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Ferromagnetic Phase in 
Nonequilibrium Quantum Dots
WenJie Hou1, YuanDong Wang1, JianHua Wei1 & YiJing Yan2

By nonperturbatively solving the nonequilibrium Anderson two-impurity model with the hierarchical 
equations of motion approach, we report a robust ferromagnetic (FM) phase in series-coupled double 
quantum dots, which can suppress the antiferromagnetic (AFM) phase and dominate the phase diagram 
at finite bias and detuning energy in the strongly correlated limit. The FM exchange interaction origins 
from the passive parallel spin arrangement caused by the Pauli exclusion principle during the electrons 
transport. At very low temperature, the Kondo screening of the magnetic moment in the FM phase 
induces some nonequilibrium Kondo effects in magnetic susceptibility, spectral functions and current. In 
the weakly correlated limit, the AFM phase is found still stable, therefore, a magnetic-field-free internal 
control of spin states can be expected through the continuous FM–AFM phase transition.

The ferromagnetism intrinsically origins from the spin-independent Coulomb interaction and the Pauli exclusion 
principle (PEP), as initially proposed by Heisenberg1. The Hubbard model2, which includes both two elements 
with on-site electron-electron (e − e) interaction U, is regarded as the minimal model for ferromagnetic (FM) 
states. Unfortunately, it has not been well addressed whether the Hubbard model has a general FM phase, except 
under some special conditions3–6. The Hartree-Fock approximation once predicted an itinerant Stoner-like FM 
phase7, but we now know that the mean-field theory deduces incorrect results and the FM region has been overes-
timated3. Besides the Hubbard model, the Anderson (multi)-impurity model8 may act as another minimal model 
for magnetic phase in a bottom-up fashion, with the advantage of implementation simplicity in quantum dots 
(QDs). For example, the antiferromagnetic (AFM) correlation JAF due to nearest-neighbour electron hopping 
or tunneling t (JAF ~ 4t2) has been well understood experimentally in series-coupled double QDs (SDQDs) [see 
Fig. 1(a)]9. Theoretically, JAF is responsible for the AFM ground state at half filling in the Hubbard model, while it 
induces the spin singlet competing with the Kondo singlet at temperature T < TK (TK being the Kondo tempera-
ture) in the Anderson two-impurity model9–13.

Does there exist a FM phase in the Anderson two-impurity model or in SDQDs? That issue may help to under-
stand Heisenberg’s original idea and to determine the FM phase in various strongly correlated models. Please be 
noted that the sign-indefinite Ruderman-Kittel-Kasuya-Yosida (RKKY) magnetic order, whose implementation 
must through a third mediated dot in experiments14, is not our concern here. What we are seeking is a stable FM 
phase strong enough to compete with the AFM one in SDQDs, which has not been explicitly determined yet in 
the phase diagrams of SDQDs9 and other two-impurity systems15.

The FM phase in SDQDs also has great application potential in solid-state quantum computing. QDs-based 
spin qubit is one of the most possible physical realization of scalable qubit put forward so far, which has been 
extensively studied in last two decades16,17 since its original proposal in SDQDs18. It has the advantages of fast 
operation and long coherence times but the disadvantage of seriously dependence on magnetic fields. The techni-
cal difficulties caused by magnetic fields are transparent: (i) The localized oscillating magnetic fields required in 
qubit or quantum gate manipulation are very hard to realize in practice; (ii) The Zeeman energy is an inefficient 
way to control spin states; and (iii) The magnetic fields are incompatible with present large-scale integrated cir-
cuit. If a stable FM phase in SDQDs does exist, these difficulties may be overcome by possible magnetic-field-free 
manipulations.

In the present work, by nonperturbatively solving the Anderson two-impurity model, we will firstly verify no 
FM phase in the range of parameters investigated under the equilibrium condition in SDQDs. Then, we will 
report a robust FM phase under nonequilibrium conditions at finite bias and detuning energy, which are strong 
enough to suppress the AFM phase in the strongly correlated limit t U( ). We will demonstrate that the FM 
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exchange interaction origins from the passive parallel spin arrangement caused by the PEP during the electrons 
transport [see Fig. 1(b)]. At large t, the AFM phase keeps stable, which defines a tunnel-barrier control of spin 
states through the FM–AFM transition in SDQDs, similar to the initial proposal in ref.18 but no magnetic field (or 
auxiliary FM-dots) needed any more.

