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Leakage correction improves 
prognosis prediction of dynamic 
susceptibility contrast perfusion 
MRI in primary central nervous 
system lymphoma
Yeon Soo Kim1, Seung Hong Choi  1,2, Roh-Eul Yoo1, Koung Mi Kang1, Tae Jin Yun1, Ji-hoon 
Kim  1, Chul-Ho Sohn1, Sung-Hye Park  3, Jae-Kyung Won3, Tae Min Kim4, Chul-Kee Park  5 
& Il Han Kim6

To evaluate whether the cerebral blood volume (CBV) measurement with leakage correction from 
dynamic susceptibility contrast perfusion weighted imaging can be useful in predicting prognosis for 
primary central nervous system lymphoma (PCNSL). 46 PCNSL patients were included and classified 
by radiation therapy (RT) stratification into RT (n = 30) and non-RT (n = 16) groups. The corresponding 
histogram parameters of normalized CBV (nCBV) maps with or without leakage correction were 
calculated on contrast-enhanced T1 weighted image (CE T1WI) or on fluid attenuated inversion 
recovery image. The 75th percentile nCBV with leakage correction based on CE T1WI (T1 nCBVL75%) had 
a significant difference between the short and long progression free survival (PFS) subgroups of the RT 
group and the non-RT group, respectively. Based on the survival analysis, patients in the RT group with 
high T1 nCBVL75% had earlier progression than the others with a low T1 nCBVL75%. However, patients 
in the non-RT group with a high T1 nCBVL75% had slower progression than the others with a low T1 
nCBVL75%. Based on RT stratification, the CBV with leakage correction has potential as a noninvasive 
biomarker for the prognosis prediction of PCNSL to identify high risk patients and it has a different 
correlation with the PFS based on the presence of combined RT.

Primary central nervous system lymphoma (PCNSL) is a rare primary brain cancer as an extra-nodal variant of 
non-Hodgkin lymphoma confined to the central nervous system with variable response to treatment and clinical 
outcomes1–3. With respect to the clinical outcome, immune deficiency is the only established risk factor for devel-
oping PCNSL1,3. In immunocompetent patients, the prognosis of PCNSL is highly variable4. Several reported 
clinical markers were associated with the prognosis such as age, Eastern Cooperative Oncology Group (ECOG) 
performance status, serum level of lactate dehydrogenase, cerebrospinal fluid protein concentration, and involve-
ment of deep brain regions5. However, noninvasive biomarkers of the prognosis have continued to identify high 
risk groups at initial diagnosis to determine a personalized therapeutic strategy6. For immunocompetent patients 
with PCNSL, the treatment options include chemotherapy, radiation therapy (RT), and the combination of both 
modalities1. Although the cornerstone of therapy is a systemic treatment with intravenous high-dose methotrex-
ate, there remains controversy about the role of RT3. For this reason, combined RT is not strongly recommended, 
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but it is considerable whether there is its weighted benefit to be considered against the increased neurotoxicity 
risk7,8.

To stratify a personalized therapy and assess the response, noninvasive biomarkers of the prognosis should 
be quantitatively and serially measured. There have been several published reports suggestive of a significant 
correlation between nonconventional physiology-based magnetic resonance (MR) imaging modalities such as 
diffusion weighted images derived from apparent diffusion coefficient values and clinical outcomes of PCNSL 
treatment9. There have been relatively few studies of the effectiveness of dynamic susceptibility contrast perfusion 
weighted imaging (DSC PWI) derived normalized cerebral blood volume (nCBV) values in PCNSL that can 
assess the degree of tumor angiogenesis, and capillary permeability to assess the response to therapy compared 
to gliomas10,11.

In DSC PWI, the signal intensity time curve is described with the percentage of signal intensity recovery at the 
end of the first pass12,13. In the presence of contrast agent extravasation because of severely compromised blood 
brain barrier (BBB), the underlying kinetic model used in the perfusion weighted image that the contrast agent 
is contained in the intravascular space during the dynamic acquisition may not be valid14. Contrast agent leakage 
from the intravascular compartment to extravascular-extravascular space has to be corrected for accurate meas-
urement of the cerebral blood volume (CBV). With BBB disruption, high permeability with contrast extravasa-
tion into the extravascular-extracellular space induces a T2* weighted signal intensity drop which causes CBV 
underestimation15.

