported 21000 expressed genes. In our screening we found 28000 genes. The signif-
icant difference may be ascribed to the approach employed in the present work, namely pooling together seven 
data sets obtained from the biological and technical replicates (Supplementary Table 1). One way to validate the 
consistency of our datasets was to rank the genes according to the level of expression (FPKM) and to compare 
whether the top 10 most expressed genes were comparable taking into account both for the independent exper-
iments and the experimental replicates (7 datasets). We found a high correlation that showed 6 highly expressed 
genes in LN1 and LN2 cell lines, 7 in LN3 cells and 8 in SCC9 and ZSG cell lines, respectively (data not shown). 
For all cell lines and their replicates microRNA6723 was the most expressed gene in each one of the 35 datasets. 
Also, we found that among the top 10 expressed genes the calcium binding proteins S100A6 and S100A9 proteins 
were included. S100A9 protein were associated to chronic inflammation in hypoxia response16, a possible mech-
anism that OTSCC induce to develop more aggressive stages.

In order to detect the differentially expressed genes (DEGs), we compared the parental cells with its derived 
cell line applying the student’s t-test (p-values to the expression values). We found more than 5.000 DEGs. Then, 
we corrected those data by applying the FDR correction (q-values) to minimize the type I error. We found values 

GENE ID ZsG LN1 LN2 LN3

Common Down Reguated

MYH14 0,4972 0,2182 0,0534 0,0069

RSAD2 28,3575 20,9164 8,3588 1,1869

SLC28A3 0,7201 0,3187 0,1672 0,0511

LIPH 1,4704 0,896 0,5748 0,0333

GJA5 3,9214 0,7377 0,2756 0,1825

FGD3 0,8897 0,4476 0,1145 0,0305

VGLL1 5,1019 2,0341 0,6328 0,0501

RAB17 1,4872 1,0823 0,6931 0,1211

PLXDC2 0,5215 0,1356 0,0163 0,001

NMU 46,4355 34,3583 25,9269 3,6182

SCEL 2,7007 1,4439 0,4708 0,0844

SCNN1A 60,9356 35,3696 20,6939 4,5639

UNC5B 4,2487 3,189 2,3056 0,2049

ANGPTL4 25,9462 11,4337 7,7907 5,4245

CXADR 2,0463 1,6011 0,9881 0,5827

Continuum

DAPK3 27,8868 23,4451 19,0566 22,2199

STX6 15,4365 13,654 11,4419 9,341

CHMP6 20,0775 18,2558 15,6105 18,5514

SRPRB 33,1723 30,4336 25,6505 29,8296

DIABLO 30,5994 32,3878 28,2071 33,1907

PIGG 13,7416 15,1826 12,9338 14,9107

TMED2 195,729 217,1806 178,7479 213,2503

TRPC4AP 30,9148 36,4274 30,1783 35,0563

PPARD 11,7148 13,8269 11,7824 10,1059

SLC8B1 14,8684 15,557 12,9781 10,6452

Common Up Regulated

ENPP1 1,1246 1,4489 2,0885 5,2621

Table 3.  Common DEGs displaying altered expression and their regulation into our invasive progression 
model of tongue cancer and their FPKM expression mean for each cell line. The remarked genes were selected 
to validate by real time PCR.

https://cancergenome.nih.gov/
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between 284 and 9.874 (Supplementary Table 2). Usually transcriptomic analyses are based on p-values. However, 
many reports are based on q-values to reduce the number of genes to be analyzed functionally. The problems 
involved in this kind of analyses are the cut-offs based on fold change and statistical significance9. Thus, depend-
ing on the aim of the work, one has to establish a compromise between the significance of the functional attributes 
of the gene expression and the number of genes analyzed. On the other hand, many works in the literature have 
“cleaned” their data by eliminating many non-coding genes (NCG) that have not part of specific biochemical 
pathways17. In the same way, some parameters that take into account the most differentially expressed genes, 
assume that the complexity of the cells could be downscaled to a small number of genes. In this work, we used all 
DEGs for p- and q-values and compare them in order to show the relative importance of this correction, holding 
a comprehensive and more robust analysis of the complex cell biological systems.

