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The interaction of fat mass 
and obesity associated gene 
polymorphisms and dietary 
fiber intake in relation to obesity 
phenotypes
Firoozeh Hosseini-Esfahani  1, Gelareh Koochakpoor2, Maryam S. Daneshpour3, Parvin 
Mirmiran1,4, Bahareh Sedaghati-khayat  3 & Fereidoun Azizi5

Controversies surrounding the effectiveness of fiber intake for prevention of obesity can be attributed 
to differences in the genetic makeup of individuals. This study aims to examining the interaction 
between dietary fiber intake and common fat mass and obesity–associated (FTO) single-nucleotide 
polymorphisms (SNPs), in relation to obesity. Subjects of this nested case-control study were selected 
from among adult participants of the Tehran Lipid and Glucose Study. Cases (n = 627) were individually 
matched with controls, who had normal weight. Six selected SNPs (rs1421085, rs1121980, rs17817449, 
rs8050136, rs9939973, and rs3751812) were genotyped by tetra-refractory mutation system-
polymerase chain reaction analysis. Genetic risk scores (GRS) were calculated using the weighted 
method. A significant interaction was observed between total fiber intake and the GRS in relation to 
obesity (Pinteraction = 0.01); the difference in the risk for obesity was more pronounced in individuals 
with GRS ≥ 6 who consumed ≥ 14 grams of fiber a day (OR: 2.74, CI: 2.40–3.35 vs Ref.; P trend = 0.0005) 
than in individuals with GRS < 6 (P trend = 0.34). Dietary fiber intakes modified the association of FTO 
SNPs and the GRS with general obesity, an effect which was more pronounced in those who consumed 
high levels of dietary fiber and had a high number of risk alleles.

Obesity, a fast growing major health problem today, is a leading cause of death worldwide due to the increased 
risk of many chronic diseases in persons with obesity. Genetic analyses have shown that genetic factors contribute 
to around 40–70% of the population variation in body mass index (BMI)1,2. Of these factors, the fat mass and 
obesity–associated (FTO) gene is now recognized as the strongest common genetic predictor of obesity3,4. It is 
located in chromosome region 16q12.2 and is highly expressed in the hypothalamus nuclei, which govern food 
intake and appetite5. Consequently, FTO single-nucleotide polymorphisms (SNPs) increase the risk of obesity by 
1.20–1.32 fold in Europeans6 and by 1.25 fold in Asians7. However, genetic etiology alone cannot explain the rapid 
rises in the prevalence of obesity in recent years, because gene pools of specific populations have been relatively 
constant for many generations8.

Dramatic changes in environmental factors, such as lifestyle and dietary habits, are believed to play a role in 
the rising trend of obesity. A high-fiber diet is one factor that has received substantial attention in obesity pre-
vention, with some studies reporting that increasing dietary fiber can reduce the likelihood of weight gain9–11,  
although contradictory results are noted12. Several clinical intervention trials have shown weight reduction 
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associated with diets rich in dietary fiber or fiber supplements13,14, whereas other studies have failed to demon-
strate any effect15–17. These controversies on the effectiveness of fiber intake for prevention of obesity could be 
attributed to differences in people’s genetic structure, indicating that the risk of obesity is more likely determined 
by gene-environmental factor interactions than by dietary fiber alone.

Genome wide association studies have indicated that each identified obesity locus explains only a small frac-
tion of the observed variations in BMI. A strategy that combines multiple genetic variants related to obesity into 
a genetic risk score (GRS) therefore might improve the identification of individuals at risk of developing obesity. 
Few studies have examined the interaction of dietary factors (e.g., fiber intake) and FTO-genetic predisposition 
or genetic structure on the risk of obesity in a Middle-Eastern population, and most studies to date pertain to 
interactions between FTO and dietary macronutrients. The objective of the present nested case-control study was 
to examine the hypothesis that dietary fiber could interact with FTO SNPs (rs1121980, rs1421085, rs9939973, 
rs8050136, rs17817449, and rs3751812), singly and in combination, in relation to obesity phenotypes among 
adults.

Results
General characteristics of participants (cases and controls) are shown in Table 1. The two groups showed no sig-
nificant differences in terms of physical activity, smoking, nutrient intakes; however, years of educational attain-
ment and energy intake differed significantly among the cases and controls. The effect size and risk allele of each 
SNP for obesity traits are shown in Table 2. Frequencies of genotypes or alleles also did not differ between the 
two groups. Genotype frequencies were in Hardy Weinberg equilibrium (P > 0.2). The median of GRS among the 
participants was 6.

Interactions of SNPs and dietary fiber intake in relation to obesity. Dietary fiber modulated the 
association of obesity with genotype groups for three SNPs– rs8050136 (P interaction = 0.02), rs17817449 (P 
interaction = 0.02) and rs3751812 (P interaction = 0.01) after adjustment for energy intake and years of educa-
tion. Risk allele carriers of these SNPs benefited more from dietary fiber than the other genotypes. No similar 
significant interaction was observed in relation to obesity between dietary fiber and the other SNPs (rs1121980, 
rs1421085, and rs9939973) examined in this study (Table 3).

Interactions of SNPs and dietary fiber intake in relation to abdominal obesity. Dietary fiber 
only modulated the association of risk allele carriers (TG + TT) of rs3751812 with abdominal obesity (P inter-
action = 0.01). In T allele carriers, the risk of abdominal obesity decreased across quartiles of dietary fiber (P 
trend = 0.003), although this association was not significant in GG homozygote carriers (P trend = 0.62) (Table 4).

The ORs of high waist to hip ratio differed across quartiles of dietary fiber intake in the risk allele carriers of 
rs3751812. Those in the lowest quartile of dietary fiber had an over than two-fold OR for abdominal obesity com-
pared with those in the highest quartile (P trend = 0.001, P interaction = 0.01), while ORs of a high waist to hip 
ratio did not differ across the quartiles of dietary fiber in the GG genotype group (Table 5).

