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Application of variable selection 
in the origin discrimination of 
Wolfiporia cocos (F.A. Wolf) 
Ryvarden & Gilb. based on near 
infrared spectroscopy
Tianjun Yuan1,2, Yanli Zhao1, Ji Zhang1 & Yuanzhong Wang1

Dried sclerotium of Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb. is a traditional Chinese medicine. 
Its chemical components showed difference among geographical origins, which made it difficult 
to keep therapeutic potency consistent. The identification of the geographical origin of W. cocos is 
the fundamental prerequisite for its worldwide recognition and acceptance. Four variable selection 
methods were employed for near infrared spectroscopy (NIR) variable selection and the characteristic 
variables were screened for the establishment of Fisher function models in further identification of the 
origin of W. cocos from Yunnan, China. For the obvious differences between poriae cutis (fu-ling-pi in 
Chinese, or FLP) and the inner part (bai-fu-ling in Chinese, or BFL) of the sclerotia of W. cocos in the 
pattern space of principal component analysis (PCA), we established discriminant models for FLP and 
BFL separately. Through variable selection, the models were significant improved and also the models 
were simplified by using only a small part of the variables. The characteristic variables were screened (13 
for BFL and 10 for FLP) to build Fisher discriminant function models and the validation results showed 
the models were reliable and effective. Additionally, the characteristic variables were interpreted.

Dried sclerotia of Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb. is a well-known traditional Chinese medicine, 
which is a fungal species parasitizing the roots of pine trees1. Traditionally, it is used in many prescriptions for 
inducing diuresis, invigorating the spleen, excreting dampness and tranquilizing the mind. However, poriae cutis 
(fu-ling-pi in Chinese, or FLP) and the inner part (bai-fu-ling in Chinese, or BFL) of the sclerotia of W. cocos 
have different therapeutic efficacy. FLP is reported to have only diuretic activity, while BFL has an invigorat-
ing activity in addition to diuretic and sedative effects2. Modern phytochemical and pharmacological investiga-
tions have shown that triterpenes and polysaccharides are the two main kinds of secondary metabolites found 
in W. cocos, which are responsible for its functions of anti-tumor, anti-oxidant, anti-rejection, antibacterial, 
anti-inflammatory, anti-hyperglycemic, nematicidal, etc3. The previous studies found that the contents of triter-
penoid and polysaccharide in W. cocos from different origins were different4,5. The difference in chemical compo-
nents of W. cocos in different geographical origins makes it difficult to keep therapeutic potency consistent. The 
identification of the geographical origin of W. cocos is the fundamental prerequisite for its worldwide recognition 
and acceptance.

In China, the poria produced in Yunnan is reputable as Yunnan poria (Yun-ling in Chinese) for its geoherb-
alism. Yunnan locates in southwest China and is influenced by a low latitude plateau, mountainous country 
monsoon climate6. There are seven climatic zones in Yunnan from the north temperate zone to north tropic zone, 
and climatic zones distribute according to the elevation7. The complex climate condition influences the quality of 
W. cocos. It was reported that the infrared spectra of W. cocos peels from different producing areas (Hubei, Anhui 
and Yunnan provinces) revealed obvious regional differences, and for the large geographical span, the compo-
nent contents in samples from Yunnan were different at a certain extent8. Based on ultra performance liquid 
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chromatography-ultraviolet-mass spectrometry (UPLC-UV-MS) fingerprints, the effect of habitat on the quality 
of peeled and sliced poria was obvious9.

Near-infrared spectroscopy (NIR), as a fast and non-destructive technology, has been widely used to identify 
traditional Chinese medicinal materials10–14. The NIR spectrum reflects the absorption of overtones and combina-
tions of the fundamental mid-IR bands like C-H, O-H, and N-H functional groups. The bandwidth of NIR region 
(between 780 and 2500 nm (12000 to 4000 cm−1)) is wide and absorption bands overlap heavily, which make the 
analysis of NIR spectra extremely difficult with conventional methods15,16. The variable selection is a critical step 
in the analysis of the datasets with thousands of variables in NIR spectroscopy17. In recent years, several variable 
selection methods of NIR have been developed, such as interval partial least-squares (iPLS)18,19, backward interval 
partial least-squares (biPLS)20, moving window partial least-squares regression (MWPLSR)21, genetic algorithm 
(GA)22–24, simulated annealing algorithm (SAA)25, competitive adaptive reweighted sampling (CARS)26–28, Monte 
Carlo uninformative variable elimination (MC-UVE)29–33, subwindow permutation analysis (SPA)34,35 and latent 
projective graph (LPG)36,37.

Previously, we used MC-UVE method to screen the NIR spectrum information of W. cocos38. On this basis, 
in this study, four variable selection methods including CARS, MC-UVE, SPA and LPG were employed and 
compared for NIR variables selection. The common variables were selected from the variable selection results 
of the four methods. Then, the characteristic variables were screened based on the common variables for the 
establishment of Fisher function models in further identification of the origin of W. cocos from Yunnan, China. 
Additionally, the characteristic variables were also interpreted.

Results and Discussion
Stability of NIR. The NIR resulting.spc files were converted to.csv data files by the multivariate statistical 
analysis of SIMCA-P 11.0. The stability of 25 times parallel collections of a sample was considered by Hotelling 
T2. The results showed that the parallel spectrum acquisitions possessed satisfactory stability with coefficient 4.26 
and 7.82 in the 95% and 99% levels in W. cocos, respectively. The results indicated that NIR was a reliable method 
for discriminant analysis.

Principal Component Analysis. In order to remove the redundant information produced by hi 
gh-frequency line noise and retain the useful information in the low-frequency region, we applied the 
spectrum standard deviation (SDD) method to filter the original spectra by TQ 9.239. The wave band 
7501.74 cm−1 – 4088.35 cm−1 (886 wavelength points) was preliminary selected (as shown in Fig. 1). Then we ana-
lyzed W. cocos by principal component analysis (PCA). In Fig. 2, we could find that in the pattern space of PCA, 
BFL and FLP were completely separated. The result indicated the inner chemical compositions of the two parts 
were different. In view of this, we established the discriminant models of BFL and FLP separately.