The FM phase is the effect of PEP on magnetic order, which shows different properties from another effect 
of PEP called Pauli spin blockade (PSB). The PSB was first observed in vertically coupled GaAs/AlGaAs double 
quantum dots in 200219, and then received extensive experimental and theoretical studies in various quantum dot 
systems20–24. Fundamentally, the hopping of electrons between two dots can be influenced by their spin configu-
ration. When the total excess electrons of the SDQD is NT = N1 + N2 = 2 with occupation state (N1, N2) = (2, 0), 
(1, 1) or (0, 2), the probability of formation of the spin triplet state T(1, 1) may be much larger than that of singlet 
S(1, 1) under one direction of bias of voltage, and then the transport of electrons is blocked due to the PEP which 
is unfavor of T(0, 2) or T(2, 0). The story does not happen under the other direction of bias. As a consequence, 
the current–voltage (I − V) curve will show a rectification behaviour. As an effect of the PEP on electric current, 
the PSB is mainly measured and manipulated in the boundary of Coulumb blockage (CB)20,24. Basing on previous 
results of PSB in literatures, we would like to discuss the following two issues: what is the effect of PEP on mag-
netic order? and what happens in the deep CB area?

FM phase in SDQDs
The SDQDs we study here can be described by the nonequilibrium Anderson two-impurity model. The total 
Hamiltonian reads Htotal = HS + Hres + Hsys−res, where the isolated QD part is
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here ˆ†ci s,  (ĉi s, ) is the operator that creates (annihilates) an s-spin (s = ↑, ↓) electron with energy ∈i,s in the dot i 
(i = 1, 2). =ˆ ˆ ˆ†n c ci s i s i s, , ,  corresponds to the s-spin electron number operator of dot i. As mentioned above, U 
(U = U1 = U2) is the on-dot Coulomb interaction between s- and s-spin electrons (s  being the opposite spin of s), 
and t is the interdot coupling strength.

The Hamiltonians of reservoirs are ε μ= ∑ +α α α α αˆ ˆ†H c c( )res ks ks ks ks, α = L, R, under the bias V = (μL − μR)/e, 
where α̂

†c ks α̂c( )ks  denotes the creation (annihilation) operator of an electron in the s-spin state in the α-reservoir 
with wave vector k. We set the Fermi energy μ μ= = =E 0q q

F L
e

R
e  at equilibrium and μL/e =− μR/e = V/2 at 

nonequilibrium. The system-reservoir coupling is = ∑ + . .α α α− ˆ ˆ†H t c c h csys res kis kis is ks  The hybridization function 
is assumed to be a Lorentzian form ω π δ ω ε ω= ∑ − = Γ +α α α α

⁎J t t W W( ) ( ) /( )is k kis kis ks
2 2 2 .

We adopt the hierarchical equations of motion (HEOM) approach13,25 to numerically solve the nonequilib-
rium Anderson two-impurity model in a nonperturbative fashion. The HEOM can achieve the same level of 
accuracy as the latest high-level numerical renormalization group (NRG)26 for both static and dynamical quan-
tities under equilibrium conditions13. Under nonequilibrium conditions, the HEOM has many advantages above 
other approaches in the prediction of dynamical properties24,27–32. The details of the HEOM formalism and 

Figure 1.  (a) Schematic diagram of antiferromagnetic (AFM) state in series-coupled double quantum dots 
(SDQDs) under equilibrium conditions. U is the on-dot electron-electron (e − e) interaction. JAF is the strength 
of AFM exchange interaction. (b) Schematic diagram of ferromagnetic (FM) state in SDQDs under 
nonequilibrium conditions at finite bias V and detuning energy 2Δ. PEP denotes the Pauli exclusion principle 
during the electrons transport. (c–e) Magnetic phase diagrams of SDQDs in the Δ − t (t being the inter-dot 
coupling) plane by showing the spin-spin correlation function ≡ 〈

→
⋅

→
〉 − 〈

→
〉 ⋅ 〈

→
〉C S S S S12 1 2 1 2  at various bias, (c) 

V = 0; (d) V = 0.5 mV and (e) V = 1.0 mV.
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the derivation of physical quantities are supplied in ref.13,25,33. The parameters in our calculations are chosen as 
follows: the on-dot e − e interaction U = 2.0 meV; the singly occupied energy level ∈1↓ = ∈1↑ = − 1.0 meV + Δ 
and ∈2↓ = ∈2↑ = −1.0 meV − Δ, where the detuning energy 2Δ can be finely regulated by gate voltages in 
experiments; the temperature T = 0.1 meV unless otherwise noted; the effective bandwidth of the reservoirs 
WL = WR = W = 4.0 meV and the reservoir-dot coupling strength ΓL = ΓR = Γ = 0.1 meV. The inter-dot coupling 
t, bias of voltage V and detuning energy Δ are three main variables in our calculations.