Because there was a high degree of BBB disruption and thus a high vascular permeability in PCNSL, leakage 
correction may imply greater accuracy in the CBV measurement16. Therefore, the purpose of this study is to 
evaluate whether the CBV measurement with leakage correction from DSC PWI can be useful for the prognosis 
prediction of PCNSL.

Results
Patient population. Clinical parameters, including the age, sex, ECOG score, and interval duration 
between pretreatment MR examination and the date of first medical treatment, were summarized and are shown 
in Table 1. Forty-six patients were classified into two groups according to treatment with RT; 30 patients with 
combined RT referred to as the RT group (65% [30/46]) and 16 patients without combined RT referred to as the 
non-RT group (35% [16/46]). The RT group consisted of 23 patients with a progression free survival (PFS) < 3 
years designated short PFS subgroup, and 7 patients with a PFS ≥ 3 years as the long PFS subgroup. The non-RT 
group consisted of 7 patients with PFS < 1 year as the short PFS subgroup and 9 patients with a PFS ≥ 1 year as 
the long PFS subgroup (Table 1).

Comparison analysis between the short PFS and long PFS subgroups in the RT group.  
Comparison of histogram parameters. Regarding the nCBV values with or without leakage correction, the result 
of the comparison analysis is shown on Supplementary Table 1. Among the analyzed values, the T1 normalized 
cerebral blood volume with leakage correction (nCBVL) mean, T1 nCBVL75%, T1 nCBVL90%, and T1 normalized 
cerebral blood volume without leakage correction (nCBVnL) 75% had significant differences between the short 
and long PFS subgroups (P < 0.05) (Supplementary Table 1). Among the aforementioned statistically significant 
variables, T1 nCBVL75% had the highest value of the area under the receiver operating characteristic (ROC) curve 
(0.795, 95% confidence interval (CI), 0.609–0.920) (P < 0.05). The cutoff value of 5.3250 exhibited prediction 
rates of 65.22% (15/23) and 100% (7/7) for the short and long PFS subgroups, respectively. The multivariate logis-
tic regression analysis showed that the T1 nCBVL75% was the only independent variable for predicting the short 
and long PFS (P < 0.05). Then, 30 patients were stratified based on the value of T1 nCBVL75%. The classification 
cutoff value of T1 nCBVL75% was 5.3250 and 15 patients had a T1 nCBVL75% value ≤ 5.3250 and other 15 patients 
had a T1 nCBVL75% value > 5.3250 (Fig. 1).

Comparison of total volume of interest (VOI). The mean value of the total VOI based on the contrast-enhanced 
T1 weighted image (CE T1WI) and fluid attenuated inversion recovery (FLAIR) did not have significant differ-
ence between PFS subgroups in the RT group, respectively (Supplementary Table 1).

Group and subgroup

RT non-RT

Short PFS (<3 years) Long PFS (≥3 years) Short PFS (<1 year) Long PFS (≥1 year)

Total patients (Male:Female) 23 (12:11) 7 (4:3) 7 (4:3) 9 (5:4)

p-value 0.8258 0.9535

Median age (range) 54 (37–84) 50 (40–62) 66 (41–78) 63 (39–70)

p-value 0.1056 1.0000

ECOG (grade)

0–1:2–5 (number) 14:9 5:2 2:5 7:2

p-value 0.6298 0.1913

Median interval duration (range) 17 (4–44) 11.5 (2–17) 13 (10–25) 13 (3–41)

p-value 0.0754 0.8735

Table 1. Clinical characteristics in 46 patients with stratification of the RT group and PFS subgroup.
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Figure 1. Representative cases of the short PFS and long PFS subgroups of the RT group. There were nCBV 
maps with leakage correction co-registered with CE T1WI (upper left) and nCBV map co-registered with 
FLAIR (upper right). Histogram and cumulative histogram of all pixel values of total VOIs, such as an 
enhancing lesion on CE-T1WI (lower left) and hyperintense lesion on FLAIR (lower right), were obtained from 
the aforementioned nCBV co-registration images. (a) nCBV maps with leakage correction and histograms in a 
38-year-old male patient with a short PFS in the RT group. The T1 nCBVL75% was 6.15 and PFS was 19 months. 
(b) nCBV maps with leakage correction and histograms in a 68-year-old male patient with a long PFS in the RT 
group. The T1 nCBVL75% was 2.54 and PFS was 101 months.
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Comparison of RT modalities. With the respect to RT modalities, whole brain RT or involved field RT, which 
the patients in the RT group underwent, there was no significant correlation between the short PFS and long PFS 
subgroups (P > 0.05).