We analyzed BFL and FLP by PCA, respectively. The results were shown in Supplementary Table S1. According 
to Kaiser Criterion, only factors with eigenvalues greater than or equal to one will be accepted as possible sources 
of variance in the data40. The first five factors that accounted for spectrum cumulative 97.858% of BFL and 
97.203% of FLP were selected for the next analysis.

Abnormal Samples Diagnosis. In the course of spectrum information (X) collection and index (Y) meas-
urement, the data (X or Y) might deviate along with the abnormal fluctuation of instrument. The outlier samples 
could interfere with the discrimination model seriously. Through modular group iterative singular samples diag-
nosis method, the BFL and FLP were analyzed by Matlab R2010a analysis software. In order to establish steady 
discriminant model, the exceptional spectra including the number of samples 43 of BFL, 3, 33 and 35 of FLP were 
removed (see Supplementary Fig. S1).

Figure 1. The original spectra of BFL and FLP. The red lines represent BFL samples, while the other colorized 
lines stand for FLP samples.
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Classification of Training Set and Validation Set. According to K-S method41,42, the samples were 
divided into the training and validation sets of BFL and FLP by the proportion of 2:1, respectively. The training 
and validation sets of BFL contained 40 and 19 samples, and those of FLP had 39 and 18 samples, respectively. 
Each set included the samples of all the five regions. The training set was used for variable selection and modeling, 
and the independent validation set was used for validation of the model.

Variable Selection based on CARS. The preliminary selected dataset 7501.74 cm−1–4088.35 cm−1 (886 
wavelength points) was intended for investigating the ability for CARS to select key variables by eliminating the 
redundant information. One hundred replicate running of CARS was executed and the root mean square error of 
cross validation (RMSECV) values were recorded.

By 10-flod cross validation, the optimal number of PCA was five. The statistics of frequency of each selected 
wave number of spectrum was implemented. The number of Monte Carlo iterations was set to 50. In each itera-
tion, 80% samples from the training sets were randomly chosen to build a PLS-DA model. The optimized num-
ber of variables was confirmed with the lowest RMSECV value. Only a small part of the wavelengths could be 
selected by CARS. According to the lowest RMSECV values, twenty key variables of FLP (RMSECV = 1.6202) 
were screened, and forty significant variables of BFL (RMSECV = 1.6767) were selected. Compared with pre-
liminary selected variables (886 wavelength points), the optimized number of variables by CARS was reduced 
significantly (see Supplementary Fig. S2).

Variable Selection based on MC-UVE. Five hundred replicate running of MC-UVE was executed and 
the RMSECV values were recorded. Ten-fold cross validation and five principal factors of PLS-DA model were 
used in this study to explore its prediction performance. Reliability index (RI), defined as the ratio of the mean 
to the standard deviation of this distribution, was used to assess the reliability of each variable. Based on this reli-
ability, all variables were ranked. Then, these variables were sequentially added to build a PLS-DA model whose 
performance was assessed by cross validation. The RI corresponding to the variable whose addition results in the 
minimum RMSECV value was chosen as the threshold. The variables that were related with a RI lower than the 
threshold value could be removed35.

The analysis result showed the variables with the RI values greater than 2.5107 were selected using ten-fold 
cross validation for BFL, and 95 variables were selected when the minimum ten-fold RMSECV was 1.5601. For 
FLP, 35 variables with the RI values greater than 2.1589 were selected using ten-fold cross validation as the mini-
mum ten-fold RMSECV was 1.5852 (see Supplementary Fig. S3).

Variable Selection based on SPA. The three parameters of SPA were set to N = 1000 (N, the number 
of Monte Carlo Simulation), R = 0.8 (R, the ratio of samples to be selected in each Monte Carlo sampling), 
Q = 10 (Q, the number of variables to be sampled in each Monte Carlo Simulation). 10-flod cross validation 
and five number of PCA were used in this study to explore its prediction performance. The variable importance 
assessed by conditional synergetic score (COSS) value was calculated (COSS = − log10 (P)). RMSECV values were 
recorded, and the corresponding minimum RMSECV value was chosen as the optimized number of variables. 
The more significant a variable was, the higher the score it got. Particularly, the variables with COSS values greater 
than 2 were selected. As the minimum RMSECV value was 1.6235, 90 informative variables of BFL were selected 
for further analysis. For FLP, as the minimum RMSECV value was 1.6428, 30 informative variables were selected 
(see Supplementary Fig. S4).

Variable Selection based on LPG. LPG36 was adopted in wavelength selection for NIR spectral analysis. 
The method calculated an LPG (score plot) by performing PCA on the NIR spectral data matrix (7501.74 cm−1–
4088.35 cm−1), and then detected the non-collinear variables from the LPG. According to the results of PCA in 

Figure 2. Principal component scores of BFL and FLP. The black triangles represent BFL samples, while the red 
squares correspond to FLP samples.
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Supplementary Table S1, the first two principal components were used for LPG. In the end, both BFL and FLP, 
129 variables were selected by LPG (see Supplementary Figs S5 and S6).

Evaluation of the Selected Variables. For further analysis the reliability of CARS, MU-UVE, SPA and 
LPG methods, PLS-DA models of BFL and FLP were established by SIMCA-P 11.0 software. The performance 
of models was assessed by determination coefficient (R2), RMSECV and root mean square error of prediction 
(RMSEP). Generally, a good model should have high value of R2 and low value of RMSECV43. According to 
Galtier discriminant criterion, the ability of classification was assessed by prediction sets, and values of prediction 
and deviation (Ypre and Ydev) were examined. When Ypre > 0.5 and Ydev < 0.5, the prediction samples belonged to 
a certain kind of training set; Ypre < 0.5 and Ydev < 0.5, the prediction samples did not belong to a certain kind 
of training set; Ydev > 0.5 and 0.45 < Ydev < 0.5, the prediction samples were suspicious, because they were very 
close to the threshold 0.5. The 0.45 and 0.55 limits have been chosen because they express 10% of error in the 
results44,45.