By comparing DEGs between the parental and its derived cell line, we found 11-CoGE (Supplementary 
Tables 3–6). They display all the possible types of expression regulation for each gene and for each compari-
son of the transformed cell lines. Establishing CoGE is an interesting tool to find the common DEGs and their 
expression properties between the comparisons. With this approach, new OTSCC biomarkers were identified 
(Table 3). In addition, this strategy evidenced expression features that may have been acquired or lost between 
the compared cells. In other words, CoGE can reveal in greater detail those phenotypic traits of cell lines that 
display individual or common characteristics that fall within the general bracket of malignancy. Usually, the 
analysis tools displays patterns of gene expression, which include some of the 11-CoGE described here but not 
all of them11,18–20. In this report we have provided a comprehensive view of all gene regulatory possibilities when 
considering transcriptomics, as related to tumor progression.

Figure 4.  Interactome showing the contributions of the 26-common DEGs displaying altered expression of 
the metastatic model of OTSSC to the consensual biomarkers associated to epithelial-mesenchymal transition. 
Highlighted circles represent the common DEGs displaying altered-expression detected in our transcriptome 
analysis. Highlighted circles in blue are down regulated genes, purple, continuum genes and red, up regulated 
genes.
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DEGs for p- and q-values were enriched for the PCG with their related KEGG pathways (Table 1). The analysis 
allowed the observation that the number of genes considered did not necessarily produce a proportional number 
of pathways. This could be interpreted as meaning that genes may be endowed with multiple functions promot-
ing in tumor cells highly plastic networks. An excess of PCGs resulting in fewer pathways could indicate a high 
functional redundancy. Accordingly, we found 284 KEGG pathways related to LN1 vs. LN2, exclusive DEGs up 
regulated in LN1 cells, for both p- and q-values. The groups comprising the commonly expressed genes (down or 
up regulated) had lower number of PCG and KEGG pathways. However, when analyzing the number of KEGG 

Figure 5.  Expression profiles of the selected common DEGs displaying altered-expression for each cell line, 
of 3 independent experiments. (A) RT-PCR data and (B) FPKM data. Turkey’s multiple comparisons test, 
****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05.

Figure 6.  Clinical data of head and neck cancer from TCGA (n = 248), relative to proposed molecular targets. 
Low expression of (A) MYH14 and (B) ANGPTL4 (red line) and high expression (black line); (C) low and high 
expression (red lines) of PPARD; and high (red line) and low expression (black line) of ENPP1, in alive patients. 
Dotted gray lines represent gene expression of dead patients.
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pathways related to the human genome, we used all-35238 annotated cDNAs following the same procedures, 
which yielded 292 KEGG pathways (Fig. 2, Supplementary Table 6C).

In order to find out the KEGG pathways related to the 8 hallmarks of cancer described by Hanahan and 
Weinberg in 201110, we classified each KEGG pathway into each characteristic proposed for cancer by perform-
ing manual curation of the data in the literature. Additionally, we found also 71 KEGG pathways related to other 
cancer types and chronic diseases. For this reason we added these two categories to our analyses. We observed 
that energy metabolism was the hallmark that included the highest number of related KEGG pathways. Biological 
processes related to metabolism are frequently found as most altered pathways in large scale analyses21–24. After 
metabolism, the other hallmarks categories followed: invasion and metastasis, chronic diseases, proliferative sig-
naling, resisting cell death and evading immune destruction, angiogenesis, evading growth suppressors, other 
cancer types and replicative immortality (Supplementary Table 6).

As our OTSCC model was developed by selecting a gradient of increasing metastatic potential, we used 
invasion and metastasis as a gold reference to weight the contributions of other hallmarks. Consequently, we 
compared the KEGG pathways falling into this category to KEGG pathways in the other hallmarks (Fig. 2 and 
Supplementary Table 7). Among these, 25 were shared with energy metabolism, 22 with immune destruction eva-
sion, 18 with proliferative signaling; 13 with resistance to cell death and angiogenesis, 11 with growth suppression 
evasion; 3 with replicative immortality, 1 with other cancer types and 0 with chronic diseases.

Consistently, we used the related DEGs to each KEGG pathway, searching for the genetic contributions of each 
hallmark to invasion and metastasis. We found that the principal inputs of the hallmarks corresponded to those 
with highest number of pathways and DEGs, namely evading immune destruction (22 pathways, 1542 genes) and 
energy metabolism (25 pathways, 1536 genes) (Fig. 2). In the same way, the less represented KEGG pathways and 
DEGs were found to display the lowest contributions, relative to replicative immortality and other cancer types. 
Interestingly, chronic diseases, a hallmark with no shared pathways with invasion and metastasis, had the fifth 
higher contribution of DEGs to the invasive process (0 pathways and 1028 shared genes). These data show that 
considering exclusively the number of pathways could be misleading.

