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Effects of maternal and fetal LEP 
common variants on maternal 
glycemic traits in pregnancy
Rong Lin1, Hongfang Ju2, Ziyu Yuan3,4, Caicai Zhang5, Liangliang Zeng1, Yuantian Sun1, 
Zhenyu Su1 & Li Jin3,4,6

Previous studies suggest that leptin (LEP) has an important role in glucose metabolism in the 
nonpregnant state. During pregnancy, circulating maternal concentrations of leptin rise significantly, 
mainly due to increased secretion of leptin from maternal adipose tissue and placenta. This study 
aimed to analyze the impact of maternal and fetal common LEP variants on glucose homeostasis in the 
pregnant state. Several glycemic traits, including fasting plasma glucose, fasting plasma insulin (FPI), 
and plasma glucose 1 hour after a 50-g oral glucose load, were measured in 1,112 unrelated Chinese 
Han pregnant women at 24–28 weeks gestation. Homeostatic model assessment (HOMA) was used to 
assess beta cell function (HOMA1-β and HOMA2-β) and insulin resistance (HOMA1-IR and HOMA2-IR).
The relationships between glycemic traits and 12 LEP variants were determined. After applying the 
Bonferroni correction, we detected that (1) maternal rs10954173 and fetal rs10244329 were associated 
with maternal FPI although the effect of fetal rs10244329 may be not independent of maternal 
rs10244329, and (2) maternal rs12537573 was associated with maternal FPI and HOMA2-IR. This 
study provides genetic evidence that both maternal and fetal LEP polymorphisms may affect maternal 
glucose metabolism in pregnancy.

Increasing maternal glucose concentrations during pregnancy are correlated with adverse pregnancy outcomes 
including birth weight above the 90th percentile, primary cesarean delivery, neonatal hypoglycemia, and fetal 
hyperinsulinemia1. These correlations are continuous over the entire range of maternal glucose concentrations, 
even among those concentrations below the diagnostic cut points for gestational diabetes mellitus (GDM). No 
specific concentration, at which elevated maternal glucose concentrations became clinically important, has been 
identified. Gestational glycemic traits and GDM are considered to result from the complex interplay of both 
genetic and environmental factors2,3. A population-based study has yielded heritability estimates ranging between 
30 and 71% for fasting plasma glucose (FPG) concentrations during pregnancy3.

Leptin, a circulating hormone, is secreted abundantly from adipose tissue. It regulates metabolism and energy 
homeostasis4. Several studies have shown that leptin can modulate insulin secretion5. Common variants in the 
human leptin (LEP) gene have been demonstrated to associate with leptin concentrations6–8, fasting serum insulin 
concentration9, insulin resistance9 and type 2 diabetes mellitus (T2DM)9. Given the overlap in genes associated 
with glycemic traits in gravid and nongravid populations, it may be hypothesized that maternal LEP variants may 
be associated with maternal glucose concentration or/and related traits in pregnancy.

Recent reports have suggested that leptin may play an important role in the biology of pregnancy10. During 
pregnancy, circulating maternal concentrations of leptin rise to maximal values in the second trimester, plateau 
in the third trimester and drop below pre-pregnancy concentrations around delivery11,12. The main source of 
increased maternal leptin secretion during pregnancy could be maternal adipose tissue and placenta. That is 
to say, leptin from the placenta also contributes to the rise in maternal concentrations of leptin. Leptin is also 
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produced by nonadipose tissue, namely, placental cytotrophoblasts and syncytiotrophoblasts, villous vascular 
endothelial cells, and amnion cells from uteri of pregnant women13,14. Pregnant women secrete a considerable 
amount of leptin from the placenta into the maternal circulation as compared with nonpregnant obese women13. 
The placenta might be capable of producing equal or even higher concentrations of leptin than adipose tissue15,16. 
Human LEP gene has a placental specific upstream enhancer17, implying that, in human, placental LEP is differ-
entially regulated when compared to LEP of adipose origin.