Interactions of obesity genetic risk score and dietary fiber intake in relation to obesity and 
abdominal obesity. Significant interactions were observed between dietary fiber and the GRS in relation 

Normal BMIa,b (n = 627) Obesec (n = 627)

SD SD

Baseline Age (y)c

Men 34.01 11 34.25 11

Women 34.82 11 34.91 10

Current smokers (%) 16.7 13.9

Low physical activity (%) 40.2 41.3

Education level ≥ 14 years (%) 27.3 20.4*

Baseline BMI (Kg/m2) 21.54 25.03*

Baseline WCd(cm) 73.54 16 82.25* 23

Energy intake (KJ/day) 9959 4094 10612* 4416

Carbohydrate (% of energy) 58.07 6 58.08 6

Total fiber intake (g/4186 KJ) 18.06 6 18.57 6

Protein intake (% of energy) 14.46 3 14.44 2

Total fat (% of energy) 30.9 6 30.7 6

Saturated fat (% of energy) 10.25 3 10.07 2

MUFA (% of energy)e 10.51 2 10.41 2

PUFA (% of energy)f 6.35 2 6.32 2

Table 1. Characteristics of the study population in cases and controls† (Tehran Lipid and Glucose Study). aBMI: 
body mass index. bBMI from 18.5 up to 25 kg/m2,cBMI ≥ 30 kg/m2. dWC: waist circumference. eMUFA, Mono-
unsaturated fatty acids. fPUFA, Poly-unsaturated fatty acids. *P < 0.05; †values are mean unless otherwise listed.
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to obesity (P interaction = 0.01). The difference in the risk for obesity was more pronounced in individuals with 
GRS ≥ 6 who were in the highest quartile of dietary fibers, compared to the lowest quartile (OR Q4:0.67, CI:0.41–
1.10; OR Q1:1.83, CI:1.32–2.54; P trend = 0.004), than in individuals with GRS < 6 (P trend = 0.71). The differ-
ence in the risk for obesity was also more pronounced in individuals with GRS ≥ 6, and those who consumed ≥ 14 
grams of fiber/day (P trend = 0.0005) than in individuals with GRS < 6 (P trend = 0.34) (Table 6).

Discussion
Our study showed that dietary fiber could modify the association of FTO SNPs and the genetic risk score with 
general obesity, an effect that was more pronounced in subjects who consumed high levels of dietary fiber (≥14 
gr/day) and had a high genetic risk score, since they had the lowest risk of obesity when compared to individuals 
with a low dietary fiber and a low genetic risk score. The only significant gene-fiber interaction in relation to 
abdominal obesity was observed between fiber and rs3751812 in relation to high WC and high WHR. a result 
suggesting that individuals with high number of risk alleles could benefit more from a high dietary fiber than 
individuals with low number of risk alleles. Our findings on the FTO gene–fiber interaction therefore could have 
significant implications in public health for the prevention and management of obesity.

Frequency Normal BMIa (n = 627) Obeseb (n = 627) Risk allelec Effect size (odds ratio)

rs1121980 1.34

Allele
A: 38 (463) C A: 39(474) A

G: 62(755) G: 61(752)

Genotype

AA: 15(92) AA: 13(77)

GA: 46(279) GA: 52(320)

GG: 39(238) GG: 35(216)

rs1421085 1.43

Allele
C: 37(458) C: 36(446) C

T: 63(770) T: 64(792)

Genotype

CC:14(87) CC:12(72)

TC: 44(272) TC: 51(314)

TT: 42(260) TT: 37(228)

rs9939973 1.10

Allele
A: 37.9 (468) A: 38.2 (469) A

G: 62.1 (768) G: 61.8 (759)

Genotype

AA: 15(93) AA: 12.2(76)

GA: 45.6(282) GA: 52(319)

GG: 39.3(243) GG: 35.8(220)

rs8050136 1.25

Allele
A:34(417) A: 35(435) A

G: 66(823) G: 65(795)

Genotype

AA: 13(78) AA: 11(66)

GA: 42(261) GA: 49(303)

GG: 45(281) GG: 40(246)

rs17817449 1.54

Allele
G: 33(413) G: 36(444) G

T: 67(832) T: 64(802)

Genotype

GG: 12(75) GG: 11(68)

TG: 42(264) TG: 49(308)

TT: 46(284) TT: 40(247)

rs3751812 1.52

Allele
G: 67(829) G: 65(799) T

T: 33(405) T: 35(427)

Genotype

GG: 47(290) GG: 40(247)

GT: 40(249) GT: 50(305)

TT: 13(78) TT: 10(61)

Table 2. Allele, genotype frequency and risk alleles of FTO SNPs in cases (obese) and controls (non-obese): 
Tehran Lipid and Glucose Study. aBMI (body mass index): 18.5–25 kg/m2, bBMI ≥ 30 kg/m2, C% (n) All allele 
frequencies were in Hardy-Weinberg equilibrium (P > 0.2), except allele frequency of rs9939973 in obese 
participants (P = 0.01). cRisk allele based on data from GWAS catalog (The NHGRI-EBI Catalog of published 
genome-wide association studies) and the Phenotype-Genotype Integrator44,45. Effect sizes were derived from 
the previous literature and reported meta-analysis46,49,52.
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This is the first study to examine a possible FTO–dietary fiber interaction in relation to obesity phenotypes 
in a Middle-Eastern population. Findings of Villegas et al. suggest that the modifiable effect of dietary fiber on 
the association of genotype-phenotype may differ by race or ethnicity; they found that dietary fiber modified the 
association between FTO rs8050136 and diabetes in non-Hispanic whites, whereas no significant interaction term 
was observed consistently across non-Hispanic blacks and Mexican American participants18.

Examination of the FTO–diet interaction on obesity-related traits in an Asian Indian population showed that 
dietary fiber modified the association of the FTO SNP rs11076023 and waist circumference (WC), indicating 
that this effect was more pronounced on central obesity than on general obesity19. On the contrary, a study by 
Lappalainen et al. showed that the FTO (rs9939609)–fiber interactions did not reach conventional statistical sig-
nificance in relation to BMI20,21, although the association between FTO and BMI was more pronounced in those 
having a diet high in fat and low in carbohydrates and fiber20.