All comparisons of DEGs related to KEGG pathways were carried out for each CoGE. Analyzing the same 
parameters (pathways and genes) we found clues about the specific biological features of each cell line. It 
must be mentioned, however, that we have no information as to whether those PCG are actually translated. 
Notwithstanding, preliminary proteomic data, have confirmed that the transcriptomic data parallel the implied 
mechanisms as show by the pathways analyses (Cesari IM et al., in preparation). It can be consider the possi-
bility that the genes could also be post-transcriptionally and post-translationally regulated. Taken together the 
most important findings were that ZsG elements were closest to neurodegenerative diseases and also displayed 
more features of proliferative cells than LN1 cells. Conversely, LN1 elements were more similar to other can-
cer types, besides having different cytoskeleton regulation and interactions with the extracellular matrix (ECM) 
(Supplementary Tables 7A and 7B and Table 2). This follows the observation that up regulated transcripts in can-
cer are down regulated in central nervous system (CNS) diseases and vice versa20. Indeed, another report revealed 
that up regulated genes in CNS disorders coded for low abundant proteins, and that the opposite occurred in can-
cer25. These observations may support the idea that the highest similarity with neurodegenerative illnesses occurs 
in the less aggressive cell lines. Furthermore, it is known that common features of metastasis involve MMPs genes, 
transcription factors, cyclooxygenases, chemokines, etc.6,26, especially those related to ECM interactions.

Based on those comparisons we can infer that LN1 and LN2 use different mechanisms to become metastatic; 
LN1 resorts to inflammation and proliferation and LN2 to immune system evasion. Indeed, inflammation was 
associated with amplification of the signaling loops that favor the metastatic cascade27–29. This is in agreement 
with previous reports showing that gene silencing was associated with tumor progression and metastasis. A point 
in case is MTA2 (metastasis tumor-associated protein 2) in glioma, in which it has been shown that proliferation 
and metastasis were inhibited30, while this gene was found to be upregulated in nasopharyngeal cancer31. In addi-
tion, the immune system can promote either activation or suppression of tumor growth, in a process known as 
“immunoediting”32. Some cancer cells present tumor antigens that lead to their elimination by the immune system. 
Alternatively during the process of immunoediting, they can lose those antigens due to either random genetic 
instability or in response to immune-induced inflammation32,33. Finally, LN2 cells were more similar the tumor cells 
classified as “other cancer types” than LN3 cells, whereas LN3 could induce angiogenesis and were capable to evade 
the immune system (Supplementary Table 7). Both mechanisms were already discussed for ZsG and LN2 cells.

The next step consisted in looking for the relative contribution of DEGs for each hallmark of cancer to inva-
sion and metastasis. Table 2 showed that angiogenesis and evading immune destruction DEGs were the most 
representative. Regarding the number of genes, angiogenesis and evasion of immune destruction were the first 
and the fifth hallmarks with highest contributions, respectively. Conversely energy metabolism and other cancer 
types were those with lowest contributions of DEGs, being the second and the last hallmarks with higher number 
of genes, respectively. This means that evading immune destruction is a hallmark highly associated to invasion 
and metastasis in OTSCC due to the number of genes and its contribution to that process. In contrast, energy 
metabolism, the hallmark that displayed the highest number of KEGG pathways and the second highest number 
of gene contributions to invasion and metastasis, was less related to the invasive process (Fig. 3). These observa-
tions suggest that cancer therapies should target those genes involved in immune system evasion, angiogenesis 
and/or growth suppressors avoidance. It follows that although metabolism contains a high number of gene con-
tributions, they may not be the most susceptible targets for an efficient therapy.