An investigation on leptin expression in third trimester placenta showed that abnormal pregnancies com-
plicated with maternal insulin-dependent diabetes or GDM exhibited higher concentrations of placental lep-
tin mRNA and protein relative to normal pregnancies18. Leptin expression increases in placentas from GDM19. 
Plasma leptin was higher in pregnant women with GDM than in pregnant women with normal glucose tolerance 
and increased in both groups when compared with the non-pregnant women20,21. GDM is a pathology character-
ized by increased placental leptin contributions to enhanced maternal leptin concentrations. Thus we hypothe-
sized that placental variants in the human LEP gene might be related to maternal glucose concentration or related 
traits in pregnancy. The umbilical cord blood, fetus, placental cytotrophoblasts and syncytiotrophoblasts, villous 
vascular endothelial cells, and amnion cells from uteri of pregnant women have the same DNA. In this study, the 
DNA extracted from umbilical cord blood was used to represent the DNA of the placenta and fetus.

In the present study, we investigated the distribution of common LEP variants in Chinese pregnant women 
and their fetuses. Then, we compared maternal glucose concentrations and related traits between different mater-
nal and fetal genotypes to identify whether these maternal and fetal variants are associated with differences in 
glucose metabolism in Chinese pregnant women. The objective of this study was to investigate the influence of 
maternal and fetal common variants in the LEP gene on plasma glucose, insulin values, and insulin resistance in 
the fasted state among pregnant women.

Results
Strong pair-wise linkage disequilibrium (LD) was observed between the single nucleotide polymorphisms (SNPs) 
(each D’ > 0.80) except between SNP 9 and SNP 1–7, between SNP 8 and 10, between SNP 8 and 12, as well as 
between SNP 4 and 12 (Fig. 1A). The values of pair-wise r2 between SNP 1, 2, 3 and 4 were all greater than 0.80 
which indicated that SNP 1, 2, 3 and 4 were highly linked with each other. The values of pair-wise r2 (1) between 
SNP 5, 6 and 7, (2) between SNP 6, 7 and 11, as well as (3) between SNP 10 and 12 were all also greater than 0.80 
(Fig. 1B). Therefore, we arbitrarily selected P < 0.05/5 = 0.01 for LEP as nominally significant since it corresponds 
to a corrected P-value of 0.05 after correction for 5 independent SNPs in the 12 SNPs analyzed in the study. SNP 
1–7 were adjacent and in LD with each pair-wise r2 greater than 0.75. Therefore, SNP 1–7 were grouped together 
and designated as Block 1. We examined the associations between each genotyped SNP and glycemic traits and 
presented only the results that were statistically significant at the 0.05 level in Supplementary Table S1 and those 
statistically significant at the 0.01 level in Table 1.

Association with 24–28-week maternal fasting plasma glucose. Neither maternal nor fetal LEP 
SNPs were associated with 24–28-week maternal FPG (data not shown). None of maternal-fetal LEP genotype 
combinations showed association with 24–28-week maternal FPG.

Association with 24–28-week maternal plasma glucose 1 hour after the consumption of a 
50-g oral glucose load. Among the 12 LEP SNPs, 5 maternal SNPs (rs1349419, rs7799039, rs13228377, 
rs11761556 and rs2060715) were associated with 24–28-week maternal plasma glucose 1 hour after a 50-g oral 
glucose load at P < 0.05 (Supplementary Table S1): homozygotes of the minor allele had significantly higher mean 
glucose concentrations than heterozygotes and homozygotes of the major allele. Among the 5 associated SNPs, 

Figure 1. Linkage disequilibrium (LD) plot of the LEP locus in all pregnant subjects. This Figure shows LD 
values D’ (A) and r2 (B) between each SNP. Each diamond contains the LD value between the two SNPs that face 
each of the upper sides of the diamond, ex: r2 between rs1349419 (SNP 1) and rs2167270 (SNP 4) is 0.85; the 
redder the diamond, the higher the LD value. (SHEsis Software, ver. online)39
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rs1349419, rs7799039 and rs13228377 were all in Block 1. SNP rs11761556 in 3′-untranslated region (UTR) and 
rs2060715 in the 3′-flanking region were in high LD (r2 = 0.96).

One fetal SNP (rs41457646) in 3′-UTR was associated with 24–28-week maternal plasma glucose 1 hour after 
a 50-g oral glucose load (P = 0.019). Maternal-fetal genotype combination of SNP rs41457646 was also associated 
with 24–28-week maternal plasma glucose 1 hour after a 50-g oral glucose load (P = 0.029), but lost its signifi-
cance after adjustment for fetal SNP rs41457646 (P = 0.213), indicating that this association might be caused by 
the effect of fetal SNP rs41457646.