Tables 1 and 2 summarized the prediction results of the PLS-DA models performed on the extraction of NIR 
spectra by the different variables selection methods. Compared with the preliminary variables (7501.74 cm−1–
4088.35 cm−1, 886 variables), through different variable selection methods (CARS, MC-UVE, SPA and LPG), 
the number of the selected variables were decreased. Simultaneously, the parameters for assessing the PLS-DA 
models were improved. The values of accuracy and R2 increased, RMSECV and RMSEP reduced.

For BFL, the prediction accuracy values of the PLS-DA models performed on the extraction of NIR spectra by 
the four methods all reached 100%. The sequence of R2 was CARS > SPA > LPG > MC-UVE, while they were in 
the exact opposite sequences for RMSECV and RMSEP as CARS < SPA < LPG < MC-UVE. All the four methods 
showed satisfactory prediction performance for BFL.

For FLP, the highest prediction accuracy values reached 100% in the PLS-DA models performed on the extrac-
tion of NIR spectra by MC-UVE and LPG methods, while 94.44% for CARS and SPA methods. The sequence 
of R2 was LPG > MC-UVE > CARS > SPA. The values of RMSECV and RMSEP were in the opposite sequence 
LPG < MC-UVE < CARS < SPA. The results of MC-UVE and LPG were better than CARS and SPA for BFL.

The prediction results of the models were significant improved when conducting variable selection, and also 
the models were simplified by using only a small part of the variables. The results experimentally proved the 
necessity to perform variable selection before building a calibration model.

Common Variables Analysis. Based on the variable selection results of the four methods, the variables 
which were selected more than twice were chosen as the common variables for the further analysis. Totally, there 
were 56 common variables of BFL and 21 common variables of FLP were chosen.

Primary ID

886 spectral variables 40 spectral variables by CARS
95 spectral variables by 
MC-UVE 90 spectral variables by SPA 129 spectral variables by LPG

AC CC Ypre Ydev AC CC Ypre Ydev AC CC Ypre Ydev AC CC Ypre Ydev AC CC Ypre Ydev

BFL-01 1 1 0.836 0.116 1 1 1.001 0.001 1 1 0.654 0.245 1 1 1.023 0.016 1 1 0.805 0.138

BFL-05 1 1 1.629 0.445 1 1 0.774 0.160 1 1 0.644 0.252 1 1 1.23 0.163 1 1 0.548 0.320

BFL-20 1 1 1.536 0.379 1 1 0.834 0.117 1 1 0.541 0.324 1 1 0.805 0.138 1 1 0.749 0.178

BFL-34 1 1 1.618 0.437 1 1 0.719 0.199 1 1 0.621 0.268 1 1 1.205 0.145 1 1 0.762 0.168

BFL-40 1 1 0.835 0.117 1 1 1.168 0.119 1 1 0.711 0.204 1 1 1.577 0.408 1 1 0.822 0.126

BFL-48 1 SU 1.782 0.553 1 1 1.119 0.084 1 1 0.685 0.223 1 1 1.400 0.283 1 1 0.725 0.194

BFL-33 2 2 2.004 0.003 2 2 2.084 0.059 2 2 1.756 0.173 2 2 1.849 0.107 2 2 1.758 0.171

BFL-42 2 SU 2.635 0.450 2 2 1.554 0.315 2 2 1.539 0.326 2 2 1.87 0.092 2 2 1.682 0.225

BFL-49 2 2 1.928 0.051 2 2 1.593 0.288 2 2 2.192 0.136 2 2 1.963 0.026 2 2 1.920 0.057

BFL-54 2 2 1.845 0.110 2 2 1.967 0.023 2 2 1.963 0.026 2 2 1.72 0.198 2 2 1.821 0.126

BFL-55 2 2 1.751 0.176 2 2 1.942 0.041 2 2 1.882 0.083 2 2 2.034 0.024 2 2 1.716 0.201

BFL-12 3 3 2.802 0.140 3 3 3.019 0.013 3 3 2.562 0.310 3 3 2.88 0.085 3 3 2.575 0.300

BFL-15 4 4 3.844 0.110 4 4 4.593 0.419 4 4 3.744 0.181 4 4 3.876 0.088 4 4 3.582 0.296

BFL-37 4 4 3.948 0.037 4 4 3.712 0.204 4 4 3.720 0.198 4 4 3.9 0.071 4 4 3.807 0.137

BFL-47 4 4 3.893 0.076 4 4 3.873 0.090 4 4 3.861 0.098 4 4 3.657 0.243 4 4 3.817 0.129

BFL-04 5 SU 5.653 0.462 5 5 4.901 0.070 5 5 4.782 0.154 5 5 4.565 0.308 5 5 4.576 0.300

BFL-13 5 5 4.813 0.132 5 5 5.126 0.089 5 5 5.117 0.083 5 5 4.685 0.223 5 5 4.790 0.149

BFL-16 5 5 4.904 0.068 5 5 5.047 0.033 5 5 4.751 0.176 5 5 4.818 0.129 5 5 5.013 0.009

BFL-25 5 5 4.965 0.025 5 5 4.829 0.121 5 5 4.995 0.004 5 5 4.762 0.168 5 5 4.829 0.121

Accuracy (%) 84.21 100 100 100 100

R2 0.940 0.977 0.966 0.972 0.970

RMSECV 0.290 0.181 0.219 0.197 0.208

RMSEP 0.382 0.239 0.289 0.260 0.274

Table 1. Prediction results of PLS-DA models of BFL built by different variable selection methods. Note: AC 
(Actual class), CC (Calculated class), Ypre (Predicted value), Ydev (Deviation), SU (Suspicious).
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PLS-DA was performed based on the results of PCA of 56 common variables of BFL. From Fig. 3a, we found 
that the first two principal components cumulatively accounted for 64.9% of the variation. It was visible that BFL 
were separated into five groups. The loading scatter plot (Fig. 3b) displayed the contribution of each variable 

Primary ID

886 spectral variables 20 spectral variables by CARS
35 spectral variables by 
MC-UVE 30 spectral variables by SPA 129 spectral variables by LPG