In order to figure out whether there exists a FM state, we calculate the spin-spin correlation function between 
QD1 and 2,

≡ 〈
→

⋅
→

〉 − 〈
→

〉 ⋅ 〈
→

〉C S S S S , (2)12 1 2 1 2

where 
→
Si  is the quantum spin operator at dot i. In Fig. 1(c)–(e), we depict the phase diagram at bias V = 0, 0.5 and 

1.0 mV, characterized by the sign and value of C12 in the Δ − t plane. Under the equilibrium condition, as shown 
in Fig. 1(c), the sign of C12 keeps always negative, which indicates a single AFM phase independent of t (t > 0) and 
Δ. It is understandable. From the second-order perturbation, one can obtain ∼ − ΔJ t U U4 /[ (2 ) ]AF

2 2 2  at finite 
Δ, seeming a negative JAF included. However, the condition for that equation ( t U and Δ < U/2) makes JAF < 0 
impossible, even under nonequilibrium conditions. Thus, the following FM phase can not result from this mech-
anism. As shown in Fig. 1(c), with increasing t, C12 positively increases, and finally an AFM QD-molecule forms 
in the large t limit34, as an analogue of hydrogen molecule.

When a positive bias applied, as shown in Fig. 1(d) and (e), our results reveal a FM phase appearing in the 
region of < t U0  and 0.2U < Δ < 0.7U. In view of the phase changes from Fig. 1(d,e), the FM phase can be 
seen as growing from the AFM background at finite bias. The FM–AFM phase boundary (where C12 changing its 
sign) seems quite smooth with no abrupt phase transition occurring, instead, a continuous crossover behaviour 
is clearly visible. With increasing bias, the area of FM phase is enlarged and the strength of exchange interaction 
enhanced, as C12 positively increases. In the strongly correlated limit < t U(0 ), the FM phase can well sup-
press the AFM one and dominate the phase diagram at finite V and Δ, as shown in Fig. 1(e). However, the AFM 
molecular state will survive at large t and very small Δ, which respectively determine the right and bottom 
boundary of FM phase. If Δ is too large to destroy the single occupation of any dot, C12 will decrease to zero rap-
idly, which determines the upper boundary. The left boundary is naturally at t ~ 0. As a comprehensive result, the 
FM phase forms a closed irregular circle area in the phase diagram, as shown in Fig. 1(d) and (e).

In order to better understand the details of the AFM–FM transition, we theoretically lift the spin degeneracy 
in QD1 by applying a local magnetic field B1, with its direction paralleling to ↓-spins. B1 is chosen to be strong 
enough to push ∈1↑ much higher than μL but left ∈1↓ = −1.0 meV + Δ, which can be achieved by simultane-
ously adjusting the gate voltage on QD1. By fixing t = 0.2 meV and Δ = 0.75 meV, we calculate both static and 
dynamical quantities as functions of V and summarize the results in Fig. 2, where Fig. 2(a) depicts some typical 
static quantities (n1↓, n2↑, n2↓ and C12) and Fig. 2(b)–(e) show the spectral functions [A1↓ (ω), A2↑ (ω) and A2↓ 
(ω)] at V = 0, 0.14 (Vc, AFM–FM phase crossover point), 0.2, 0.5, 1.0 mV, respectively. As a starting point, the 
AFM phase at V = 0 is clearly shown in Fig. 2(a), where the magnetic moments m1 ≡ n1↑ − n1↓ ≈ −n1↓ < 0 and 
m2 ≡ n2↑ − n2↓ > 0. Accordingly, the degeneracy of A2↑ (ω) and A2↓ (ω) is lifted due to the AFM exchange interac-
tion JAF, as shown in Fig. 2(b), where the singly-occupation transition peak of A2↑ (ω) is higher than that of A2↓(ω).