No significant associations were identified at P < 0.01. That is to say, all aforementioned associations did not 
pass Bonferroni correction.

Association with 24–28-week maternal fasting plasma insulin (FPI). Six maternal SNPs (rs1349419, 
rs2167270, rs10244329, rs11763517, rs10954173 and rs12537573) were associated with 24–28-week maternal FPI 
at P < 0.05 before adjustment (Supplementary Table S1): for each SNP, subjects homozygous for the minor allele 
had lower 24–28-week FPI concentrations compared with those carrying the major allele. Of note, 5 associated 
SNPs (rs1349419, rs2167270, rs10244329, rs11763517 and rs10954173) were all in Block 1, whereas rs12537573 
is in the 3′-flanking region of LEP.

Six fetal LEP SNPs (rs1349419, rs7799039, rs13228377, rs10244329, rs11763517 and rs10954173) in Block 
1 were all associated with 24–28-week maternal FPI at P < 0.05: subjects having newborns homozygous for the 
minor allele had lower 24–28-week FPI concentrations compared with those having newborns carrying the major 
allele.

Maternal-fetal genotype combinations of six SNPs (rs1349419, rs7799039, rs10244329, rs11763517, 
rs10954173 and rs12537573) were associated with 24–28-week maternal FPI at P < 0.05, but lost its significance 
after adjustment for corresponding maternal or fetal SNPs (all P > 0.05), suggesting that these associations might 
be caused by the effects of maternal or fetal SNPs.

If we apply a Bonferroni correction (P < 0.01), maternal SNP rs10954173 (in Block 1), maternal SNP 
rs12537573 (in the 3′-flanking region) and fetal SNP rs10244329 (also in Block 1) remained associated with 
24–28-week maternal FPI (P = 0.008, 0.006 and 0.006, respectively) (Table 1).

Association with 24–28-week maternal homeostasis model assessment (HOMA) β cell function 
index (HOMA-β). Only two fetal LEP SNPs both in Block 1 (rs10244329 and rs10954173) were associated 
with 24–28-week maternal HOMA2-β at P < 0.05 before adjustment (Supplementary Table S1): subjects having 
newborns homozygous for the minor allele had lower 24–28-week HOMA2-β compared with those having new-
borns carrying the major allele. However, both associations did not pass the Bonferroni threshold of P < 0.01.

Association with 24–28-week maternal HOMA insulin resistance index (HOMA-IR). Three 
maternal LEP SNPs (rs11763517 and rs10954173 in Block 1 as well as rs12537573 in the 3′-flanking region) were 
associated with 24–28-week maternal HOMA1-IR at P < 0.05 (Supplementary Table S1): homozygous carriers 
of the minor allele had lower 24–28-week HOMA1-IR compared with carriers of the major allele. Similarly, the 
3 maternal SNPs and another maternal SNP (rs2167270 in Block 1) were associated with 24–28-week mater-
nal HOMA2-IR at P < 0.05 before adjustment: homozygous carriers of the minor allele had lower 24–28-week 

Genotype N
Geometric mean(95% 
confidence interval) P Pa Pb Pc

24–28-week maternal fasting plasma insulin, pmol/l

SNP 7 rs10954173_M

GG 550 51.69(49.42–54.07)

0.008 0.011 0.009* 0.008*GA 288 55.36(51.72–59.25)

AA 39 41.66(34.77–49.92)

SNP 11 rs12537573_M

AA 577 51.45(49.24–53.77)

0.006 0.004 0.003* 0.004*AG 274 55.80(52.02–59.87)

GG 27 40.25(32.91–49.22)

SNP 5 rs10244329_F

AA 364 54.27(51.06–57.68)

0.006 0.008 0.087# 0.098#AT 257 50.70(47.17–54.49)

TT 35 39.21(32.45–47.38)

HOMA2-IR

SNP 11 rs12537573_M

AA 554 0.97(0.93–1.00)

0.004 0.004 1.40 × 10−4* 1.75 × 10−4*AG 264 1.01(0.96–1.07)

GG 26 0.74(0.61–0.90)