Comparison analysis between the short PFS and long PFS subgroups in the non-RT group.  
Comparison of histogram parameters. The result of the comparison analysis of the non-RT group is shown in 
Supplementary Table 2. The T1 nCBVLmean, T1 nCBVL75%, and T1 nCBVL90% were significantly different between 
the short and long PFS subgroups (P < 0.05). Sixteen patients from the non-RT group were also stratified by T1 
nCBVL75% values with the highest value of the area under the ROC curve (0.841, 95% CI, 0.576–0.972), but the 
cutoff value of T1 nCBVL75% for classification was 4.2243. The cutoff value of 4.2243 exhibited prediction rates 
of 100% (7/7) and 66.67% (6/9) for the long and short PFS subgroups, respectively. The multivariate logistic 
regression analysis showed that the T1 nCBVL75% was the only independent variable for the prediction of short 
and long PFS (P < 0.05). There were 9 patients with a T1 nCBVL75% value ≤ 4.2243 and another 7 patients with a 
T1 nCBVL75% value > 4.2243 (Fig. 2).

Comparison of total VOI. Like in the RT group, the mean value of the total VOI based on the CE T1WI 
and FLAIR did not have significant difference between PFS subgroups in the non-RT group, respectively 
(Supplementary Table 2).

Leave-one-out cross-validation (LOOCV) test in both RT and non-RT group. Results of LOOCV 
test are shown on Supplementary Table 3. In RT group, the average accuracy was 80.61% to predict prognosis 
based on the T1 nCBVL75% cut-off value. The accuracy was 82.61% based on population data of RT group. In the 
same way, the average accuracy of LOOCV test was 83.33% in non-RT group which is the same value compared 
with that of population data.

Survival analysis and Cox analysis in both RT and non-RT group. Results of Kaplan-Meier survival 
analysis are shown on Fig. 3. There is no significant difference in the PFS between the RT and non-RT groups 
(median, 30 [95% CI, 19–60] and 43 [95% CI, 7–45] months, respectively) (P > 0.05, log-rank test) (Fig. 3a). In 
the RT group, patients with a high T1 nCBVL75% value > 5.3250 had earlier progression than the others with a 
low T1 nCBVL75% value ≤ 5.3250 (P < 0.05, log-rank test) (Fig. 3b). The median PFS of the high T1 nCBVL75% 
subgroup was 19 months ([95% CI, 8–30]) and that of the low T1 nCBVL75% subgroup was 57 months ([95% 
CI, 24–60]). On the other hand, in the non-RT group, patients with a low T1 nCBVL75% value ≤ 4.2243 had an 
increased risk of early progression with median PFS of 7 months ([95% CI, 3–10]) compared to patients with 
a low T1 nCBVL75% value > 4.2243 who had a longer median PFS of 43 months ([95% CI, 43–45]) (P < 0.05, 
log-rank test) (Fig. 3c).

Despite the similar high value of the T1 nCBVL75%, the patients in the RT group (Fig. 1a) had a relatively 
shorter PFS than the patients in the non-RT group (Fig. 2b). On the other hand, in the case of a similar low value 
of the T1 nCBVL75%, the patients in the non-RT group (Fig. 2a) had relatively shorter PFS than the patients in the 
RT group (Fig. 1b).

Based on Cox regression analysis, T1 nCBVL75% value was the most (P < 0.05, [95% CI, 0.0024–0.9924], 
exp(B) = 0.0486) important factor incorporated into the multivariate model only in non-RT group. In RT group, 
there is no significant parameter that impact on recurrence.

Heat map of quantitative values of DSC PWI in all patient with RT stratification. Data for indi-
vidual values of the imaging parameters and the PFS according to the group were displayed as a graphical rep-
resentation (Fig. 4).