Previous reports of FTO-diet interactions demonstrate that the FTO effect on obesity may be modulated by 
a healthy dietary pattern. Adherence to the traditional Mediterranean dietary pattern, which is low in saturated 
fat and includes foods rich in fiber (including vegetables, fruits, legumes, and nuts), fish, and olive oil showed 
interactions with the FTO-rs9939609. A low adherence to the Mediterranean diet resulting higher type 2 diabetes 
risk in risk allele carriers (OR = 1.21, 95%CI: 1.03–1.40; P = 0.019 for FTO-rs9939609) when compared to the 
wild-type (non-risk allele) subjects22. A three year follow-up of individuals adhering to a Mediterranean style diet 
revealed a lower weight gain in the risk allele carriers despite the lack of any gene-nutrient interaction23.

The interaction of FTO SNPs and consumption of unhealthy food groups (e.g. salty snacks, sweets, and fried 
foods), which were typically energy dense with limited dietary fiber and nutritional value, was analyzed in other 
studies in relation to obesity. Findings demonstrated that subjects with higher number of FTO risk alleles and 
with the highest intake of fried foods and sugary beverages might be more susceptible to obesity than individuals 
with lower consumption of unhealthy food groups24, indicating that encouraging the consumption of low energy 
density and high fiber foods may be an effective public health strategy to avoid excessive fat accumulation and 
that FTO risk allele carriers could benefit more from dietary guidelines aimed at increasing dietary fiber intake.

Many studies indicate that dietary fiber induces greater satiety when compared with simple sugars25,26; this 
increased satiety may result from several factors: the innate physical properties of dietary fiber (bulking, gel 
formation, and alteration of the viscosity of the gastric contents)27, delaying gastric emptying and subsequent 
gastric distention, blunting of postprandial glucose and insulin responses, and the effects on secretion of gut 
peptide hormones that regulate satiation (such as ghrelin, cholecystokinin, peptide YY, and glucose-dependent 
insulinotropic peptide)28. Dietary fiber also affects the expression of the gastric ghrelin gene, as confirmed in a 
previous study29.

Fermentable fibers are consumed by the intestinal bacteria, which produce short-chain fatty acids, includ-
ing acetate, propionate, and butyrate, which impact the expression of many genes30–32. Histone tail acetylation 
is believed to limit the accessibility of a gene to the transcription machinery33; therefore, inhibition of his-
tone deacetylase by butyrate may contribute to increased mRNA expression of several genes, such as PPAR-δ 

Q1 Q2 Q3 Q4 P for trend P for interaction

rs1121980 0.15

GG 0.96 (0.54–1.69) 0.90 (0.53–1.54) 0.85 (0.50–1.47) 1 0.36

GA + AA 1.47 (1.02–2.03) 1.14 (0.75–1.83) 1.05 (0.65–1.71) 0.58 (0.11–1.17) 0.03

rs1421085 0.85

TT 0.82 (0.47–1.42) 0.88 (0.52–1.49) 0.79 (0.46–1.34) 1 0.27

TC + CC 1.37 (0.83–2.18) 1.14 (0.52–1.81) 1.00 (0.51–1.68) 0.73 (0.51–1.39) 0.06

rs9939973 0.70

GG 0.91 (0.52–1.58) 0.86 (0.50–1.46) 0.83 (0.49–1.43) 1 0.22

GA + AA 1.59 (1.12–2.16) 1.15 (0.70–1.77) 1.02 (0.63–1.65) 0.65 (0.23–1.37) 0.05

rs8050136

GG 0.85 (0.50–1.43) 0.75 (0.45–1.25) 0.98 (0.61–1.58) 1 0.25 0.02

GA + AA 1.95 (1.57–2.54) 1.21 (0.91–1.93) 0.90 (0.57–1.52) 0.62 (0.21–1.12) 0.009

rs1781749

TT 0.79 (0.47–1.32) 0.76 (0.46–1.27) 0.62 (0.37–1.04) 1 0.21 0.02

TG + GG 1.88 (1.65–2.37) 1.17 (0.83–1.87) 0.79 (0.47–1.31) 0.41 (0.15–0.97) 0.001

rs3751812

GG 0.80 (0.48–1.35) 0.71 (0.43–1.19) 0.61 (0.37–1.02) 1 0.36 0.01

GT + TT 1.65 (1.27–2.22) 1.25 (0.68–1.73) 1.24 (0.67–1.73) 0.32 (0.11–0.94) 0.03

Table 3. Adjusted ORs (95%CI) for obesity according to quartiles of dietary fiber intake and FTO SNP 
genotypesa (Tehran Lipid and Glucose Study). OR: Odds Ratio, Q: Quartiles of dietary fiber intake (Q1: < 7.06, 
Q2: 7.06–9.13, Q3: 9.14–11.26, Q4 > 11.26 g/4186 KJ), FTO: Fat mass and Obesity associated gene, SNP: Single 
Nucleotide Polymorphism. aORs (95% CI) were calculated using conditional logistic regression model, adjusted 
for education level and energy intake. Participants were classified (8 groups) according to quartiles of dietary 
fiber intake and genotypes. The highest quartile of dietary fiber intake and homozygote genotype of major allele 
was used as the reference group.
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(peroxisome proliferator-activated receptor-δ). The binding of PPARs to specific DNA sequences, called PPAR 
response elements, around target genes then activates DNA transcription and gene expression34. The role of 
PPARs in gene regulation in adipose tissue is not clear, but our results propose that fiber intake, as an activator 
of PPAR-δ, may change the expression of FTO gene, a hypothesis which requires further molecular studies for 
confirmation.

The strengths of our study include its prospective design and use of repeated measures of dietary fiber intake 
and BMI that minimized the potential reverse causality that is more likely to occur in cross-sectional studies. 
Using subjects matched individually by age and sex and conducting extensive adjustment for potential confound-
ers were the other strengths. Nevertheless, several limitations need to be acknowledged. Measurement errors of 
dietary fiber were inevitable, although the food-frequency questionnaire (FFQ) had been extensively validated. 
Our study population was highly homogeneous, as the study included only residents of district 13 of Tehran; its 
genetic-predisposition score therefore captured only a small amount of variation in BMI.