Table 1. Relationship between LEP common variants and glycemic traits. Values are shown only for 
polymorphisms with P < 0.01 in analysis of variance. aAdjusted for maternal age at delivery, newborn sex, 
prepregnancy gravidity and prepregnancy parity by analysis of covariance. bAdjusted for corresponding 
maternal or fetal variants by analysis of covariance. Adjustments for corresponding fetal variants were marked 
with * and adjustments for corresponding maternal variants were marked with #. cAdjusted for corresponding 
maternal or fetal variants, maternal age at delivery, newborn sex, prepregnancy gravidity and prepregnancy 
parity by analysis of covariance. M: maternal genotypes, F: fetal genotypes.
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HOMA2-IR compared with carriers of the major allele. Two fetal LEP SNPs in Block 1 (rs10244329 and 
rs10954173) were associated with 24–28-week maternal HOMA1-IR at P < 0.05 before adjustment: subjects 
delivering newborns homozygous for the minor allele had lower 24–28-week HOMA1-IR compared with those 
delivering newborns with the major allele. Similarly, the 2 fetal SNPs and another fetal SNP (rs13228377 in Block 
1) were associated with 24–28-week maternal HOMA2-IR at P < 0.05 before adjustment: subjects delivering new-
borns homozygous for the minor allele had lower 24–28-week HOMA2-IR compared with those delivering new-
borns with the major allele. Maternal and fetal genotype combinations of 2 SNPs (rs10244329 and rs10954173) 
were associated with 24–28-week maternal HOMA1-IR, and maternal and fetal genotype combinations of 4 SNPs 
(rs10244329, rs11763517, rs10954173 and rs12537573) were associated with 24–28-week maternal HOMA2-IR, 
but lost its significance after adjustment for corresponding maternal or fetal SNPs (all P > 0.05). With the use 
of a Bonferroni correction, only the association between maternal SNP rs12537573 and 24–28-week maternal 
HOMA2-IR again reaches significance (P = 0.004) (Table 1).

To summarize, at P < 0.05, we observed that (1) several maternal SNPs in Block 1 were associated with 
24–28-week maternal plasma glucose 1 hour after a 50-g oral glucose load, FPI, HOMA1-IR and HOMA2-IR, 
and (2) several fetal SNPs in Block 1 were associated with 24–28-week maternal FPI, HOMA2-β, HOMA1-IR and 
HOMA2-IR, suggesting that (1) there may be one or more functional variants in Block 1 which affect maternal 
glucose metabolism in pregnancy, and (2) both maternal and fetal LEP gene polymorphisms may affect maternal 
glucose metabolism during pregnancy.

In addition, at P < 0.05, we detected that (1) maternal SNP rs11761556 (in 3′-UTR) and rs2060715 (in the 
3′-flanking region) were in high LD (r2 = 0.96) and related to 24–28-week maternal plasma glucose 1 hour after 
a 50-g oral glucose load, (2) fetal SNP rs41457646 (in 3′-UTR) was also related to 24–28-week maternal plasma 
glucose 1 hour after a 50-g oral glucose load, and (3) maternal SNP rs12537573 (in the 3′-flanking region) was 
associated with 24–28-week maternal FPI, HOMA1-IR and HOMA2-IR.

However, applying a cut off for the Bonferroni-corrected P-values of 0.01, we only observed that (1) maternal 
SNP rs10954173 (in Block 1) and fetal SNP rs10244329 (also in Block 1) were associated with 24–28-week mater-
nal FPI, (2) maternal SNP rs12537573 (in the 3′-flanking region) was associated with 24–28-week maternal FPI 
and HOMA2-IR.

All four associations identified at P < 0.01 remained significant after controlling maternal age at delivery, new-
born sex, prepregnancy gravidity and prepregnancy parity (Table 1). But when adjusted for corresponding mater-
nal or fetal genotypes, only three associations remained significant and the association between fetal rs10244329 
and 24–28-week maternal FPI lost significance (P = 0.087). One explanation is that the effect of fetal rs10244329 
may be not independent of maternal rs10244329. As Supplementary Table S2 shown, among mothers delivering 
newborns with AT genotype of rs10244329, those with TT genotype not AA or AT genotype showed significantly 
lower FPI compared to mothers delivering newborns with AA genotype.

We also explored the associations of maternal and fetal LEP variants with newborn birth weight but did not 
find any statistically significant association (data not shown).