Discussion and Conclusions
In this study, we hypothesized that the nCBV values could have potential as noninvasive quantitative prognostic 
factors for the PFS and their relationship with the PFS could be different based on the treatment modalities. We 
found that the T1 nCBVL75% values are the most predictive imaging biomarkers in immunocompetent patients 
with PCNSL. As expected, their relationship with the PFS was different according to the treatment modality of the 
patient. Specifically, in the RT group, patients with low T1 nCBVL75% values have a significantly longer PFS than 
the others with high values. In contrast, in the non-RT group, patients with a high value of T1 nCBVL75% value 
have a significantly longer PFS than the others with low values.

The DSC PWI estimates the tissue microvascular density by measuring the relative CBV values, which are a 
measurement of the microvascular blood volume in tumors, reflecting tumor angiogenesis and its energy metab-
olism17. Although there are relatively few studies, the value of relative CBV could be a non-invasive prognostic 
biomarker in PCNSL compared to glioma, and a low relative CBV is a novel risk factor for adverse prognosis in 
immunocompetent patients with PCNSL6. Our results are consistent with previous studies in some respects to the 
relationship between the nCBV value with leakage correction and PFS. The dynamic methods provide accurate 
measurement of the perfusion parameters only in the case of an intact BBB18. In consideration to the significant 
tendency for PCNSL to disrupt the BBB, leakage correction plays an important role to compensate for the tissue 
T1 and T2 variation because of the contrast leakage to the extravascular space18. In this study, the used dedicated 
image analysis software performed leakage correction based on both Weisskoff method applied for correcting 
the T1 effect of the contrast leakage14,19 and residue function based leakage correction method applied for both 
T1 and T2/T2* dominant leakage effects19. Consequently, the derived value of the nCBV with leakage correction 
might be accurate because both T1 and T2/T2* dominant leakage effects can be corrected.
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Figure 2. Representative cases of the short PFS and long PFS subgroups of the non-RT group. nCBV maps 
with leakage correction co-registered with CE T1WI (upper left) and FLAIR (upper right). Histogram and 
cumulative histogram of all pixel values of total VOIs, such as an enhancing lesion on CE T1WI (lower left) 
and hyperintense lesion on FLAIR (lower right), were obtained from the aforementioned nCBV co-registration 
images. (a) nCBV maps with leakage correction and histograms in an 81-year-old female patient with a 
short PFS of the non-RT group. The T1 nCBVL75% was 2.96 and PFS was 3 months. (b) nCBV maps with 
leakage correction and histograms in a 44-year-old male patient with a long PFS of the non-RT group. The T1 
nCBVL75% was 6.53 and PFS was 45 months.
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Among various statistically significant variables obtained from histogram analysis, there were several variables 
to predict the prognosis in both groups (P < 0.05). This finding may suggest the relatively potential advantage of 
the cumulative histogram method analysis. Owing to its multifocal and infiltrative nature, it is difficult to select 
the representative lesion of PCNSL20. The use of the total voxel values of a tumor could identify the overall nature 
of the tumor and provide a better prognostic accuracy than a statistically comprehensive mean value21,22.

Based on the survival analysis in both groups, the relationship between the nCBV and PFS differed between 
the RT and non-RT groups. In the non-RT group, high nCBV values with leakage correction may estimate a 
longer PFS, which is probably because of their adequate patent vessel for delivery of chemotherapeutic agents6. 
As low nCBV values with leakage correction may suggest a relative lack of patent vessels delivering chemothera-
peutic agent to the tumor bed, patients with a low nCBVL75% value, suggestive of relative hypoxic environment, 
resisted treatment6,23–25. Consequently, low nCBVL75% values correlated with a short PFS in the non-RT group.