After evaluating the global behavior of the gene expression and its contributions to invasion, we identified 
common DEGs displaying altered-expression that could become biomarkers of OTSCC or metastasis. To accom-
plish that, we compared the 11 CoGE, and found 26 genes: 15 were down regulated, 10 were continuum and one 
up regulated (Table 3).
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Of the subgroup of down regulated genes, we found 3 genes described as biomarkers of HNSCC (RAB1734, 
NMU35 and ANGPTL436), and one of EMT (CXADR37). Of these, CXADR was reported to be down regulated38, 
agreeing with our results; no expression data for RAB17 was found although in our results we found to be down 
regulated; ANGPTL4 was reported to be overexpressed39 in contrast to our result showing it was down regulated; 
NMU protein was proposed as biomarker, although in our data measuring RNA/cDNA levels, this gene was down 
regulated. Other 4 genes have expression data in HNSCC, namely VGGL140, SCEL41, SCNN1A42 and UNC5B43. 
In previous works all of them were found to be down regulated, in agreement with our analysis. Finally, 7 com-
mon DEGs which had not been reported before in association with HNSCC expression were found to be down 
regulated. These were MYH14, RSAD2, SLC28A3, LIPH, GJA5, PLXDC2, and FGD3. Interestingly, mutations for 
MYH14 have been described in HNSCC44 which were correlated to a negative regulatory activity of metastasis45. 
Incidentally, all 7 genes have been associated to cancer or metastasis and had been noted for their high level of 
expression46–53, even though PLXDC2 was down regulated in vulvar squamous cell carcinoma (VSCC). This was 
associated with unfavorable prognosis54.

In agreement with data obtained from renal carcinoma we found that DIABLO belonged to the continuum 
group55. Curiously this gene was found to be up regulated in cervical cancer56, in tumors of colorectal carcinoma 
patients57, and in gastrointestinal cancer58. In addition, TRPC4AP, another member of the continuum CoGE 
group did not display any type of regulation in mouse fibroblasts NIH-3T3 when induced by adenovirus early 
region 1 A protein (E1A) oncogene11, whereas it was found down regulated in a murine model of aggressive 
OSCC59. In the same way, PPARD, CHMP6 and TMED2 were found to be either down regulated59–61, or up reg-
ulated61–63 depending on the treatment and the cell line types. Only DAPK3 and STX6 had been reported to be 
expressed in HNSCC, being down64 and up regulated65. SRPRB was described as down regulated in peripheral 
blood cells of a melanoma patient when compared with healthy primary melanocyte cells66, as well as in breast 
cancer patients after 4 cycles of chemotherapy67. There are no data in cancer studies concerning SLC8B1 (encod-
ing NCLX protein) and PIGG. However, SLC8B1 is known to play a key role in cellular and mitochondrial Ca2+ 
homeostasis and thereby, it is implicated in cell Ca2+ regulation, oxidative phosphorylation, hormonal secre-
tion, synaptic transmission and apoptosis68–70. Moreover, PIGG is involved in ethanolamine phosphate transfer-
ence and its mutations and deletions were reported to be associated with intellectual disorders, hypotonia and 
early-onset seizures71. Other members of PIGG’s family, such as classes U (PIGU), T (PIGT) and X (PIGX) are 
oncogenic, being overexpressed in bladder cancer72 and breast cancer cell lines73,74, suggesting a possible role in 
cancer development related to PIGG.

With regards to the up regulated genes the only one found was ENPP1 whose expression is stimulated by 
estrogen in stromal cells from normal human endometrium75. ENPP1 loss has been found in ovary cell lines 
occurring even without genomic deletion. The silencing of this gene can be attributed to hyper methylation of the 
connective tissue growth factor (CTGF/CCN2) promoter, that inhibits the expression of several genes76. Also, it 
was shown that ENPP1 is a potential facilitator of breast cancer bone metastasis, with high levels of both mRNA 
and protein synthesis77, occurring in a chromosomal region reported to be amplified in breast cancer78. The 
opposite was found in ovarian cell lines. Likewise it was shown that loss of microRNA-27b contributed to breast 
cancer stem cell generation by activating ENPP1. Clinical data suggest ENPP1 expression in primary breast can-
cer tissues is associated with malignant potential and response to chemotherapy79. In HNSCC, it was reported 
that ENPP1 gene was activated by anti-inflammatory stimuli80.