Discussion
In the current study, we analyzed the association of 12 common LEP variants with maternal glycemic traits in 
Chinese Han mothers and their newborns. We could demonstrate that (1) maternal SNP rs10954173 (in Block 
1) and fetal SNP rs10244329 (also in Block 1) were associated with 24–28-week maternal FPI, although the effect 
of fetal rs10244329 may be not independent of maternal rs10244329, and (2) maternal SNP rs12537573 (in the 
3′-flanking region) was associated with 24–28-week maternal FPI and HOMA2-IR, after Bonferroni correc-
tion. These results extended previous findings that maternal genetic factors contribute to glucose metabolism 
during pregnancy. To our knowledge, there have been few assessments of associations between fetal variants as 
well as maternal-fetal genotype combinations and gestational glycemic traits. We detected that one fetal SNP 
was associated with 24–28-week maternal FPI. However, we did not detect any significant associations between 
maternal-fetal genotype combinations and maternal glycemic traits.

The current study identified LEP variants associated with 24–28-week maternal FPI and HOMA2-IR after 
Bonferroni correction. Administration of leptin antagonists to normal mice increases plasma insulin levels and 
promotes insulin resistance22. Leptin inhibits insulin secretion and insulin gene expression. In turn, insulin stim-
ulates leptin synthesis and secretion5,23,24. This is a hormonal regulatory feedback loop. When compared to the 
nonpregnant state, leptin is 2–3 fold higher with a peak at around 28 weeks of gestation25, which may visibly affect 
FPI and HOMA-IR around 28 weeks of gestation.

Hoffstedt et al.26 examined whether SNP 2 (rs7799039, also named G-2548A) influences leptin expression. 
Adipose tissue leptin secretion rate in subjects with the AA genotype (n = 11) was twice as high as in GA/GG 
subjects (n = 28). Moreover leptin mRNA levels in AA subjects (n = 7) were about 60% higher than in GA/GG 
subjects (n = 6). These suggested that SNP 2 or/and other variants in LD with SNP 2 may possibly affect leptin 
expression at the transcriptional level.

The electrophoretic mobility shift assay revealed that nuclear extracts derived from both U937 cells and 
human adipocytes form a protein-DNA complex with the leptin SNP 2 G/A polymorphic site and bind with 
higher affinity to the SNP 2 A-site26. This indicated that SNP 2 might indeed modify the LEP transcription rate, 
but did not exclude the possibility that other variants in LD with SNP 2 may also be regulatory polymorphic sites. 
Therefore, in this study, we investigated another 6 SNPs (SNP 1 and 3–7) which are in LD with SNP 2, and SNP 
1-7 are all located upstream of the translation start site (Supplementary Fig. S1) and in one block designated as 
Block 1.

Vasku et al.27 only examined maternal SNP 2 and showed that maternal SNP 2 was related to GDM. The pres-
ent study showed that (1) maternal SNP 2 was associated with maternal 50-g 1-h glucose concentrations between 
24 and 28 gestational weeks, and (2) fetal SNP 2 was associated with maternal fasting insulin concentrations 
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between 24 and 28 gestational weeks. But both associations did not pass Bonferroni correction. However, in 
the present study, maternal SNP 7 (rs10954173) and fetal SNP 5 (rs10244329), which both are in Block 1 and in 
LD with SNP 2, showed association with 24–28-week maternal FPI after Bonferroni correction. SNP 7 has been 
reported to be associated with T2DM9. SNP 7 and SNP 5 are located 632 and 3,383 bases upstream of the start 
codon ATG, respectively. Different associated SNPs were detected in the maternal and fetal LEP gene, which 
might be suspected due to a divergence in transcriptional regulation in placenta and maternal adipose tissue17,28. 
In human, a placental specific enhancer has been found in the LEP upstream17.

Another study investigated the effects of 15 maternal LEP SNPs on gestational fasting glucose in 3,836 white 
and 1,713 Thai pregnant women, and found no positive associations29. The present study revealed similar results.

SNP 4 (rs2167270, also named A19G) in 5′-UTR of LEP has been shown to be statistically significantly related 
to post-transplant diabetes mellitus30 and serum leptin concentrations in patients with differentiated thyroid can-
cer31. By comparison, the current study indicated that maternal SNP 4 was associated with 24–28-week maternal 
FPI and HOMA2-IR just at P < 0.05 but did not reach significance under the Bonferroni threshold.