On the other hand, in the RT group, we found that a low T1 nCBVL75% value is related to a longer PFS. 
Considering the adverse relationship between the T1 nCBVL75% and PFS in both the RT and non-RT groups, the 
major contributing factor may be suspected to be the radiation effect in the brain. Whole brain radiation therapy 
alone is insufficient for durable PCNSL control because of its limited efficacy as a single therapeutic modality 

Figure 3. Kaplan-Meier survival graphs according to presence of RT or value of T1 nCBVL75% obtained from 
pretreated DSC PWI. (a) Probability of the PFS based on the RT stratification is shown. The median PFS of the 
RT group patients (blue line) was 30 months ([95% CI, 19–60]) and that of the non-RT group patients (green 
line) was 43 months ([95% CI, 7–45]). This graph showed that there was no significant survival difference 
between the two groups (p –value = 0.3634, log-rank test). (b) In the RT group, the probability of PFS based on 
T1 nCBVL75% with a cutoff value of 5.3250 is shown. Patients with a low T1 nCBVL75% value ≤ 5.3250 (blue line) 
had a 57-month median PFS ([95% CI, 24–60]). Patients with a high T1 nCBVL75% value > 5.3250 (green line) 
had a median PFS of 19 months ([95% CI, 8–30]) (p –value = 0.0299, log-rank test). (c) In the non-RT group, 
the probability of PFS based on the T1 nCBVL75% with a cutoff value of 4.2243 is shown. Patients with a low T1 
nCBVL75% value ≤ 4.2243 (blue line) had a median PFS of 7 months ([95% CI, 3–10]) Patients with a high T1 
nCBVL75% value > 4.2243 (green line) had a median PFS of 43 months ([95% CI, 43–45]) (p –value = 0.0098, 
log-rank test).
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because of its high risk of neurotoxicity, especially in elder patients1. If the PCNSL patient is tolerable for the 
chemotherapy, combined modality therapy or chemotherapy alone are favored rather than radiation therapy 
alone. Although a low nCBV value and leakage correction suggests hypoxia which plays a role in the resist-
ance to chemotherapy and radiation in brain tumors26, the main therapeutic effect might be determined by the 
efficacy of the drug delivery in consideration to multi-agent chemotherapy as the current treatment of choice1. 
As chemotherapy is one of the major treatment modalities for PCNSL, drug delivery is the main challenge for 
achieving effective treatment3. There are few reports of the results of RT to induce BBB opening in patients with 
PCNSL. Although the BBB represents an insurmountable obstacle for many drugs27, there are a number of other 
barriers that inhibit systemically administered drug delivery to the tumor, such as the blood cerebrospinal fluid 
barrier, blood tumor barrier, and efflux mechanisms in drug transport28. The blood tumor barrier is one of the 
challenging obstacles. In addition, there are many physiological contributing factors that would induce the rel-
atively poor delivery of drug to tumors, such as a heterogeneous blood supply, relatively long distances in the 
interstitium, cellular heterogeneities, and interstitial hypertension29. Drug delivery to tumor cells consists of a 
heterogeneous distribution of microvascular structure throughout the tumor interstitium28. As the intra-capillary 
distance increases for some causes, the vascular surface area decreases, reducing the trans-vascular exchange 
of blood-borne molecules28. As a representative cause of obstacles for drug delivery, the high interstitial tumor 
pressure and associated peri-tumoral edema increase the hydrostatic pressure in the adjacent normal brain paren-
chyma. As a result, the cerebral microvascular structure in perilesional area may be less permeable to drugs than 

Figure 4. Heat map of quantitative values of DSC PWI in all patients with RT stratification. There are clusters of 
quantitative values of DSC PWI in all patients with RT and PFS stratification. In both groups, each patient was 
arranged in order of the PFS. Each value corresponding with each pixel was divided by the maximum value and 
its ratio ranged from 0 to 1. Each pixel color was determined by the aforementioned calculated ratio. Then, all 
variables are presented as representative colors based on calculated ratio and representative color scale. In the 
RT group, the mean and 75th, 90th, and 95th percentiles of the nCBVL, nCBVnL, and LEAK derived from DSC 
PWI in conjunction with CE-T1WI and FLAIR are represented as red with relative high values and green with 
relative low values. On the other hand, in the non-RT group, the same statistics were represented as green with 
relative high values and red with relative low values. This heat map suggests that a high value of the T1 nCBVL 
represented as green had early progression with a shorter PFS in the RT group and low value of T1 nCBVL 
represented as green had early progression in the non-RT group. In conclusion, the relationship between T1 
nCBVL and PFS differed in that there was negative correlation in the RT group and positive correlation in the 
non- RT group.
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the normal brain endothelium, leading to an exceptionally low extra-tumoral interstitial drug concentration30. 
Radiation induces ultrastructural changes of the blood capillaries of the brain and, consequently, accompanies 
capillary wall swelling, increases in the microcirculatory bed permeability, and perivascular edema with elevated 
interstitial pressure31. With a high nCBV value and leakage correction suggestive of increased tumor angiogene-
sis, there was an increased chance of interstitial hypertension induced by perivascular edema in the periphery and 
surrounding tissue for chemotherapeutic agents to overcome induction of difficult outward convection to diffuse 
into the tumor28,29,32. We postulate that the negative effect of increased perivascular pressure for drug delivery out-
weighs facilitated delivery by the RT-induced BBB disruption. Consequently, the efficient level of drug delivered 
to the tumor bed was decreased after RT because of the aforementioned reason. Many in vivo studies have docu-
mented that interstitial pressure is elevated in most solid tumors, and it presents a major obstacle to the transfer 
of drug from the blood into the tumor after RT32,33.