Figure 2.  In the case of spin non-degeneracy in QD1 at t = 0.2 meV and Δ = 0.75 meV. (a) The dependence of 
n1↓, n2↑, n2↓ and C12 on V. Vc = 0.14 mV is the AFM–FM phase crossover point. (b–f) The spectral functions A1↓ 
(ω), A2↑ (ω) and A2↓ (ω) at (b) V = 0; (c) V = Vc; (d) V = 0.2 mV; (e) V = 0.5 mV; and (f) V = 1.0 mV. The unit of 
V in the figure is mV.
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Under nonequilibrium conditions,  ↓ -spin electrons irreversibly flow from L- to R-reservoir through interdot 
tunneling. During the transport process, the PEP affects both electrical19,23,24 and magnetic properties, of which 
the latter is our focus here. In Fig. 2(a), the continuous crossover from AFM to FM phase is shown in detail. With 
increasing V, n2↑ gradually decreases while n2↓ increases, thus m2 positively decreases. At V ~ 0.14 mV, 

= ⇒ ∼↑ ↓n n m 02 2 2 . As a consequence, C12 ~ 0, which defines an AFM–FM phase crossover point, Vc, as shown 
in Fig. 2(a). By checking the spectral functions, we find the singly-occupation transition peak of A2↑ (ω) almost 
overlaps with that of A2↓ (ω) at V = Vc with a little splitting [see Fig. 2(c)]. With further increasing V at V > Vc, m2 
becomes to negatively increase and C12 positively increase, as shown in Fig. 2(a), thus the FM phase is gradually 
enhanced. At V ~ 0.9 mV, both m2 and C12 reach their saturation values of 0.9 and 0.21, respectively. The continu-
ous increase of C12 with a smooth sign change indicates the competition between AFM and FM phases is far from 
intense.

Fundamentally, finite bias injects ↓-spin electrons from L-reservoir into QD1, followed by interdot tunneling 
to QD2. In the next step, the PEP prohibits the double occupation of two ↓-spin electrons, and electrons can only 
flow out through off-resonance cotunneling35 or many-body tunneling29 into R-reservoir, both of which produce 
small current. As shown in Fig. 1(b), for electrons in QD2, increasing V and/or Δ will enhance their inflowing 
probability and meanwhile decrease their off-resonance outflowing probability. When the former becomes much 
larger than the latter at V > Vc and Δ > 0.2U, ↓-spin electrons will accumulate within QD2, which induces a pos-
itive to negative sign change of m2. As a consequence, the exchange of 

→
S2 produces a FM order characterized by 

C12 > 0. The spectral functions shown in Fig. 2(d) at V = 0.2 mV verifies this FM correlation (although still weak), 
where the singly-occupation transition peak of A2↑ (ω) becomes lower than A2↓ (ω).

With further increasing V, the FM exchange interaction becomes stronger. In spectral functions, this trend is 
represented by the gradually increasing of the singly-occupation transition peak of A2↓ (ω) and decreasing of that 
of A2↑ (ω) [see Fig. 2(e)]. At V > 0.9 mV, the former reaches its maximum value and the latter almost disappears, as 
shown in Fig. 2(f). By summarizing Fig. 2(a–f), one can see that the FM phase in SDQDs origins from the passive 
parallel spin arrangement caused by the PEP during the electrons transport in the presence of e − e interactions. 
That mechanism is universal, which should play roles in other strongly correlated models including the Hubbard 
model.

Low temperature properties
We are now on the position to elucidate the temperature effect, especially the low temperature properties of 
the FM phase. In what follows, we recover the spin degeneracy in QD1 and fix V = 1.0 mV, t = 0.2 meV and 
Δ = 0.75 meV. The dependence of the inverse of magnetic susceptibility 1/χ on temperature T is depicted in 
Fig. 3(a), which shows an unambiguous Curie-Weiss behaviour at high temperature, χ = C/(T −Tc), with a fitted 
Curie point Tc ~ 0.15 meV (~1.75 K). We also find a upward deviation at very low temperature T < 0.02 meV, 
resulting from the Kondo screening of the FM phase at T < TK. Under equilibrium conditions, this kind of S = 1 
Kondo screening induces a ‘singular Fermi liquid state’36–38. Here, some nonequilibrium Kondo features are 
expected.