SNP 9 (rs41457646) in 3′-UTR has been documented to be not correlated with fasting blood glucose, fasting 
serum insulin, HOMA1-IR in a non-gravid population9. Similarly, for SNP 9, none associations reached signif-
icance under the Bonferroni threshold, although fetal SNP 9 showed an association with 24–28-week maternal 
plasma glucose 1 hour after a 50-g oral glucose load at P < 0.05 in the current study.

SNP 10 (rs11761556) in 3′-UTR was identified to be associated with T2DM9. However, in the present study, 
only maternal SNP 10 was detected to be associated with 24–28-week maternal plasma glucose 1 hour after a 50-g 
oral glucose load at P < 0.05 but significance was lost after Bonferroni correction.

The allelic frequencies of the 12 LEP variants in the present study and East Asians were similar, but most of 
them are apparently distinct from those in other populations (Europeans, Africans, Ad Mixed Americans and 
South Asians) (available from the 1000 Genomes Project, based on GRCh38)32 (Supplementary Table S3). For 
example, except for SNP 9 (rs41457646), the allelic frequencies of other SNPs in East Asians and Europeans are 
obviously different. Genetic differences among populations may lead to some disparities of associations between 
genetic variation and complex traits among populations.

One limitation of our study is the relatively modest sample size. For most SNPs, the number of the genotype 
combination where both pregnant women and their children were homozygous for the minor allele was small, 
usually less than 10. So the analyses may not have enough statistical power to detect the associations between 
maternal glycemic traits and maternal-fetal gene combinations. One reason for this is the practical difficulties in 
collecting samples from mothers and their fetuses rather than just one. In the present study, only 513 mother-fetus 
pairs were recruited. We did not successfully collect umbilical cord blood samples for 416 mothers’ neonates and 
venous blood samples for 183 neonates’ mothers. Thus, replication of these associations in larger populations of 
pregnant women and their newborns will be needed to elucidate these results. Furthermore, how maternal and 
fetal genes interact is complex, and the interactions between different genes may be different. A simple additive 
effect is only one of them and so the analysis for maternal-fetal genotype combinations is just a preliminary 
attempt in our study. More mother-fetus pairs are required for deeper analyses.

Another limitation of our study is absence of functional evidence. Therefore, the significant SNPs are not 
eventually identified as the true causal variant. More comprehensive efforts and experimental studies are required 
to find the potential functional significance of SNP rs10954173, rs10244329 and rs12537573 or other variants 
linked to them in glucose metabolism in pregnancy.

In conclusion, our study shows that both maternal and fetal LEP SNPs are associated with maternal glycemic 
traits during pregnancy. This suggests that both maternal and fetal genes may affect maternal glucose metabolism. 
Several maternal common genetic variants have been associated with GDM or gestational glycemic traits, but lit-
tle is known about how fetal genetic variation influences GDM or maternal glycemic traits through the placenta. 
The present study demonstrated for the first time that fetal genetic variation at LEP is related to maternal glycemic 
traits in pregnancy.

Methods
Study population. The study involved 1,112 unrelated Chinese Han women who delivered singleton new-
borns at Taizhou People’s Hospital between October 2010 and June 2013. Subjects ranged from 19 to 44 years 
of age and their husbands were all Chinese Han. The antenatal visits for all subjects were conducted mainly in 
Taizhou People’s Hospital. All women were screened for GDM between 24 and 28 gestational weeks with a 50-g 
1-h glucose challenge test after overnight fasting of 8–14 hours. At the same time, fasting glucose and insulin 
concentrations were also determined. If the test was positive (fasting glucose ≥ 5.6 mmol/l or plasma glucose 
1 hour after ingestion of 50 g sugar ≥ 7.8 mmol/l), the women underwent an oral glucose tolerance test with 75 g 
sugar. GDM was diagnosed according to the American Diabetes Association (ADA) guideline33. Plasma glucose 
was measured by a hexokinase method (Cobas P800, Roche Diagnostics, Mannheim, Germany). Plasma insulin 
was analyzed using an electrochemiluminescence immunoassay on a Cobas e601 analyzer (Roche Diagnostics, 
Mannheim, Germany). Nearly 94.9% of subjects had fasting glucose concentrations less than 5.6 mmol/l. No pre-
vious diagnosis of diabetes type 1 and type 2, autoimmune and inflammatory diseases, neoplasmatic diseases and 
chronic infections was reported in any participant. We also excluded individuals who reportedly used antidiabetic 
medication before the screening.