Our observations on common DEGs displaying altered expression corroborate the findings regarding classical 
biomarkers of invasion, such as RAB17, NMU, ANGPTL4, CXADR and ENPP1, and also allowed the proposal 
for novel biomarkers of OTSCC metastasis, such as PIGG and SCL8B1 (Table 3). Furthermore, we found 24 of 
26-common DEGs displaying altered expression related to different processes in many types of cancer, strength-
ening our analysis strategy. For instance, NMU gene that encodes a HNSCC biomarker was found to be down 
regulated at the RNA/cDNA level in our work, leading us to consider the occurrence of post-transcriptional 
and/or post-translational modifications. Quite probably, a certain number of genes that we have found to be 
differentially expressed may not synthesize proteins. Similarly the proteome profile may not be deduced from the 
transcriptomic data, due to many factors pertaining to the transcription process81. Our approach suggests a set of 
pathways, out of many possible ones, that OTSCC could possibly undertake to become more aggressive.

When we compared those 26 sequentially altered genes with traditional biomarkers for OSCC, we found that 
ANGPTL4, MYH14, ENPP1 and PPARD interact with important subsets of genes involved in EMT (Fig. 4). 
Collagen and integrins are important components of the ECM, and actively participate in the invasive process82. 
MYH14, ANGPTL4 and ENPP1 clustered with those genes, as observed in the interactome. The transcription 
factors SNAIL1, SNAIL2, TWIST and LEF-1 promote EMT in HNSSC13 and PPARD interacted with them. 
PPARD is activated by LEF-183. This represents an interesting approach to define ANGPTL4, MYH14, ENPP1 
and PPARD as novel HNSCC biomarkers. Moreover, we analyzed 248 clinical data of HNSCC from the TCGA 
and we found that expression levels of these genes in live patients correlate with our findings (Fig. 6).

Validation of the transcriptome was attempted by carrying out RT-PCR for 6 of the common DEGs displaying 
altered expression. Among them, 4 were down regulated in our model, and displayed a pattern that corrob-
orated the transcriptomic data. Therefore, RSAD2, VGLL1, SCEL and ANGPTL4 could represent biomarkers 
of oral metastasis. On the other hand, ENPP1, an up regulated gene, did not display the same pattern as that of 
the RNA-Seq data. PPARD, a gene belonging the continuum CoGE, consistently did not change its expression 
amongst the metastatic progression (Table 3 and Fig. 5).

Finally, the reasoning used here for large-scale RNA-Seq analyses using all the DEGs with or without correc-
tions (p- or q-values), in order to have a comprehensive and robust view of the complex cell system biology. No 
single analysis pipeline can be used in all cases84. The pipeline took into account PCG and KEGG pathways related 
to them. This allowed us to classify the DEGs related pathways into the hallmarks of cancer and to establish their 
contributions to any specific process or characteristic. In our case, we found that evading immune destruction 
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and angiogenesis were the most related to invasion and metastasis. We propose that cancer treatments should be 
directed against those genes rather than metabolic or generic ones. Our approach can be used for other cellular 
and cancer related processes and diseases, being an interesting tool to highlight nodal genes or set of proteins 
on which to base new therapies. Lastly, genes such as ANGPTL4, MYH14, PPARD and ENPP1 might constitute 
interesting molecular targets for OTSCC treatment trials.

Material and Methods
Cell lines.  Cell lines SCC9, and transformed ZsG, LN1, LN2 and LN3 were a kind gift from Agostini and 
collaborators. For details of model development, see reference7.

Cell culture.  Cells were cultured in Ham’s F12 medium (DMEM/F12; Invitrogen, USA) supplemented with 
10% fetal bovine serum (FBS) and hydrocortisone 400 ng/ml (Sigma-Aldrich, USA). 1.1 × 106 cells of SCC9, ZsG 
and LN1; 1.5 × 106 cells of LN2 and 2 × 106 cells of LN3 were transferred to 60.1 cm2 Petri dishes, for 48 hours, 
using an incubator series 8000 water-jacketed CO2 (Thermo Scientific), in humidity atmosphere of 5% of CO2. 
Three independent biological replicates of each cell line were used for the transcriptomic analysis. The cell lines 
were genotyped and tested free for Mycoplasma sp. infection.

RNA extraction.  Total RNA of ~6 × 106 cells in 3 independent biological experiments for all 5 cell lines was 
extracted using RNeasy kit (Quiagen®), according to the manufacturer instructions. Quality and purity of the 
samples were quantified using Nanodrop ND1000 (Thermofisher Scientific).