Based on results of Cox regression analysis, T1 nCBVL75% was not predictable value only in RT group in spite 
of the aforementioned inverse relationship between its value and PFS. RT can induce irreversible changes such 
as fibrosis and consecutive obliteration of the small vessel because of the endothelial damage34. Those additional 
microenvironment change after RT would make it difficult to predict the prognosis based on the perfusion MR 
imaging. We believe that T1 nCBVL75% is difficult to show statistical significance as a powerful predictor in the 
small number of patient group, because of the complex condition to be considered in radiated brain. Although 
the statistical methods cannot untangle a confounded condition in radiated brain, the overall aforementioned 
relationship between T1 nCBVL75% and prognosis should be overlooked in RT group.

Our study has several limitations. First, limitations of this study include the low number of patients, the het-
erogeneity of the therapeutic protocols, and the absence of a replicative cohort. Second, the cutoff values used for 
PFS based subgroup classification are different between the RT and non-RT groups. As the number of the patients 
in the non-RT group was small in contrast to that in the RT group, we did not get the significant difference 
between the short and long PFS subgroups in the non-RT group with the same cutoff value, which was 3 years, 
in the RT group. To find the same cutoff value for the PFS subgroup classification between the RT and non-RT 
groups, studies with a large number of patients should be performed. Third, the retrospective study design 
required the use of heterogeneous treatment modalities that depend on each patient. As there were no definite 
established therapeutic guidelines, there were heterogeneous modalities, durations, and intervals of treatment in 
the enrolled patients. RT was not strongly recommended based on the medical evidence, but it was considered 
dependent on the performance status of each patient as well as the tumor response to chemotherapy, which was 
a relatively subjective finding based on the decision of the clinicians because there were no absolute objective cri-
teria for the PCNSL treatment response. Fourth, we used imaging features from several kinds of MR scanners in 
our retrospective study, which might affect the present results. However, we used normalized quantitative values 
to minimize the potential difference due to MR scanner diversity.

In conclusion, the CBV with leakage correction as a predictable noninvasive biomarker for prognosis of 
PCNSL, has the potential to identify high-risk patients based on RT stratification and may be used to formulate a 
therapeutic strategy and estimate the response to therapy in PCNSL patients.

Methods
This retrospective study was approved by our institutional review board, and informed consent was waived.

Patient population. From January 2007 to April 2016, 130 patients with newly diagnosed PCNSL by surgi-
cal resection or biopsy, based on the World Health Organization criteria, were selected from the electronic med-
ical records of our institution. The inclusion criteria were as follows: (a) histopathologically confirmed PCNSL; 
(b) immunocompetent state with negative immunodeficiency virus status; (c) absence of other lesions except the 
primary brain lesion based on other imaging modalities including computed tomography and fludeoxyglocuse 
- positron emission tomography scans; and (d) pretreated baseline conventional MR imaging with DSC PWI 
available for total volume analysis. Of 130 patients, 84 were excluded for the following reason: (a) inadequate 
pretreated MR imaging lack of DSC PWI appropriate for analysis (n = 63); (b) improper imaging data for analysis 
by imaging processing software (n = 3); (c) recurrent PCNSL (n = 6); and (d) other site involvement, except a 
primary brain lesion (n = 12).