The present HEOM approach can not directly determine TK as NRG does, but it can easily obtain spectral 
functions and current at sufficient low temperature to elucidate nonequilibrium Kondo characteristics. The 
HEOM results of Ais(ω) s and current-voltage (I − V) curve at T = 0.01 meV are respectively shown in Fig. 3(c) 
and (d), where the I − V curve at T = 0.1 meV (T > TK) is also shown for comparison. As shown in Fig. 3(b), one 
small Kondo peak is developed at ω = μL in A1s(ω), and another developed at ω = μR in A2s(ω). It can be seen as 
the DQD extension of the bias-induced Kondo peak splitting in single QDs39. Although the Kondo peaks in Ais(ω) 
s seem not high in Fig. 2(b), their effects are quite significant on both of the magnetic and transport properties. 
For the latter, the nonequilibrium Kondo resonance assists the electrons transport, which is characterized by the 
low-temperature current enhancement shown in Fig. 3(c), when the FM phase dominates at V > 0.25 mV.

Figure 3.  In the case of spin degeneracy in both QDs at V = 1.0 mV, t = 0.2 meV and Δ = 0.75 meV. (a) The 
dependence of the inverse of magnetic susceptibility 1/χ on temperature T. The dash line is the fitting of the 
Curie-Weiss law at high temperature. A Kondo screening effect is shown at T < 0.02 meV. (b) The spectral 
functions Ais(ω) s at temperature below (T = 0.01 meV) the Kondo temperature. The current-voltage (I − V) 
curves at temperature below (T = 0.01 meV, the solid line) and above (T = 0.1 meV, the dashed line) the Kondo 
temperature. The unit of T in the figure is meV.
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FM phase in stability diagrams
We can further elucidate the effect of PEP on magnetic order in stability diagrams by expanding the parameter 
Δ to the V1 − V2 plane, where V1/V2 is the gate voltage applied onto QD1/QD2. It will help us to directly com-
pare the parameter regions of FM state and PSB. The results at (V, t) = (0.5 mV, 0.15 meV) and (V, t) = (1.0 mV, 
0.25 meV) are summarized in Fig. 4(a) and (b), respectively. In the figure, the AFM phase is shown in the colour 
of dark gray, and the dashed gray lines schematically mark off the boundary of CB (or degenerate lines in stability 
diagrams). By referring the figure, one can see that the FM phase expands into the deep CB area. At V = 1.0 mV, 
as shown in Fig. 4(b), the FM phase occupies almost all of the stability diagram of 0 ≤ V1 ≤ 2.0 mV(+U) and 
−2.0 mV (−U) ≤ V2 ≤ 0. Basing on experimental observations and theoretical results in literatures19,20,24, the 
range of PSB is approximately within the dotted blue circle (with the radius of V/2) in Fig. 4. Obviously, the range 
of FM phase is much larger than that of PSB.

Taking the case of V = 0.5 mV as an example, as shown in Fig. 1(a), if we start from the center of (1, 1) occupa-
tion state (V1 = V2 = 0), we will first reach a weak FM phase after a AFM–FM transition at V1(V2) ~ 0.3 mV. Then, 
we will follow the enhancement of FM phase with C12 gradually increasing. Only when V1(V2) ~ 0.75 mV, we can 
observe the PSB effect. It thus indicates that the effect of PEP on magnetic order (FM phase) is prior to that on 
electric current (PSB). Our HEOM calculations have precisely captured the main features of the former.

Summary
In summary, we have theoretically reported a robust ferromagnetic phase under nonequilibrium conditions in 
series-coupled double quantum dots by nonperturbatively solving the Anderson two-impurity model. The ferro-
magnetic exchange interaction origins from the passive parallel spin arrangement caused by the Pauli exclusion 
principle during the electrons transport. The ferromagnetic phase can conduce to understand the Heisenberg’s 
initial idea of ferromagnetic order. In addition, it also predicts a convenient way to internally control spin states 
without magnetic field.