Library preparation and sequencing.  Libraries were prepared using 4 μg of total RNA from each sample, 
strictly following the instructions of the TruSeq RNA Sample kit v2 (Illumina®). Seven technical replicates were 
obtained for all cell lines, from three biological independent experiments. Each library was uniquely identified 
using specific barcodes. The quality of library preparations was assessed using DNA 1000 kit for Bioanalyzer 
(Agilent®). Libraries were subsequently quantified by qPCR using Library quantification kit for Illumina (Kapa 
Biosystems®). 10 pM of sample libraries were distributed in 5 lanes of a flow cell, using TruSeq PE Cluster kit v3 
- cBot – HS (Illumina®). A 100 × 100 Paired End run was carried out in an Illumina HiSeq2500® platform, using 
TruSeq™ SBS Kit v3 - HS - 200 cycles. Samples were multiplexed using Nextera kit, on which sequence adaptors 
were added into samples to differentiate and demultiplexed after the sequencing process.

Data analysis.  CASAVA® tool was used to make the base calling, obtaining the FASTQ sequences for exper-
imental and biological replicates. Using the FASTQ files, gMAP® was employed to align our reads against the 
human genome v.38 (Ensembl), producing a GFF file and the Cufflinks tools align the coordinates of each read 
in GFF format to produce the frequency of each gene, expressed in Fragments Per Kilobase of exon per Million 
reads sequenced (FPKM). A FPKM ranking was obtained and these data were compared using Excel (Microsoft 
Corporation®). The first step consisted of the comparison between parental vs. its derived cell line, gene by gene, 
using Student’s t-test, to obtain the differentially expressed genes (DEGs). False Discovery Rate (FDR) correc-
tion was made, generating a q-value, reducing type I error. A ratio between the derived and parental cell lines 
was obtained, to determine the type of regulation for each gene, and to establish the clusters of gene expression 
(CoGE). STRING® free software (http://string-db.org)12 was used to classify between protein coding genes (PCG) 
and non-coding genes, and to obtain the KEGG pathways related to each PCG. Panther® (http://pantherdb.org) 
was used to determine the biological process of specific genes, based in gene ontology.

RNA extraction and cDNA synthesis for validation experiments.  Total RNA was isolated from oral 
cancer cells using TRIzol reagent (Invitrogen) according to the manufacturer’s instructions. Total RNA was quan-
tified spectrophotometrically using Nanodrop ND1000 (Thermofisher Scientific) and 1 μg was treated with 1 unit 
of RNase-free DNase for 30 min at 37 °C. Reactions were stopped by adding 1 μl of 20 mM EDTA and heating for 
10 min at 65 °C. Synthesis of cDNA was performed using the DNase-treated RNA according to a High Capacity 
cDNA Reverse Transcription Kit (Applied Biosystems).

Real Time-PCR.  Gene expression analysis was performed using a 7500 Real-Time PCR (Applied Biosystems) 
and power SYBR-Green PCR master mix (Applied Biosystems). The sequences of the primers used were: 
RSAD2 forward GCGTTGCGGGGAAACGAA reverse AGCGCCGGCCGTTTATC; VGLL1 forward GGACA 
TCAGCAGCGTAGTGG reverse CTCTGACTCGAGGGGGTCAA; SCEL forward TTGCAACCTGGCGGTTCATT 
reverse ACACCTGGTTCCCTCTTCTTCT; ANGPTL4 forward CTCTCTGGAGGCTGGTGGTT reverse TGTG 
GGATGGAGCGGAAGTA; ENPP1 forward CTATGGACGTGGGGGAGGAG reverse TAGGTGTTGGGGTCCTT 
GGC; and PPARD forward GTGGCTTCTGCTCACCAACA reverse CATCGTCTGGGTCTGAACGC. The compar-
ative Ct method was used to contrast changes in gene expression levels. β–actin was used as an endogenous control.

Statistical analyses.  For transcriptomic data, statistical analyses were performed using Excel (Microsoft 
Corporation®), statistical significance was determined by student’s t- test and false discovery rate (FDR) correc-
tion, both of them with α = 0.05. The results were expressed as means ± S.E.M for n independent experiments. 
Statistical significance was determined by two-way ANOVA, with α = 0,05. For transcriptomic data validation, 
Prism 7 (GraphPad Software) for Mac was used. The results are expressed as means ± S.D. of 3 independent 
experiments. Two way ANOVA and Tukey’s multiple comparisons test were done7,26.

http://string-db.org
http://pantherdb.org
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