Finally, 46 patients treated with chemotherapy were included for this study population (25 men, 21 women; 
mean age, 56 years; age range, 37–84 years) and were divided into two groups with RT stratification, with com-
bined RT treatment (RT group, n = 30) and without combined-RT treatment (non-RT group, n = 16) (Fig. 5). The 
RT treatment was decided by neuro-oncology team, which was described in electronic medical record system.

Initial chemotherapy included various regimens as follows: combination of rituximab, methotrexate, procar-
bazine, and vincristine (n = 33); combination of methotrexate, procarbazine, and vincristine (n = 9); and meth-
otrexate alone (n = 4). All 46 patients received 4–6 cycles of induction chemotherapy with or without RT. The 
response to therapy was assessed on follow-up MR imaging. A complete response was defined as complete resolu-
tion of contrast-enhancing lesions and partial response as an interval decrease in the contrast-enhancing lesions1. 
Whole brain RT (n = 28) and involved filed RT (n = 2) were used as the RT modality for PCNSL patients (18 to 
27 Gy to whole brain). All of the 7 patients of the long PFS subgroup and 21 patients of the low PFS subgroup 
underwent whole brain RT. Other 2 patients of the low PFS subgroup underwent involved field RT only.

Follow-up and progression free survival with performance status Assessment. The clinical end 
point measured as the PFS in months was defined as the time from initiation of therapy to the first recurrence. 
The PFS of each patient was obtained from the medical records of our institution. The ECOG score was assessed 
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after the initial treatment. The average performance score after the initial treatment was 1.41 with a range of from 
0 to 5.

Image acquisition. For each patient, the pretreated MR imaging was performed using 1.5 T (Signa HDxt; 
GE Medical Systems, Milwaukee, WI) and 3.0 T (Verio; Siemens Medical Solutions, Erlangen, Germany or 
Biography; Siemens Medical Solutions, Erlangen, Germany or Discovery; GE Medical Systems, Milwaukee, WI 
or Signa Excite; GE Medical Systems, Milwaukee, WI) scanners which were randomly distributed. The analyzed 
brain imaging sequences on various MR scanners are presented in Supplementary Table 4. Those sequences 
included FLAIR, DSC PWI with gadobutrol (Gadovist, Bayer Healthcare, Berlin, Germany), and subsequent 
contrast-enhanced spin-echo T1 weighted image. For DSC PWI, a single-shot gradient-echo EPI sequences was 
used during intravenous injection of the contrast agent. For each section, 60 images were obtained at intervals 
equal to the repetition time. After four to five time points, a bolus of gadobutrol at a dose of 0.1 mmoL/kg of body 
weight and a rate of 4 ml/sec was injected with an MR compatible power injector (Spectris; Medrad, Pittsburgh, 
PA, USA). The bolus of the contrast material was followed by a 30 mL bolus of saline, which was administered at 
the same injection rate.

Post-processing and histogram analysis. The MR data from the DSC PWI were processed with a ded-
icated software package (nordicICE; Nordic Imaging Lab, Bergen, Norway). nCBV maps were obtained and 
applied an established tracer kinetic model for the first-pass data17,35. First, realignment was performed to min-
imized patient motion during dynamic scanning. The gamma-variate function, which is an approximation of 
the first-pass response at it would appear in the absence of recirculation, was fitted to the 1/T2* curves to reduce 
the effects of recirculation. Dynamic curves were mathematically corrected to reduce contrast-agent leakage 
effects36,37. After the elimination of recirculation and leakage of the contrast agent, CBV was computed with 
numeric integration of the curve. To minimize variances in the CBV in an individual patient, the pixel-based 
CBV maps were normalized by dividing every CBV value in a specific section by the CBV value in the unaffected 
white matter38. Then, maps of nCBVL, nCBVnL, and leakage value (LEAK) were obtained. Six co-registration 
images in each patient were acquired by co-registration between structural MR imaging, such as CE T1WI and 
FLAIR and the aforementioned perfusion maps of nCBVL, nCBVnL, and LEAK based on geometric information 
stored in the respective data sets with the use of the aforementioned image processing software39. The differences 
in the slice thickness between images were automatically corrected by re-slicing and co-registration based on 
the underlay and structural images. The nCBVL, nCBVnL, and LEAK were displayed as color overlays on the 
CE T1WI and FLAIR. The total volume of interest (VOI) for the measurable enhancing lesion in each section 
of the CE T1WI and hyperintensity lesion in each section of the FLAIR were determined by the semiautomatic 
segmentation method using dedicated software; CE T1WI and FLAIR were used for the structural images. The 
data acquired from each section were summated to derive the voxel-by-voxel nCBVs for the entire tumor extent 
of the image using the software (Fig. 6).