In conclusion, our findings provide evidence for an association between higher consumption of dietary fiber 
and a lower risk of general obesity in at least those people susceptible to obesity. The only rs3751812 × fiber inter-
action was found in relation to abdominal obesity which highlights beneficial effects of dietary fiber for individ-
uals with 1 or 2 rs3751812 risk alleles.

Materials and Methods
Study population. Subjects of this nested case-control study were selected from participants of the Tehran 
Lipid and Glucose Study (TLGS), a large-scale, community-based, prospective study being performed on a 
sample of residents of district 13 of Tehran, capital of Iran. The first phase of the TLGS was conducted from 
1999 to 2001 on 15 005 subjects, aged ≥ 3 years, and follow-up examinations have been conducted every 3 years 
(2002–2005; 2006–2008; 2008–2011, and 2011–2014) to identify newly developed diseases. Details of this ongo-
ing cohort study have been published elsewhere35,36.

Of 11 001 and 9807 individuals, aged ≥ 18 years who participated in baseline and second follow-up surveys, 
respectively, 1813 subjects were excluded because they were evaluated as obese at either baseline or the second 
follow-up survey. In the current study, 1000 cases were randomly selected from among participants who devel-
oped obesity in the third (n = 528), fourth (n = 416), or the fifth (n = 286) phases. Individuals with a history of 
weight loss or gain >5 kg in the last 6 months, those who were pregnant and lactating, or those who had taken 
drugs that affect weight were excluded from the study, leaving 880 cases included in the study. Each of these 880 
cases was individually pair matched by age (±5 years) and sex with a random control from a population with nor-
mal weight at the time that the corresponding case developed obesity. Cases/controls lacking DNA purification 
in the range of 1.7 < A260/A280 < 2, and those whose reported energy intakes divided by the predicted energy 
intake did not qualify for the ± 3 SD range, were excluded, eventually data from 627 pairs of persons with obesity 
and their matched controls (1254 individuals) were ultimately analyzed.

Q1 Q2 Q3 Q4 P for trend P for interaction

rs1121980 0.58

GG 0.80 (0.45–1.44) 0.94 (0.54–1.64) 0.93 (0.54–1.61) 1 0.36

GA + AA 0.93 (0.57–1.52) 0.82 (0.50–1.33) 0.74 (0.46–1.21) 0.52 (0.10–1.17) 0.15

rs1421085 0.81

TT 0.95 (0.55–1.63) 0.96 (0.56–1.64) 1.01 (0.59–1.72) 1 0.76

TC + CC 0.90 (0.55–1.46) 0.84 (0.52–1.36) 0.74 (0.46–1.19) 0.77 (0.48–1.25) 0.63

rs9939973 0.66

GG 0.85 (0.49–1.49) 0.98 (0.56–1.70) 0.94 (0.55–1.61) 1 0.88

GA + AA 0.96 (0.59–1.55) 0.85 (0.53–1.38) 0.76 (0.47–1.23) 0.76 (0.47–1.24) 0.47

rs8050136

GG 0.95 (0.56–1.60) 1.12 (0.66–1.89) 1.17 (0.70–1.96) 1 0.61 0.37

GA + AA 1.55 (1.17–2.21) 0.90 (0.56–1.44) 0.75 (0.46–1.20) 0.62 (0.21–1.12) 0.01

rs1781749

TT 0.96 (0.57–1.62) 1.10 (0.65–1.86) 1.17 (0.75–1.96) 1 0.55 0.42

TG + GG 1.51 (1.19–2.15) 0.87 (0.83–1.87) 0.72 (0.47–1.31) 0.70 (0.44–1.29) 0.02

rs3751812

GG 0.99 (0.59–1.66) 1.18 (0.70–1.99) 1.19 (0.71–1.91) 1 0.62 0.01

GT + TT 1.98 (1.63–2.67) 0.88 (0.55–1.43) 0.70 (0.44–1.13) 0.51 (0.28–1.17) 0.003

Table 4. Adjusted ORs (95%CI) for abdominal obesity according to quartiles of dietary fiber intake and 
FTO SNP genotypes (Tehran Lipid and Glucose Study). OR: Odds Ratio, Q: Quartiles of dietary fiber intake 
(Q1: < 7.06, Q2: 7.06–9.13, Q3: 9.14–11.26, Q4: > 11.26 g/4186 KJ), FTO: Fat mass and Obesity associated gene, 
SNP: Single Nucleotide Polymorphism. aORs (95% CI) were calculated using conditional logistic regression 
model, adjusted for education level, age, gender, smoking status, physical activity and energy intake. Participants 
were classified (8 groups) according to quartiles of dietary fiber intake and genotypes. The highest quartile of 
dietary fiber intake and homozygote genotype of major allele was used as the reference group.
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Written informed Consent was obtained from all participants. The study was conducted in accordance 
with the Declaration of Helsinki and the study protocol was approved by the ethical committee of the Research 
Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Measurements. Dietary intake was assessed using a valid and reliable 168-item semi-quantitative FFQ to 
assess the usual food intakes of individuals during the 12 months before the examination37,38. The consumption 
frequency of each food item on a daily, weekly, or monthly basis was converted to daily intakes, and the portion 
sizes were then converted to grams using measuring cups and spoons. The Iranian food composition table (FCT) 
is incomplete; therefore, we used the United States Department of Agriculture (USDA) FCT to analyze foods39. 
However, the Iranian FCT was used for some national foods and beverages when these were not listed in the 
USDA FCT40.