AC CC Ypre Ydev AC CC Ypre Ydev AC CC Ypre Ydev AC CC Ypre Ydev AC CC Ypre Ydev

FLP-01 1 1 0.940 0.042 1 1 0.551 0.317 1 1 1.078 0.055 1 1 0.816 0.130 1 1 0.852 0.105

FLP-05 1 1 1.622 0.440 1 1 0.488 0.362 1 1 0.598 0.285 1 1 0.652 0.246 1 1 0.434 0.400

FLP-32 1 1 1.015 0.011 1 1 1.114 0.081 1 1 0.593 0.288 1 1 0.627 0.264 1 1 1.057 0.040

FLP-34 1 1 1.608 0.430 1 UN 0.380 0.438 1 1 1.290 0.205 1 1 1.172 0.122 1 1 0.974 0.018

FLP-40 1 1 0.799 0.142 1 1 1.133 0.094 1 1 0.609 0.277 1 1 1.013 0.009 1 1 0.906 0.066

FLP-50 1 1 0.810 0.134 1 1 1.138 0.098 1 1 0.866 0.095 1 1 1.436 0.308 1 1 0.870 0.092

FLP-59 1 1 0.617 0.271 1 1 0.971 0.021 1 1 0.579 0.298 1 1 1.321 0.227 1 1 0.647 0.249

FLP-30 2 2 1.895 0.074 2 2 1.474 0.372 2 2 2.465 0.329 2 2 1.802 0.140 2 2 1.737 0.186

FLP-46 2 2 2.681 0.482 2 2 1.502 0.352 2 2 1.701 0.212 2 2 2.47 0.332 2 2 1.604 0.280

FLP-49 2 2 2.587 0.415 2 2 2.053 0.037 2 2 1.509 0.347 2 2 1.866 0.095 2 2 1.521 0.339

FLP-54 2 2 1.855 0.102 2 2 1.566 0.307 2 2 1.663 0.238 2 2 1.657 0.243 2 2 1.962 0.027

FLP-08 3 3 2.989 0.008 3 3 3.368 0.260 3 3 3.039 0.028 3 3 3.469 0.332 3 3 2.899 0.072

FLP-26 4 4 3.616 0.271 4 4 3.900 0.071 4 4 4.463 0.327 4 4 3.779 0.156 4 4 3.828 0.121

FLP-45 4 4 4.412 0.291 4 4 4.350 0.247 4 4 3.723 0.196 4 SU 3.275 0.513 4 4 4.487 0.344

FLP-04 5 5 5.407 0.288 5 5 5.474 0.335 5 5 4.683 0.224 5 5 5.321 0.227 5 5 5.482 0.341

FLP-19 5 5 5.557 0.394 5 5 4.774 0.160 5 5 5.025 0.018 5 5 5.477 0.337 5 5 4.666 0.236

FLP-23 5 SU 5.727 0.514 5 5 4.785 0.152 5 5 5.335 0.237 5 5 4.589 0.291 5 5 4.760 0.170

FLP-25 5 5 4.777 0.158 5 5 4.599 0.284 5 5 4.789 0.149 5 5 4.720 0.198 5 5 4.809 0.135

Accuracy (%) 94.44 94.44 100 94.44 100

R2 0.932 0.950 0.958 0.949 0.964

RMSECV 0.311 0.268 0.245 0.269 0.225

RMSEP 0.410 0.353 0.323 0.354 0.296

Table 2. Prediction results of PLS-DA models of FLP built by different variable selection methods. Note: 
AC (Actual Class), CC (Calculated Class), Ypre (Predicted value), Ydev (Deviation), UN (uncredited), SU 
(suspicious).

Figure 3. Chemometric analysis of common variables of BFL. (a) PLS-DA scores scatter plot. (b) PLS-DA 
loading scatter plot. (c) PLS-DA loadings biplot. (d) Fisher discriminant analysis scatter plot.
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to the discrimination. The further the variable distance from the zero of the X-axis and the Y-axis, the more 
the variable contributes to the classification46. Through a visual analysis, the variables such as 4092.21, 4096.06, 
4308.19 4439.33, 4597.46, 5079.58 and 5866.40 cm−1 were identified preliminarily. The biplot provided a better 
understanding about the relationships between samples and variables in one plot (Fig. 3c). The biplot displayed 
that the variables 5866.40 cm−1 was positively correlated with the samples in class 1 in the (+, −) quadrant. The 
variable 4597.46 cm−1 was positively correlated with the samples in class 2, 3 and 4 in the (−, +) quadrant, and 
negatively correlated with those in class 1 in the (+, −) quadrant. The variables 4092.21, 4096.06, 4439.33 and 
5079.58 cm−1 were positively correlated with the samples in class 1, 2 and 3 in the (−, −) quadrant, and negatively 
correlated with those in class 5 in the (+, +) quadrant. The variable 4308.19 cm−1 was positively correlated with 
the samples in class 5 in the (+, +) quadrant. Those variables were the most important markers to separate BFL 
samples into the five classes.

Simultaneously, PLS-DA was conducted for 21 common variables of FLP. In Fig. 4a, the first two principal 
components cumulatively accounted for 68.0% of the variation. The first principal component explained 38.8% of 
the total variance and the second principal component explained 29.2% of that. FLP samples were distinctly sepa-
rated into five groups. Visually analyzed the loading scatter plot (Fig. 4b), we found the variables such as 4508.75, 
4952.30, 5230.00, 5233.86, 5303.28, 5634.98, 5685.12, 5874.11 and 5928.11 cm−1 made a significant contribution 
to the discrimination. The biplot (Fig. 4c) showed that the variables 5230.00 and 5233.86 cm−1 were positively cor-
related with the samples in class 1 in the (+, −) quadrant. The variables 4508.75 and 5303.28 cm−1 were positively 
correlated with the samples in class 3 and 4 in the (−, +) quadrant, and negatively correlated with those in class 
1 in the (+, −) quadrant. The variable 5634.98 and 5685.12 cm−1 were positively correlated with the samples in 
class 2 in the (−, −) quadrant, and negatively correlated with those in class 1 and 5 in the (+, +) quadrant. The 
variables 4952.30, 5874.11 and 5928.11 cm−1 were positively correlated with the samples in class 1 and 5 in the 
(+, +) quadrant. Those variables were the most important markers to separate FLP samples into the five classes.