Using the fasting insulin and glucose values, pancreatic β-cell function and insulin resistance were calculated 
using the HOMA analysis as follows: HOMA1-β = 20 × fasting insulin (μU/ml)/[fasting glucose (mmol/l)-3.5], 
HOMA1-IR = fasting insulin (μU/ml) × fasting glucose (mmol/l)/22.5. For a fasting glucose concentration less 
than 3.5 mmol/l would preclude calculation of a HOMA1-β, HOMA1-β of 25 subjects could not be determined. 
HOMA2-β and HOMA2-IR were also calculated with a HOMA2 Calculator v2.2 in subjects whose plasma glu-
cose and insulin fell into plausible ranges (glucose 3.0–25.0 mmol/l, insulin 20–400 pmol/l)34. HOMA2-β and 



www.nature.com/scientificreports/

6SCIEnTIFIC RepoRtS |  (2017) 7:17710  | DOI:10.1038/s41598-017-18117-z

HOMA2-IR values were available for 1019 (92%) out of 1,112 subjects. The higher the HOMA-β value the more 
the insulin the beta-cells have to secrete to handle existing blood glucose concentration, and the higher the 
HOMA-IR value the more the insulin resistance. For epidemiological studies, HOMA is more suitable and con-
venient, compared with the gold standard–more laborious euglycemic clamp35 or the frequently sampled intra-
venous glucose tolerance test36,37. HOMA1-IR mainly reflects hepatic insulin resistance, and HOMA2-IR reflects 
hepatic and peripheral insulin resistance34.

Basal characteristics of all subjects are given in Table 2. A few subjects had missing baseline data on fasting 
insulin concentrations (n = 51) or 50-g 1-h glucose concentrations (n = 53). Most of them (97.8%) delivered at 37 
to 42 weeks of gestation (mean 39.4 ± 1.1 weeks) and most of their newborns (98.7%) had birth weights between 
2500 and 4500 grams (mean 3400.9 ± 417.4 g).

For genomic DNA isolation, the mothers’ venous blood samples were collected in the days surrounding deliv-
ery, and the neonates’ umbilical cord blood samples were collected at birth after removal of contaminants and dis-
infection with alcohol on the cords’ surface. Finally, a total of 1,625 blood samples (i.e. 929 maternal venous blood 
samples and 696 neonatal cord blood samples) were collected for genomic DNA isolation, including 513 mater-
nal venous blood samples and 513 corresponding neonatal umbilical cord blood samples, 416 maternal venous 
blood samples without corresponding neonatal umbilical cord blood samples, as well as 183 neonatal umbilical 
cord blood samples without corresponding maternal venous blood samples. The study protocol was approved 
by the Ethics Committee of Hainan Medical College and the local Ethics Committee, and informed consent was 
obtained from each study participant. All methods were carried out in accordance with the approved guidelines.

SNP selection and genotyping. A combined tag and candidate SNP approach was used to select SNPs 
in LEP. Eight tag SNPs across the LEP gene and its 5 kb up-/downstream region (chromosome 7: 128236278. 
128262628 26.35 kbp, human genome reference assembly GRCh38/hg38), including rs7799039, rs2167270, 
rs10244329, rs11763517, rs2071045, rs41457646, rs11761556 and rs12537573, were selected on the basis of LD 
patterns observed in the phase III Han Chinese in Beijing (CHB) and Southern Han Chinese (CHS) populations 
with an r2 of at least 0.9 (Supplementary Fig. S1 and Table S3). Only SNPs with minor allele frequency (MAF) 
greater than 5% were considered. In addition, three SNPs located upstream of the translation start site (rs1349419, 
rs13228377 and rs10954173), as well as one SNP in the 3′-flanking region (rs2060715) were selected.

These 12 SNPs were genotyped in all samples using a custom-by-design 48-Plex SNPscanTM Kit (Cat#:G0104; 
Genesky Biotechnologies Inc., Shanghai, China), which was developed according to patented SNP genotyping 
technology by Genesky Biotechnologies Inc. As described by Chen et al.38, it was based on double ligation and 
multiplex fluorescence polymerase chain reactions. Maternal and fetal DNA samples were interspersed within 
96-well plates. Each plate included a negative control and 5 blind duplicate samples. Each polymorphism was 
successfully assayed in ≥99.9% of the samples (Supplementary Table S3). The concordance rates were more than 
99% based on 5.5% duplicate samples. Genotypes of all 12 SNPs fitted Hardy-Weinberg equilibrium (HWE) (all 
P > 0.05) (Supplementary Table S3).