The body weight of each participant was measured to the nearest 100 g using digital scales while the subjects 
were minimally clothed and not wearing shoes. Height was measured to the nearest 0.5 cm with a tape meas-
ure while the subjects were in a standing position, with their shoulders in a normal alignment and with shoes 
removed. Circumferences were measured to the nearest millimeter using a flexible tape. WC was taken at the end 
of normal expiration, over light clothing, with the unstretched tape meter positioned at the level of umbilicus, 
without exerting any pressure on the body surface; measurements were recorded to the nearest 0.1 cm. Hip cir-
cumference was measured at the level of maximal protrusion of the gluteal muscles. Waist to hip ratio (WHR) 
was calculated as WC (cm) divided by hip circumference (cm). Physical activity level was assessed with high 
reliability and relatively moderate validity using the Persian translated modifiable activity questionnaire (MAQ)35. 
The frequency and time spent on light, moderate, hard, and very hard intensity activities, according to the list of 
common activities of daily life over the past year, were obtained, and these activity data were transformed into 
metabolic equivalent hours per week (METs/h/week)41–43.

Genotyping. We selected 6 SNPs (rs1421085, rs1121980, rs17817449, rs8050136, rs9939973, and rs3751812) 
within the region of the FTO gene, based on published literature and on the validated catalog of published 
genome-wide association studies44 and the Phenotype-Genotype Integrator45, taking into account minor allele 
frequency (MAF) > 0.2 and P values < 10−7. The selected SNPs were associated with dietary intake or obesity 
phenotypes46–51. The linkage disequilibrium between rs9939609 and the three SNPs (rs8050136, rs3751812, 
rs17817449) is high (r2 = 1) based on data from South and East Asians, hence the rs9939609 was not entered in 
GRS calculation and analysis7,52. Also due to limited resources available, the most reproducible associated SNPs 
with obesity and dietary intake were selected.

Genomic DNA was extracted from peripheral blood using a standard Proteinase K, salting-out method53. Six 
SNPs were selected through the NCBI site. Our T-ARMS assay with different inner allele specific primers was 
used to produce allele-specific PCR products. The two outer primers produced a PCR product that was used as an 

Q1 Q2 Q3 Q4 P for trend P for interaction

rs1121980 0.13

GG 2.02 (0.88–4.66) 2.46 (1.09–5.54) 2.50 (1.10–5.68) 1 0.06

GA + AA 1.69 (0.78–3.63) 1.77 (0.82–3.80) 1.81 (0.84–3.89) 1.35 (0.59–3.04) 0.74

rs1421085 0.54

TT 2.05 (0.93–4.53) 2.47 (1.13–5.39) 2.54 (1.16–5.58) 1 0.77

TC + CC 1.59 (0.75–3.37) 1.71 (0.81–3.61) 1.77 (0.84–3.74) 1.35 (0.61–2.99) 0.88

rs9939973 0.12

GG 1.96 (0.87–4.38) 2.37 (1.08–5.21) 2.44 (1.10–5.39) 1 0.08

GA + AA 1.56 (0.76–3.28) 1.71 (0.81–3.59) 1.71 (0.81–3.60) 1.23 (0.55–2.74) 0.72

rs8050136

GG 1.72 (0.81–3.62) 2.33 (1.12–4.83) 1.85 (0.88–3.89) 1 0.47 0.61

GA + AA 1.38 (0.67–2.84) 1.41 (0.69–2.88) 1.71 (0.84–3.48) 1.11 (0.51–2.41) 0.52

rs1781749

TT 1.75 (0.83–3.68) 2.32 (1.12–4.80) 1.97 (0.94–4.13) 1 0.58 0.60

TG + GG 1.40 (0.68–2.87) 1.40 (0.68–2.86) 1.69 (0.83–3.45) 1.15 (0.53–2.46) 0.86

rs3751812

GG 1.89 (0.88–4.03) 1.58 (0.76–3.30) 1.52 (0.72.3.17) 1 0.62 0.01

GT + TT 2.73 (1.45–5.41) 2.17 (0.95–4.28) 1.79 (0.86.3.72) 1.21 (0.55–2.67) 0.001

Table 5. Adjusted ORs (95%CI) for high waist to hip ratio (WHR) according to quartiles of dietary fiber intake 
and FTO SNP genotypes (Tehran Lipid and Glucose Study). OR: Odds Ratio, Q: Quartiles of dietary fiber intake 
(Q1: < 7.06, Q2:7.06–9.13, Q3:9.14–11.26, Q4 > 11.26 g/4186 KJ), FTO: Fat mass and Obesity associated gene, 
SNP: Single Nucleotide Polymorphism. aORs (95% CI) were calculated using conditional logistic regression 
model, adjusted for education level, age, gender, smoking status, physical activity and energy intake. Participants 
were classified (8 groups) according to quartiles of dietary fiber intake and genotypes. The highest quartile of 
dietary fiber intake and homozygote genotype of major allele was used as the reference group.
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internal control for the reaction. For all six SNPs, the PCR reaction (Thermal Cycler, Corbett Life Science, Sydney, 
Australia) was optimized in a 12.5 µl total volume containing 1.5 µl DNA template, 6.25 µl Master Mix contain-
ing MgCl2, Smart Taq polymerase (CinnaGene Co.; Tehran, Iran), and 0.1% BSA (TaKaRa; Kusatsu, Japan), 2 µl 
primer (outer and inner), and 2.75 µl water. The PCR products were separated by size by agarose gel electropho-
resis, and each genotype generated a specific band. Accuracy of the results was confirmed by direct sequencing of 
10% of each sample using the outer primers.

Obesity GRS calculation. GRS was calculated based on the 6 SNPs using the weighted method24,54. Each 
SNP was recoded as 0, 1, or 2 according to the number of risk alleles44,45 (BMI increasing alleles), and each SNP 
was weighted by its relative effect size (odds ratio) derived from the previously reported meta-analysis or original 
data (Table 2). We then calculated the GRS using the following equation:

= × + × + … + × ×    GRS (OR1 SNP1 OR2 SNP2 ORn SNPn) (n/sum of the ORs),

where OR is the odds ratio of each individual SNP on BMI, as derived from the previous literature and reported 
meta-analysis46,49,52, n is 6, and sum of the ORs is 8.18 in the current analysis. The GRS ranged from 0 to 12, and 
each point of the GRS corresponded to each single risk allele.