Establish of Discriminant Analysis Function. To identify and analyze the unknown samples, the Fisher 
discriminant function model was established. Through stepwise regression method, the common variables which 
made a greater contribution to classification were further screened. As a result, thirteen variables including 
4092.21, 4096.06, 4165.49, 4308.19, 4439.33, 4485.61, 4501.04, 4566.61, 4570.47, 4597.46, 4612.89, 5079.58 and 
5866.40 cm−1 were selected for BFL. Seven of them were identified in the above discussion of PLS-DA. Ten varia-
bles including 4123.06, 4508.75, 4952.30, 5230.00, 5233.86, 5303.28, 5634.98, 5685.12, 5874.11 and 5928.11 cm−1 
were selected for FLP. Nine of them were recognized in the discussion of PLS-DA. The results of stepwise regres-
sion were in accordance with PLS-DA, which proved that those variables could be seen as the characteristic 
identification marks of W. cocos.

In the process of Fisher discriminant analysis, the thirteen variables of BFL and ten variables of FLP were used 
as discriminant variables respectively, and the different BFL and FLP samples were performed as the subjects of 
the study to establish Fisher discriminant functions. The function of BFL was shown as follow and the coefficients 
were in Table 3:

= − + − − + + + −
+ − − + + +

Y A A X A X A X A X A X A X A X
A X A X A X A X A X A X

0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

8 8 9 9 10 10 11 11 12 12 13 13

where Xi was the corresponding variables, Yi was the corresponding class.

Figure 4. Chemometric analysis of common variables of FLP. (a) PLS-DA scores scatter plot. (b) PLS-DA 
loading scatter plot. (c) PLS-DA loadings biplot. (d) Fisher discriminant analysis scatter plot.
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The function of FLP was shown as follow and the coefficients were in Table 4:

= − − + + + − + − + + −Y B B T B T B T B T B T B T B T B T B T B T0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10

where Ti was the corresponding variables, Yi was the corresponding class.
The Fisher discriminant analysis results were shown in Figs 3d and 4d. The effect of discrimination model was 

evaluated by cross validation. As seen in the two figures, the ungrouped prediction samples located in different 
classes. The class of the ungrouped samples could be identified according to the distance from each sample to the 
centroids of all classes. The validation results were shown in Tables 5 and 6. The original grouped samples 97.50% 
for BFL and 97.43% for FLP were correctly classified. In the cross validation, the accuracy rates were 94.74% for 
BFL and 94.44% for FLP. In our previous study, the Fisher discriminant analysis functions built based on the 
wavelength selected only by the MC-UVE method, the original grouped samples 92.50% for BFL and 92.86% for 
FLP were correctly classified, and the accuracy rates were 80.95% for BFL and 83.33% for FLP in the cross vali-
dation38. The correct classification rates were significantly improved both in the original grouped samples and in 
the cross validation sets in this study. The validation results indicated that the Fisher discriminant function model 
established based on the characteristic variables selected simultaneously by the four methods CARS, MC-UVE, 
SPA and LPG could be seen as a reliable and effective method to discriminate BFL and FLP.

Interpretation of the Characteristic Variables. In order to further understand the significance of these 
characteristic variables, we interpreted the spectra-structure of them. The wavelengths at 4092.21, 4,096.06, 
4123.06, 4165.49, 4566.61 and 4570.47 cm−1 are related to the vibration of C-H aryl in benzene band. The absorp-
tion band at 4308.19 cm−1 is the combination of C-H stretch and C-H2 deformation in polysaccharides. The 
wavelength at 4439.33 cm−1 is the combination of O-H and C-O stretch in glucose. Band at 4485.61 is assigned as 
second overtones of the symmetric and asymmetric bending vibrations of the CH2 of the uncoupled vinyl group. 
Absorbance peaks at 4501.04 and 4508.75 cm−1 are the combination of asymmetric stretch of NH and NH2 rock-
ing in urea (NH2-C=O-NH2). Absorbance peak at 4597.46 cm−1 is due to CONH2 as combination of amide B and 
amide II modes. The wavelength at 4612.89 cm−1 is assigned to CONH2 specifically due to the α-helix peptide 
structure. The absorption band at 5079.58 cm−1 is the combination of N-H stretching vibration and N-H bending 
in aromatic amine. Absorbance peak at 5866.40 cm−1 corresponds to C-H first overtone stretch vibration mode 

Y1 Y2 Y3 Y4 Y5

A0 3698.54 4029.41 3761.75 3749.1 3788.01

A1 8.31E+07 8.18E+07 8.80E+07 7.77E+07 7.97E+07

A2 7.73E+07 7.58E+07 8.20E+07 7.10E+07 7.39E+07

A3 5.84E+07 6.18E+07 5.92E+07 6.04E+07 6.03E+07

A4 6.01E+06 3.62E+06 4.34E+06 5.36E+06 5.96E+06

A5 4.03E+06 5.67E+06 5.35E+06 5.74E+06 4.64E+06

A6 1.69E+08 1.77E+08 1.71E+08 1.71E+08 1.73E+08

A7 1.51E+08 1.59E+08 1.55E+08 1.53E+08 1.55E+08

A8 7.42 E+08 7.79E+08 7.84E+08 7.48E+08 7.56E+08

A9 4.35E+08 4.65E+08 4.81E+08 4.52E+08 4.54E+08

A10 5.83E+08 5.79E+08 5.64E+08 5.47E+08 5.73E+08

A11 4.48E+08 4.40E+08 4.33E+08 4.20E+08 4.44E+08

A12 6.64E+06 8.38E+06 8.07E+06 7.87E+06 6.05E+06

A13 2.73E+07 2.27E+07 2.36E+07 2.37E+07 2.77E+07

Table 3. The coefficients of Fisher functions of BFL.