Image analysis was performed by one radiologist (Y.S.K. with 1 year of brain MRI experience) blinded to 
clinical characteristics and outcome, who was supervised an expert neuro-radiologist (S.H.C. with 16 years of 
experience in neuroradiology) as described below. Histograms of nCBVL, nCBVnL, and LEAK were plotted with 
each corresponding value on the x-axis, with a bin size of 0.5, while the y-axis was expressed as a total number 
of pixels. For further quantitative analysis, cumulative histograms were obtained from the previous histograms 
in which the cumulative number of observations in all bins up to the specified bin was mapped on the y-axis as 
percentages. The following parameters were derived from the nCBVL, nCBVnL, and LEAK histograms: the mean 
and 75th, 90th, and 95th percentile points (the Xth percentile point is the point at which X% of the voxel values that 
form the histogram are found to the left of the histogram)40. The abbreviations of imaging parameters used for 
analysis are shown in Supplementary Table 5.

Figure 5. Flowchart for selecting the study population.
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In addition, the value of total VOIs were obtained from the color overlay image on the CE T1WI and FLAIR, 
respectively.

Statistical analysis. All statistical analyses were performed with MedCalc software (v 15.8.0; MedCalc 
Software, Mariakerke, Belgium). The results with P values less than 0.05 were considered significant. The data for 
each parameter were assessed for normality with the Kolmogorov-Smirnov test. In all tests, P values less than 0.05 
were considered statistically significant. The clinical characteristics were compared between the RT and non-RT 
groups using either the Fisher’s exact test or unpaired Student t test.

Figure 6. Flow diagram of the histogram analysis. The total VOI was determined with the semiautomatic 
segmentation method. Based on geometric information stored in the respective data sets of a dedicated imaging 
processing software, structural MR images such as CE T1WI (1st step, left) and FLAIR (1st step, right) were 
co-registered with the DSC PWI driven maps, such as the nCBV map with leakage correction (2nd step, left), 
nCBV map without leakage correction (2nd step, middle), and leakage map (2nd step, right). After acquiring 
co-registered images on a voxel-by-voxel basis, the total VOIs were drawn (3rd step) on enhancing lesions of 
CE T1WI and hyperintense lesions of FLAIR. Finally, the overall values for each tumor were obtained by the 
summation of the histogram parameter values from every plane.
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For the comparison of total VOIs, the mean and 75th, 90th, and 95th percentiles of the nCBVL, nCBVnL, and 
LEAK values from histogram analysis of the total VOI, unpaired Student’s t-test or Mann-Whitney test were 
used. Then, the criteria were determined by the significant difference (P < 0.05) for dichotomization of short and 
long PFS subgroups in both RT and non-RT groups. The ROC curve analysis and multivariate stepwise logistic 
regression analysis were used to identify independent predictors of the PFS among the aforementioned imaging 
parameters and its cutoff value. The LOOCV test was performed to evaluate the accuracy of the best predictors.

Kaplan-Meier survival analysis and the log-rank test for the PFS comparison were also performed regarding 
histogram parameters that had a significant difference between the short PFS and long PFS subgroups, which 
were dichotomized into two subgroups in both the RT and non-RT groups. In this analysis, patients were defined 
as having an event if they had been diagnosed with PCNSL progression. Multivariate Cox regression analysis was 
performed to examine the prognostic significance of the independent predictors.

Data Availability. All data generated or analyzed during this study are included in this published article and 
its Supplementary Information files.

Ethical Approval and Informed Consent. Institutional Review Board approval was obtained and 
informed consent was waived.
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