Definitions. Obesity was defined as a BMI ≥ 30 kg/m2, and a BMI between 18.5 and 24.9 classified a person as 
having a normal weight55. The WC > 95 cm for both genders56, as well as WHR > 0.8 in men and > 0.9 in women, 
were considered as indicators of abdominal obesity57.

Statistical analysis. The descriptive analysis consisted of a comparison of qualitative and quantitative var-
iables between cases and controls using the Chi square and Student t test, respectively; the genotype and allele 
frequencies for the analyzed polymorphisms were obtained using Power-Marker software. Pearson’s Chi-square 
statistic test was used to calculate the Hardy-Weinberg equilibrium.

Conditional logistic regression was used to estimate the interactions of SNPs and GRS (GRS ≥ 6, GRS < 6) 
with quartiles of dietary fiber intake (normal distribution) (Q1: < 7.06, Q2:7.06–9.13, Q3:9.14–11.26, 
Q4 > 11.26 g/4186 KJ) or high and low dietary fiber (≥14 and < 14 gram/gay)58 in relation to obesity, after 
adjustment for educational level (≤14 and > 14 years) and energy intake. Two likelihood scores were obtained 
by performing this statistical analysis, with and without the interaction terms; the P value for interaction was 
determined by performing the likelihood ratio test.

Conditional logistic regression was used to generate odds ratios (ORs) for obesity of individuals as carriers or 
non-carriers of risk alleles of each SNP across quartiles of dietary fiber intake. The highest quartile of dietary fiber 
intake and the homozygote group with a major allele were examined as the reference group. Participants were 
divided into two groups based on the median GRS. Unconditional logistic regression was performed to estimate 
the interactions of SNPs and GRS with quartiles of dietary fiber intake in relation to abdominal obesity. All ORs 
were adjusted for variables proven to be associated with obesity, including age, gender, educational level, smoking 
status (current, ex-smoker, or never smoked), physical activity (low, moderate, and high) and energy intake. The 
P value for trend across the quartiles of dietary fiber was determined using logistic regression, with the median 
of each quartile of dietary fiber intake as a continuous variable. Data were analyzed using the STATA statistical 
package v.12.0 or the Statistical Package for Social Sciences (Version 20.0; SPSS Inc., IBM, New York, NY, USA).

Quartiles of dietary fiber intake
Low fiber 
intake

High fiber 
intake

P for 
trend

P for 
interactionQ1 Q2 Q3 Q4

P for 
trend

P for 
interaction  < 14 gr  ≥ 14 gr

Obesity 0.01 0.004

GRS ≥ 6 1.83 (1.32–2.54) 1.30 (0.81–2.07) 0.80 (0.49–1.32) 0.67 (0.41–1.10) 0.004 2.74 (2.40–3.35) 1 0.0005

GRS < 6 1.27 (0.80–2.01) 0.82 (0.52–1.31) 0.80 (0.49–1.30) 1 0.71 0.64 (0.29–1.45) 0.55 (0.29–1.02) 0.34

Abdominal obesity 0.38 0.83

GRS ≥ 6 1.00 (0.62–1.62) 0.88 (0.54–1.37) 0.79 (0.46–1.32) 0.70 (0.44–1.12) 0.07 1.13 1 0.55

GRS < 6 0.99 (0.60–1.64) 1.10 (0.66–1.82) 1.23 (0.75–2.02) 1 0.68 0.98 (0.69–1.38) 0.89 (0.56–1.40) 0.70

High WHR 0.14 0.06

GRS ≥6 1.29 (0.63–2.64) 1.41 (0.54–1.37) 1.68 (0.83–3.37) 1.13 (0.53–2.40) 0.93 0.86 (0.14–2.15) 1 0.70

GRS < 6 1.84 (0.90–3.77) 2.12 (1.05–4.30) 1.86 (0.91–3.81) 1 0.06 2.45 (1.64–3.94) 2.13 (1.21–3.75 0.03

Table 6. Adjusted ORs (95%CI) for obesity and abdominal obesity according to categories of dietary fiber 
intake and GRSa. OR: Odds Ratio, Q: Quartiles of dietary fiber intake (Q1: < 7.06, Q2: 7.06–9.13, Q3: 9.14–
11.26, Q4 > 11.26 g/4186 KJ), GRS: Genetic risk score, was calculated on the basis of the 6 selected single 
nucleotide polymorphisms of fat mass and obesity associated gene (FTO) using a weighted method. ORs (95% 
CI) were calculated using conditional logistic regression model, adjusted for education level and energy intake. 
Participants were classified (8 groups) according to quartiles of dietary fiber intake and GRS. The highest 
quartile of dietary fiber intake and GRS < 6 was used as the reference group; also participants were classified 
(4 groups) according to low and high fiber intake and GRS. The high fiber intake and GRS > 6 was used as the 
reference group.
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Data availability. The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

References
 1. Herrera, B. M. & Lindgren, C. M. The genetics of obesity. Curr. Diab. Rep. 10, 498–505 (2010).
 2. Maes, H. H., Neale, M. C. & Eaves, L. J. Genetic and environmental factors in relative body weight and human adiposity. Behav. 

Genet. 27, 325–351 (1997).
 3. Vasan, S. K. et al. FTO genetic variants and risk of obesity and type 2 diabetes: a meta-analysis of 28,394 Indians. Obesity (Silver 

Spring). 22, 964–970 (2014).
 4. Vimaleswaran, K. S. & Loos, R. J. Progress in the genetics of common obesity and type 2 diabetes. Expert. Rev. Mol. Med. 12, e7 

(2010).
 5. Olszewski, P. K. et al. Hypothalamic FTO is associated with the regulation of energy intake not feeding reward. BMC. Neurosci. 10, 

129 (2009).
 6. Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 

937–948 (2010).
 7. Li, H. et al. Association of genetic variation in FTO with risk of obesity and type 2 diabetes with data from 96,551 East and South 

Asians. Diabetologia. 55, 981–995 (2012).
 8. Qi, L. & Cho, Y. A. Gene-environment interaction and obesity. Nutr Rev 66, 684–694 (2008).
 9. Tucker, L. A. & Thomas, K. S. Increasing total fiber intake reduces risk of weight and fat gains in women. J. Nutr. 139, 576–581 