Statistical analysis. HWE for each SNP was examined using a chi-squared test. Pair-wise LD based on the 
D’ and r2 statistics for the 12 SNPs was calculated by the SHEsis (http://analysis.bio-x.cn/myAnalysis.php)39 and 
SNPStats (http://bioinfo.iconcologia.net/snpstats/start.htm)40 softwares. The statistic D’ < 0.20 was thought to 
have no LD, D’ > 0.50 had a LD, D’ > 0.80 had a strong LD and D’ = 1 is in complete LD. The statistic r2 < 0.50 
was considered to have low LD, r2 > 0.50 had a moderate high LD, r2 > 0.80 had a high LD and r2 = 1 is in per-
fect LD. Variants were considered to be independent if the pair-wise r2 was less than 0.80. Because several SNPs 

Demographic N

Maternal age at delivery, years 1109 26.7 ± 3.8

Paternal age at delivery, years 1106 28.1 ± 4.4

Prepregnancy gravidity 1110 0.7 ± 1.0

Prepregnancy parity 1110 0.2 ± 0.4

Prepregnancy BMI, kg/m2 1092 20.7 ± 2.6

24–28-week maternal fasting plasma glucose, mmol/l 1112 4.53 ± 0.61

24–28-week maternal fasting plasma insulin, pmol/l 1061 65.19 ± 75.94

24–28-week maternal plasma glucose (1 hour after the 
consumption of a 50-g oral glucose load), mmol/l 1059 7.11 ± 1.44

HOMA1-β 1036 233.83 ± 263.85

HOMA1-IR 1036 1.94 ± 2.62

HOMA2-β 1019 128.31 ± 48.13

HOMA2-IR 1019 1.10 ± 0.61

Gestational age at delivery, weeks 1112 39.4 ± 1.1

Newborn sex, % male 1110 51.9%

Newborn birth weight, g 1110 3400.9 ± 417.4

Table 2. Clinical characteristics of study participants. Data are arithmetic mean ± standard deviation or 
percentages. BMI, body mass index; HOMA-β, homeostasis model assessment-β-cell function; HOMA-IR, 
homeostasis model assessment-insulin resistance.

http://analysis.bio-x.cn/myAnalysis.php
http://bioinfo.iconcologia.net/snpstats/start.htm
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tested were in high LD with each other and hence were far from independent, multiple testing adjustment was 
performed by a Bonferroni correction using the effective number of independent variants.

A natural log transformation was conducted for fasting insulin concentrations, HOMA1-β, HOMA1-IR, 
HOMA2-β and HOMA2-IR to provide an approximately normal distribution. The differences of maternal gly-
cemic traits among genotype groups were examined by analysis of variance (ANOVA) using Statistical Package 
for Social Science (SPSS; Chicago, IL, USA) version 15.0. If the mother fetus pair possessed exactly three or four 
copies of a specific allele, this combination may increase risk of high or low maternal glycemic traits. Thus, we 
also examined the differences of maternal glycemic traits among maternal-fetal genotype combination groups, 
in addition to maternal and fetal genotype groups, for each SNP. The genotypes and maternal-fetal genotype 
combinations were coded as minor allele dosage number. For example, for SNP rs41457646, A is the minor allele 
and G is the major allele, so the genotypes and maternal-fetal genotype combinations were recoded as shown in 
Supplementary Table S4.

Analysis of covariance (ANCOVA) was used to adjust for maternal age at delivery, newborn sex, prepregnancy 
gravidity and prepregnancy parity. To examine whether the effect of maternal genotypes on maternal glycemic 
traits was independent of the effect of corresponding fetal genotypes, the effect of maternal genotypes on mater-
nal glycemic traits was also adjusted by ANCOVA using corresponding fetal genotypes as categorical variables. 
For example, the effect of maternal rs12537573 genotypes on 24–28-week maternal FPI was adjusted for fetal 
rs12537573 genotypes. Similarly, the effect of fetal genotypes on maternal glycemic traits was also adjusted by 
ANCOVA using corresponding maternal genotypes as categorical variables. All P values were two sided.
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