Y1 Y2 Y3 Y4 Y5

B0 1075.23 1133.72 1171.49 1174.26 1126.33

B1 7.48E+06 7.47E+06 7.39E+06 7.23E+06 7.43E+06

B2 1.07E+06 6.71E+05 4.47E+05 3.29E+07 7.55E+05

B3 9.58E+06 9.37E+06 9.41E+06 9.30E+06 9.48E+06

B4 7.00E+06 8.03E+06 8.10E+06 8.57E+06 7.48E+06

B5 5.97E+06 7.05E+06 7.28E+06 7.98E+06 6.57E+06

B6 5.41E+06 5.90E+06 5.86E+06 5.86E+06 5.64E+06

B7 9.71E+07 9.82E+07 1.00E+08 9.89E+07 9.93E+07

B8 4.87E+07 4.91E+07 4.91E+07 4.98E+07 4.95E+07

B9 1.65E+07 1.68E+07 1.69E+07 1.63E+07 1.66E+07

B10 1.42E+07 1.53E+07 1.55E+07 1.47E+07 1.44E+07

Table 4. The coefficients of Fisher functions of FLP.
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in CH3. The absorption band at 4952.30 cm−1 is due to a combination of the OH stretch and CH bending. The 
wavelengths at 5230.00, 5233.86 and 5303.28 cm−1 are the hydroxyl bands. The peaks at 5634.98 and 5685.12 cm−1 
are related to C-H in methylene. The band at 5874.11 cm−1 is assigned to C-H in methyl, while at 5928.11 cm−1 
is C-H in methyl with OH associated47. According to the absorption peaks, we could speculate that the chemical 
compositions of BFL and FLP were different, which provided theoretical basis in the spectrum level for the tradi-
tional usage of cutis (FLP) and the inner part (BFL) of the sclerotia of W. cocos separately.

Conclusions
In this work, we first systematically collected the near-infrared spectrum of cutis (FLP) and the inner part (BFL) 
of the sclerotia of W. cocos from different regions in Yunnan, China. Interestingly, we found that there were obvi-
ous differences between FLP and BFL in the pattern space of PCA. Based on this, we established discriminant 
models for FLP and BFL separately. Through four variable selection methods CARS, MC-UVE, SPA and LPG, 
the common variables were selected. Furthermore, the characteristic variables were screened to build Fisher 
discriminant function models, and the validation results showed the models were reliable and effective. The var-
iable selection method used in NIR spectrum provided a new thought for the origin identification of traditional 
Chinese medicines. The spectrum difference between the cutis (FLP) and the inner part (BFL) of the sclerotia 
of W. cocos provided theoretical basis in the spectrum level for the traditional usage of FLP and BFL separately.

Methods
Materials. Sixty W. cocos samples from five different areas of Yunnan Province in China were collected during 
July to August in 2015: the central Yunnan (19), western Yunnan (12), northwestern Yunnan (5), southwestern 

Validation Statistics Class 1 2 3 4 5 Total

Originala Count

1 13 0 0 0 0 13

2 0 7 0 0 0 7

3 0 0 4 0 0 4

4 0 0 0 6 0 6

5 1 0 0 0 9 10

Accuracy 
rate % 100 100 100 100 88.9 40

Cross validationb Count

1 6 0 0 0 0 6

2 0 5 0 0 0 5

3 0 0 1 0 0 1

4 0 0 1 2 0 3

5 0 0 0 0 4 4

Accuracy 
rate % 100 100 100 66.7 100 19

Table 5. The validation results of the Fisher discriminant analysis of BFL. Note: a97.50% % of original grouped 
cases correctly classified; bCross validation is done only for those cases in the analysis. In cross validation, each 
case is classified by the functions derived from all cases other than that case. 94.74% of the cross validation 
grouped cases correctly classified.

Statistics Class 1 2 3 4 5 Total

Originala Count

1 13 0 0 0 0 13

2 0 8 0 0 0 8

3 0 0 3 0 0 3

4 0 0 0 7 0 7

5 1 0 0 0 7 8

Accuracy 
rate % 100 100 100 100 87.5 39

Cross validationb Count

1 6 0 0 0 0 6

2 0 4 0 0 0 4

3 0 0 2 0 0 2

4 0 0 0 2 0 2

5 1 0 0 0 3 4

Accuracy 
rate % 100 100 100 100 75 18

Table 6. The validation results of the Fisher discriminant analysis of FLP. Note: a97.43% of original grouped 
cases correctly classified; bCross validation is done only for those cases in the analysis. In cross validation, each 
case is classified by the functions derived from all cases other than that case. 94.44% of the cross validation 
grouped cases correctly classified.
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Yunnan (10) and southeastern Yunnan (14). They were identified and authenticated by Professor H. Jin, Yunnan 
Academy of Agricultural Sciences. The specimens were preserved in the Institute of Medicinal Plants, Yunnan 
Academy of Agricultural Sciences. The samples were separated into FLP and BFL. After drying at room tempera-
ture, samples were ground to fine powder and stored in the zip lock bags for further analysis. The detailed sample 
information is listed in Supplementary Table S2.

Instruments. Antaris II Fourier Transform Near Infrared Spectroscopy (Thermo Fisher Scientific INC., 
USA) was attached with diffuse reflection module. The spectrum collecting software ResultTM 2.1 and the analy-
sis software TQ 9.2 included in the instrument were employed. Traditional Chinese medicine grinder DFT-100 
(Zhejiang wenling Linda machinery co., LTD) was applied. Stainless steel sieve tray 80 mesh (Tai’an of Chinese 
and western, Beijing) was used. The multivariate data analysis softwares were SIMCA-P 11.0 (Umetrics, Umea, 
Sweden), SPSS 19.0 (SPSS Inc., Chicago, USA) and MATLAB R2010a, and the code was derived from http://www.
mathworks.cn/.

Spectra Collection. The powder (20.0 g) was weighed before it was sufficiently mixed, then transferred to the 
sample cup of NIR and compressed. The parameters of collection were scanning (64 times), resolution (4 cm−1), 
scanning range (10000 cm−1–4000 cm−1) and parallel collection (3 times). The NIR spectra of W. cocos were pre-
processed with Norris, mean centering, standardization, and second derivative successively by software TQ 9.2. 
Through optimizing, the range 7501.74–4088.35 cm−1 was selected according to the spectrum standard deviation. 
The higher the spectra standard deviation was, the greater a contribution made to classification.