(2009).
 10. Bahadoran, Z., Mirmiran, P., Hosseini-Esfahani, F. & Azizi, F. Fast food consumption and the risk of metabolic syndrome after 

3-years of follow-up: Tehran Lipid and Glucose Study. Eur. J. Clin. Nutr. 67, 1303–1309 (2013).
 11. Grooms, K. N., Ommerborn, M. J., Pham, D. Q., Djousse, L. & Clark, C. R. Dietary fiber intake and cardiometabolic risks among US 

adults, NHANES 1999-2010. Am. J. Med. 126(1059–1067), e1051–1054 (2013).
 12. Iqbal, S. I., Helge, J. W. & Heitmann, B. L. Do energy density and dietary fiber influence subsequent 5-year weight changes in adult 

men and women? Obesity (Silver Spring). 14, 106–114 (2006).
 13. Birketvedt, G. S., Aaseth, J., Florholmen, J. R. & Ryttig, K. Long-term effect of fibre supplement and reduced energy intake on body 

weight and blood lipids in overweight subjects. Acta. Medica. (Hradec Kralove) 43, 129–132 (2000).
 14. Pittler, M. H. & Ernst, E. Guar gum for body weight reduction: meta-analysis of randomized trials. Am. J. Med. 110, 724–730 (2001).
 15. Hays, N. P. et al. Effects of an ad libitum low-fat, high-carbohydrate diet on body weight, body composition, and fat distribution in 

older men and women: a randomized controlled trial. Arch. Intern. Med. 164, 210–217 (2004).
 16. Jenkins, D. J. et al. Effect of wheat bran on glycemic control and risk factors for cardiovascular disease in type 2 diabetes. Diabetes. 

Care. 25, 1522–1528 (2002).
 17. Rigaud, D., Ryttig, K. R., Angel, L. A. & Apfelbaum, M. Overweight treated with energy restriction and a dietary fibre supplement: a 

6-month randomized, double-blind, placebo-controlled trial. Int. J. Obes. 14, 763–769 (1990).
 18. Villegas, R. et al. Gene-carbohydrate and gene-fiber interactions and type 2 diabetes in diverse populations from the National Health 

and Nutrition Examination Surveys (NHANES) as part of the Epidemiologic Architecture for Genes Linked to Environment 
(EAGLE) study. BMC. Genet. 15, 69 (2014).

 19. Vimaleswaran, K. S. et al. Interaction between FTO gene variants and lifestyle factors on metabolic traits in an Asian Indian 
population. Nutr. Metab. (Lond) 13, 39 (2016).

 20. Lappalainen, T. et al. Association of the fat mass and obesity-associated (FTO) gene variant (rs9939609) with dietary intake in the 
Finnish Diabetes Prevention Study. Br. J. Nutr. 108, 1859–1865 (2012).

 21. Rukh, G. et al. Genetic susceptibility to obesity and diet intakes: association and interaction analyses in the Malmo Diet and Cancer 
Study. Genes. Nutr. 8, 535–547 (2013).

 22. Ortega-Azorin, C. et al. Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are 
modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc. Diabetol. 11, 137 (2012).

 23. Razquin, C. et al. A 3-year intervention with a Mediterranean diet modified the association between the rs9939609 gene variant in 
FTO and body weight changes. Int. J. Obes. (Lond) 34, 266–272 (2010).

 24. Qi, Q. et al. Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. 
BMJ. 348, g1610 (2014).

 25. Howarth, N. C., Saltzman, E. & Roberts, S. B. Dietary fiber and weight regulation. Nutr. Rev. 59, 129–139 (2001).
 26. Bao, W., Rong, Y., Rong, S. & Liu, L. Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and 

meta-analysis. BMC. Med. 10, 119 (2012).
 27. Jenkins, D. J. et al. Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. Br. Med. J. 1, 1392–1394 (1978).
 28. Karhunen, L. J., Juvonen, K. R., Huotari, A., Purhonen, A. K. & Herzig, K. H. Effect of protein, fat, carbohydrate and fibre on 

gastrointestinal peptide release in humans. Regul. Pept. 149, 70–78 (2008).
 29. Wang, Z. Q. et al. Effects of dietary fibers on weight gain, carbohydrate metabolism, and gastric ghrelin gene expression in mice fed 

a high-fat diet. Metabolism. 56, 1635–1642 (2007).
 30. Sanderson, I. R. Short chain fatty acid regulation of signaling genes expressed by the intestinal epithelium. J. Nutr. 134, 2450S–2454S 

(2004).
 31. Miller, S. J., Zaloga, G. P., Hoggatt, A. M., Labarrere, C. & Faulk, W. P. Short-chain fatty acids modulate gene expression for vascular 

endothelial cell adhesion molecules. Nutrition. 21, 740–748 (2005).
 32. Burger-van Paassen, N. et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for 

epithelial protection. Biochem. J. 420, 211–219 (2009).
 33. McKay, J. A. & Mathers, J. C. Diet induced epigenetic changes and their implications for health. Acta. Physiol. (Oxf) 202, 103–118 

(2011).
 34. Kersten, S., Desvergne, B. & Wahli, W. Roles of PPARs in health and disease. Nature. 405, 421–424 (2000).
 35. Azizi, F. et al. Cardiovascular risk factors in an Iranian urban population: Tehran lipid and glucose study (phase 1). Soz. 

Praventivmed. 47, 408–426 (2002).
 36. Farahmand, M., Tehrani, F. R., Amiri, P. & Azizi, F. Barriers to healthy nutrition: perceptions and experiences of Iranian women. 