Method
The serially coupled DQD system constitutes the open system of primary interest, and the surrounding reservoirs 
of itinerant electrons are treated as environment. The total Hamiltonian for the system is Htotal = HS + Hres + Hsys-res, 
where the interacting DQD

∑ ∑ ∑ε= + + + . .ˆ ˆ ˆ ˆ ˆ ˆ† †H c c U n n t c c
2

( h c ),
(3)

S
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, 1, 2,

here ˆ†ci s,  (ĉi s, ) is the operator that creates (annihilates) a spin-s electron with energy ∈i,s (i = 1, 2) in the dot i. 
=ˆ ˆ ˆ†n c ci s i s i s, , ,  corresponds to the operator for the electron number of dot i. U (U = U1 = U2) is the on-dot Coulomb 

interaction between electrons with spin s and s  (opposite spin of s), while t is the interdot coupling strengths 
between the dot 1 and 2, determined by overlapping integral of them.

In what follows, the symbol μ is adopted to denote the electron orbital (including spin, space, etc.) in the 
system for brevity, i.e., μ = {s, i...}. The device leads are treated as noninteracting electron reservoirs and the 
Hamiltonian can be written as

∑ ε μ α= + =
α

α α α αˆ ˆ†H c c( ) , L, R,
(4)ks

ks ks ksres

and the term of dot-electrode coupling is

Figure 4.  Magnetic phase diagrams of SDQDs in the V1 − V2 plane (V1/V2 being the gate voltage applied onto 
QD1/QD2) by showing C12 at (a) V = 0.5 mV, t = 0.15 meV; and (b) V = 1.0 mV, t = 0.25 meV. The AFM phase is 
shown in the colour of dark gray. The dashed gray arrow indicates the increasing direction of Δ, and the dashed 
gray lines schematically mark off the boundary of Coulumb blockage (or degenerate lines in stability diagrams). 
The dotted blue circle (with the radius of V/2) approximately shows the range of PSB.
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∑= + . .
α

α α− ˆ ˆ†H t c c h c ,
(5)kis

kis is kssys res

where ∈kα is the energy of an electron with wave vector k in the α lead, and μαˆ†ck  μαĉ( )k  corresponds to the crea-
tion (annihilation) operator for an electron with the α-reservoir state |k〉 of energy ∈kα. To describe the sto-
chastic nature of the transfer coupling, it can be written in the reservoir HB-interaction picture as 

ˆ ˆ ˆ ˆ† †= ∑ +μ μ μ μ μ−H f t c c f t[ ( ) ( )]sys res , with = ∑μ α μα μα
−ˆ ˆ

† ⁎ †f e t c e[ ]iH t
k k k

iH tres res  being the stochastic interactional operator 
and satisfying the Gauss statistics. Here, tkμα denotes the transfer coupling matrix element. The influence of elec-
tron reservoirs on the dots is taken into account through the hybridization functions, which is assumed 
Lorentzian form, ω π δ ω ε ω μΔ ≡ ∑ − = Γ − +α α μ α μ α α

⁎t t W W( ) ( ) /[2( ) ]k k k k
2 2 2 , where Γ is the effective quantum 

dot-electrode coupling strength, W is the effective band width, and μα is the chemical potentials of the α 
electrode.

In this paper, a hierarchical equations of motion approach (HEOM) developed in recent years is employed to 
study QD system13,25. The HEOM based numerical approach is potentially useful for addressing the interacting 
strong correlation systems and has been employed to study dynamic properties, such as the dynamic Coulomb 
blockade Kondo, dynamic Kondo memory phenomena and time-dependent transport with Kondo resonance in 
QDs systems. The resulting hierarchical equations of motion formalism are in principle exact and applicable to 
arbitrary electronic systems, including Coulomb interactions, under the influence of arbitrary time-dependent 
applied bias voltage and external fields. The outstanding issue of characterizing both equilibrium and nonequi-
librium properties of a general open quantum system are referred to in ref.33. It is essential to adopt appropriate 
truncated level to close the coupled equations. The numerical results are considered to be quantitatively accurate 
with increasing truncated level and converge.

Let us make some comments on parameters in our calculations. Most of them are chosen by reference to the 
typical experiments in DQDs. The on-dot e-e interaction and interdot coupling are chosen in the same order as 
the charging energy and tunnel coupling energy in experiments, and other parameters are flexible within reason-
able ranges. However, the band width W = WL = WR of electrodes is an exception, which is chosen as an effective 
value only involving those states near equilibrium Fermi energy (and nonequilibrium chemical potentials of 
electrodes) within the range of [−W, W]. Although W may be as large as several eV for normal metals, a finite 
effective band width is reasonable if those states out of [−W, W] plays no role in our results. By checking the effect 
of W, we verify that W = 4 meV has fulfilled this condition already.
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