References
 1. Chen, J. B., Sun, S. Q., Ma, F. & Zhou, Q. Vibrational microspectroscopic identification of powdered traditional medicines: Chemical 

micromorphology of Poria observed by infrared and Raman microspectroscopy. Spectrochim. Acta A 128, 629–637 (2014).
 2. Wang, W. H. et al. Comparative study of lanostane-type triterpene acids in different parts of Poria cocos (Schw.) Wolf by UHPLC-

Fourier transform MS and UHPLC-triple quadruple MS. J. Pharm. Biomed. Anal. 102, 203–214 (2015).
 3. Wang, Y. Z. et al. Mycology, cultivation, traditional uses, phytochemistry and pharmacology of Wolfiporia cocos (Schwein.) Ryvarden 

et Gilb: A review. J. Ethnopharmacol. 147, 265–276 (2013).
 4. Zan, J. F. et al. Comparative study on the quality of Poria cocos from twenty different origin places. Chin. J. Infor. Tradit. Chin. Med. 

17, 34–36 (2010).
 5. Song, X., Xie, Z. M., Huang, D., Zhong, C. & Zhou, H. Y. Compariason of polysaccharide content in different medicinal part of Poria 

cocos from different origin. J. Shandong Univ. Tradit. Chin. Med. 39, 186–189 (2015).
 6. Zhang, L. et al. Metabolic profiling of Chinese tobacco leaf of different geographical origins by GC-MS. J. Agric. Food Chem. 61, 

2597–2605 (2013).
 7. Cheng, J. G., Wang, X. F., Fan, L. Z., Yang, X. P. & Yang, P. W. Variations of Yunnan climatic zones in recent 50 years. Prog. Geog. 28, 

18–24 (2009).
 8. Ma, F. et al. Analysis and identification of Poria cocos peels harvested from different producing areas by FTIR and 2D-IR correlation 

spectroscopy. Spectrosc. Spect. Anal. 34, 376–380 (2014).
 9. Li, K., Zhang, L. Q. & Nie, J. Study on UPLC-UV-MS fingerprints of different medicinal parts of poria cocos. J. Chin. Med. Mater. 36, 

382–387 (2013).
 10. Kudo, M., Watt, R. A. & Moffat, A. C. Rapid identification of Digitalis purpurea using near-infrared reflectance spectroscopy. J. 

Pharm. Pharmacol. 52, 1271–1277 (2000).
 11. Lu, J. et al. Application of two-dimensional near-infrared correlation spectroscopy to the discrimination of Chinese herbal medicine 

of different geographic regions. Spectrochim. Acta A 69, 580–586 (2008).
 12. Duan, X. J., Zhang, D. L., Nie, L. & Zang, H. C. Rapid discrimination of geographical origin and evaluation of antioxidant activity of 

Salvia miltiorrhiza var. alba by Fourier transform near infrared spectroscopy. Spectrochim. Acta Part A 122, 751–757 (2014).
 13. Zhao, Y. L. et al. Discrimination of wild Paris based on near infrared spectroscopy and high performance liquid chromatography 

combined with multivariate analysis. Plos One 9, e89100 (2014).
 14. Wang, P. & Yu, Z. G. Species authentication and geographical origin discrimination of herbal medicines by near infrared 

spectroscopy: A review. J. Pharmaceut. Anal. 5, 277–284 (2015).
 15. Wu, X. H., Wu, B., Sun, J. & Li, M. Rapid discrimination of apple varieties via near-infrared reflectance spectroscopy and fast allied 

fuzzy C-means clustering. Int. J. Food Eng. 11, 23–30 (2015).
 16. Meng, Y., Wang, S. S., Cai, R., Jiang, B. H. & Zhao, W. J. Discrimination and content analysis of fritillaria using near-infrared 

spectroscopy. J. Anal. Methods Chem. 2015, 101–124 (2015).
 17. Yun, Y. H. et al. A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate 

calibration. Anal. Chim. Acta 807, 36–43 (2014).
 18. Nørgaard, L. et al. Interval partial least-squares regression (iPLS): A comparative chemometric study with an example from near-

infrared spectroscopy. Appl. Spectrosc. 54, 413–419 (2000).
 19. Rahman, A., Kondo, N., Ogawa, Y., Suzuki, T. & Kanamori, K. Determination of K value for fish flesh with ultraviolet–visible 

spectroscopy and interval partial least squares (iPLS) regression method. Biosyst. Eng. 141, 12–18 (2016).
 20. Leardi, R. & Nørgaard, L. Sequential application of backward interval partial least squares and genetic algorithms for the selection 

of relevant spectral regions. J. Chemometr. 18, 486–497 (2004).
 21. Jiang, J. H., Berry, R. J., Siesler, H. W. & Ozaki, Y. Wavelength interval selection in multicomponent spectral analysis by moving 

window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data. Anal. Chem. 74, 
3555–3565 (2002).

 22. Leardi, R. Application of genetic algorithm-PLS for feature selection in spectral data sets. J. Chemometr. 14, 643–655 (2000).
 23. Shinzawa, H., Li, B., Nakagawa, T., Maruo, K. & Ozaki, Y. Multi-objective genetic algorithm-based sample selection for partial least 

squares model building with applications to near-infrared spectroscopic data. Appl. Spectrosc. 60, 631–640 (2006).
 24. Koljonen, J., Nordling, T. E. M. & Alander, J. T. A review of genetic algorithms in near infrared spectroscopy and chemometrics: past 

and future. J. Near Infrared Spectrosc. 16, 189–197 (2008).
 25. Brusco, M. A comparison of simulated annealing algorithms for variable selection in principal component analysis and discriminant 

analysis. J. Comput. Stat. Data Anal. 77, 38–53 (2014).
 26. Li, H. D., Liang, Y. Z., Xu, Q. S. & Cao, D. S. Key wavelengths screening using competitive adaptive reweighted sampling method for 

multivariate calibration. Anal. Chim. Acta 648, 77–84 (2009).
 27. Zheng, K. Y. et al. Stability competitive adaptive reweighted sampling (SCARS) and its applications to multivariate calibration of NIR 

spectra. Chemometr. Intell. Lab. Syst. 112, 48–54 (2012).
 28. Fan, W. et al. Application of competitive adaptive reweighted sampling method to determine effective wavelengths for prediction of 

total acid of vinegar. Food Anal. Method 5, 585–590 (2012).

http://www.mathworks.cn/
http://www.mathworks.cn/


www.nature.com/scientificreports/

1 0Scientific RepoRTS |  (2018) 8:89  | DOI:10.1038/s41598-017-18458-9

 29. Cai, W. S., Li, Y. K. & Shao, X. G. A variable selection method based on uninformative variable elimination for multivariate 
calibration of near-infrared spectra. Chemometr. Intell. Lab. Syst. 90, 188–194 (2008).