BMC. Public. Health. 12, 1064 (2012).
 37. Hosseini Esfahani, F., Asghari, G., Mirmiran, P. & Azizi, F. Reproducibility and Relative Validity of Food Group Intake in a Food 

Frequency Questionnaire Developed for the Tehran Lipid and Glucose Study. J. Epidemiol. 20, 150–158 (2010).
 38. Mirmiran, P., Esfahani, F. H., Mehrabi, Y., Hedayati, M. & Azizi, F. Reliability and relative validity of an FFQ for nutrients in the 

Tehran lipid and glucose study. Public. Health. Nutr. 13, 654–662 (2010).
 39. Food composition table (FCT). Food and Nutrition Information Center, US Department of Agriculture, www.nal.usda.gov/fnic/

foodcomp (2010).
 40. Azar, M. & Sarkisian, E. Food composition table of Iran. (National Nutrition and Food Research Institute, Shahid Beheshti University 

Press, 1980).

http://www.nal.usda.gov/fnic/foodcomp
http://www.nal.usda.gov/fnic/foodcomp


www.nature.com/scientificreports/

9SCIENTIFIC REPoRTS |  (2017) 7:18057  | DOI:10.1038/s41598-017-18386-8

 41. Ainsworth, B. E. et al. Compendium of physical activities: an update of activity codes and MET intensities. Med. Sci. Sports. Exerc. 
32, S498–504 (2000).

 42. Kriska, A. M. et al. Development of questionnaire to examine relationship of physical activity and diabetes in Pima Indians. Diabetes. 
Care. 13, 401–411 (1990).

 43. Momenan, A. A. et al. Reliability and validity of the Modifiable Activity Questionnaire (MAQ) in an Iranian urban adult population. 
Arch. Iran. Med. 15, 279–282 (2012).

 44. GWAS Catalog. The NHGRI-EBI Catalog of published genome-wide association studies., https://www.ebi.ac.uk/gwas/ (2017).
 45. PheGenI, Phenotype-Genotype Integrator., https://www.ncbi.nlm.nih.gov/gap/phegeni (2017).
 46. Lee, H. J. et al. Effects of common FTO gene variants associated with BMI on dietary intake and physical activity in Koreans. Clin. 

Chim. Acta. 411, 1716–1722 (2010).
 47. McCaffery, J. M. et al. Obesity susceptibility loci and dietary intake in the Look AHEAD Trial. Am. J. Clin. Nutr. 95, 1477–1486 

(2012).
 48. Moore, S. C. et al. Common genetic variants and central adiposity among Asian-Indians. Obesity. (Silver Spring) 20, 1902–1908 

(2012).
 49. Peng, S. et al. FTO gene polymorphisms and obesity risk: a meta-analysis. BMC. Med. 9, 71 (2011).
 50. Tanaka, T. et al. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient 

intake. Am. J. Clin. Nutr. 97, 1395–1402 (2013).
 51. Wing, M. R. et al. Analysis of FTO gene variants with measures of obesity and glucose homeostasis in the IRAS Family Study. Hum. 

Genet. 125, 615–626 (2009).
 52. Alharbi, K. K. et al. Influence of adiposity-related genetic markers in a population of saudi arabians where other variables influencing 

obesity may be reduced. Dis. Markers. 2014, 758232 (2014).
 53. Miller, S. A., Dykes, D. D. & Polesky, H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic. 

Acids. Res. 16, 1215 (1988).
 54. Qi, Q. et al. Sugar-sweetened beverages and genetic risk of obesity. N. Engl. J. Med. 367, 1387–1396 (2012).
 55. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 363, 157-163, 

(2004).
 56. Azizi, F. et al. Appropriate waist circumference cut-off points among Iranian adults: the first report of the Iranian National 

Committee of Obesity. Arch. Iran. Med. 13, 243–244 (2010).
 57. Waist Circumference and Waist–Hip Ratio: Report of a WHO Expert Consultation. (World Health Organization, 2008).
 58. Dietary guidelines for Americans 2015-2020. Eight edn, (2015).

Acknowledgements
The study protocol was approved by the research committee of the Research Institute for Endocrine Sciences, 
Shahid Beheshti University of Medical Sciences, Tehran, Iran (Grant Number 840). The authors wish to 
acknowledge Ms. Niloofar Shiva for critical editing of English grammar and syntax of the manuscript. The 
authors thank Iran Science Elites Federation for their enthusiastic support.

Author Contributions
The author’s contributions are as follows: F.H.-E., G.K., M.-S.D. and B.S.-K. designed the study, collected and 
analyzed the data, and wrote the manuscript; F.A., M.-S.D. and P.M. supervised the research and critically revised 
the manuscript for important intellectual content.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

https://www.ebi.ac.uk/gwas/
https://www.ncbi.nlm.nih.gov/gap/phegeni
http://creativecommons.org/licenses/by/4.0/

	The interaction of fat mass and obesity associated gene polymorphisms and dietary fiber intake in relation to obesity pheno ...
	Results
	Interactions of SNPs and dietary fiber intake in relation to obesity. 
	Interactions of SNPs and dietary fiber intake in relation to abdominal obesity. 
	Interactions of obesity genetic risk score and dietary fiber intake in relation to obesity and abdominal obesity. 

	Discussion
	Materials and Methods
	Study population. 
	Measurements. 
	Genotyping. 
	Obesity GRS calculation. 
	Definitions. 
	Statistical analysis. 
	Data availability. 

	Acknowledgements
	Table 1 Characteristics of the study population in cases and controls† (Tehran Lipid and Glucose Study).
	Table 2 Allele, genotype frequency and risk alleles of FTO SNPs in cases (obese) and controls (non-obese): Tehran Lipid and Glucose Study.
	Table 3 Adjusted ORs (95%CI) for obesity according to quartiles of dietary fiber intake and FTO SNP genotypesa (Tehran Lipid and Glucose Study).
	Table 4 Adjusted ORs (95%CI) for abdominal obesity according to quartiles of dietary fiber intake and FTO SNP genotypes (Tehran Lipid and Glucose Study).
	Table 5 Adjusted ORs (95%CI) for high waist to hip ratio (WHR) according to quartiles of dietary fiber intake and FTO SNP genotypes (Tehran Lipid and Glucose Study).
	Table 6 Adjusted ORs (95%CI) for obesity and abdominal obesity according to categories of dietary fiber intake and GRSa.