 30. Han, Q. J., Wu, H. L., Cai, C. B., Xu, L. & Yu, R. Q. An ensemble of Monte Carlo uninformative variable elimination for wavelength 
selection. Anal. Chim. Acta 612, 121–125 (2008).

 31. Zhang, B. H. et al. Hyperspectral imaging combined with multivariate analysis and band math for detection of common defects on 
peaches (Prunus persica). Comput. Electron. Agr. 114, 14–24 (2015).

 32. Li, J. B. et al. Variable selection in visible and near-infrared spectral analysis for noninvasive determination of soluble solids content 
of ‘Ya’pear. Food Anal. Methods 7, 1891–1902 (2014).

 33. Li, J. B., Zhao, C. J., Huang, W. Q., Zhang, C. & Peng, Y. K. A combination algorithm for variable selection to determine soluble solid 
content and firmness of pears. Anal. Methods 6, 2170–2180 (2014).

 34. Wu, T. et al. Application of metabolomics in traditional Chinese medicine differentiation of deficiency and excess syndromes in 
patients with diabetes mellitus. Evid-Based Compl. Alt. 2012, 968083–968093 (2012).

 35. Li, H. D., Liang, Y. Z., Xu, Q. S. & Cao, D. S. Model-population analysis and its applications in chemical and biological modeling. 
Trends Anal. Chem. 38, 154–162 (2012).

 36. Shao, X. G., Du, G. R., Jing, M. & Cai, W. S. Application of latent projective graph in variable selection for near infrared spectral 
analysis. Chemometr. Intell. Lab. Syst. 114, 44–49 (2012).

 37. Liang, Y. Z. & Kvalheim, O. M. Resolution of two-way data: theoretical background and practical problem-solving Part 1: theoretical 
background and methodology. Fresen. J. Anal. Chem. 370, 694–704 (2001).

 38. Zhao, Y. L., Zhang, J. & Wang, Y. Z. Application of MC-UVE wavelength selection method in the identification of different producing 
areas of Wolfiporia cocos based on NIR spectroscopy. Mycosystema 36, 112–125 (2017).

 39. Zhao, Y. L. et al. Study on rapid identification of medicinal plants of Paris Ployphylla from different origin areas by NIRspectroscopy. 
Spectrosc. Spect. Anal. 34, 1831–1835 (2014).

 40. Kaiser, H. F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20, 141–151 (1960).
 41. Swiderski, B., Osowski, S., Kruk, M. & Kurek, J. Texture characterization based on the Kolmogorov–Smirnov distance. Expert Syst. 

Appl. 42, 503–509 (2015).
 42. Mora-López, L. & Mora, J. An adaptive algorithm for clustering cumulative probability distribution functions using the 

Kolmogorov–Smirnov two-sample test. Expert Syst. Appl. 42, 4016–4021 (2015).
 43. Zhong, J. F. & Qin, X. L. Rapid quantitative analysis of corn starch adulteration in konjac glucomannan by chemometrics-assisted 

FT-NIR spectroscopy. Food Anal. Methods 9, 61–67 (2016).
 44. Galtier, O. et al. Geographic origins and compositions of virgin olive oils determinated by chemometric analysis of NIR spectra. 

Anal. Chim. Acta 595, 136–144 (2007).
 45. Galtier, O. et al. Lipid compositions and french registered designations of origins of virgin olive oils predicted by chemometric 

analysis of mid-infrared spectra. Appl. Spectrosc. 62, 583–590 (2008).
 46. Yao, S. et al. Discriminatory components retracing strategy for monitoring the preparation procedure of Chinese patent medicines 

by fingerprint and chemometric analysis. PLoS ONE 10, e0121366 (2015).
 47. Workman, J. & Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy 240–262 (CRC, 2007).

Acknowledgements
This work was supported by the National Natural Science Foundation of China (31460538 and 81660638).

Author Contributions
T.J. Yuan and Y.Z. Wang planned the research and wrote the manuscript. Y.L. Zhao and J. Zhang performed all 
the experiments and analyses.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-18458-9.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-18458-9
http://creativecommons.org/licenses/by/4.0/

	Application of variable selection in the origin discrimination of Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb. based on ne ...
	Results and Discussion
	Stability of NIR. 
	Principal Component Analysis. 
	Abnormal Samples Diagnosis. 
	Classification of Training Set and Validation Set. 
	Variable Selection based on CARS. 
	Variable Selection based on MC-UVE. 
	Variable Selection based on SPA. 
	Variable Selection based on LPG. 
	Evaluation of the Selected Variables. 
	Common Variables Analysis. 
	Establish of Discriminant Analysis Function. 
	Interpretation of the Characteristic Variables. 

	Conclusions
	Methods
	Materials. 
	Instruments. 
	Spectra Collection. 

	Acknowledgements
	Figure 1 The original spectra of BFL and FLP.
	Figure 2 Principal component scores of BFL and FLP.
	Figure 3 Chemometric analysis of common variables of BFL.
	Figure 4 Chemometric analysis of common variables of FLP.
	Table 1 Prediction results of PLS-DA models of BFL built by different variable selection methods.
	Table 2 Prediction results of PLS-DA models of FLP built by different variable selection methods.
	Table 3 The coefficients of Fisher functions of BFL.
	Table 4 The coefficients of Fisher functions of FLP.
	Table 5 The validation results of the Fisher discriminant analysis of BFL.
	Table 6 The validation results of the Fisher discriminant analysis of FLP.




