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An Adaptive Cultural Algorithm 
with Improved Quantum-behaved 
Particle Swarm Optimization for 
Sonar Image Detection
Xingmei Wang1, Wenqian Hao2 & Qiming Li1

This paper proposes an adaptive cultural algorithm with improved quantum-behaved particle swarm 
optimization (ACA-IQPSO) to detect the underwater sonar image. In the population space, to improve 
searching ability of particles, iterative times and the fitness value of particles are regarded as factors 
to adaptively adjust the contraction-expansion coefficient of the quantum-behaved particle swarm 
optimization algorithm (QPSO). The improved quantum-behaved particle swarm optimization 
algorithm (IQPSO) can make particles adjust their behaviours according to their quality. In the belief 
space, a new update strategy is adopted to update cultural individuals according to the idea of the 
update strategy in shuffled frog leaping algorithm (SFLA). Moreover, to enhance the utilization of 
information in the population space and belief space, accept function and influence function are 
redesigned in the new communication protocol. The experimental results show that ACA-IQPSO can 
obtain good clustering centres according to the grey distribution information of underwater sonar 
images, and accurately complete underwater objects detection. Compared with other algorithms, 
the proposed ACA-IQPSO has good effectiveness, excellent adaptability, a powerful searching ability 
and high convergence efficiency. Meanwhile, the experimental results of the benchmark functions can 
further demonstrate that the proposed ACA-IQPSO has better searching ability, convergence efficiency 
and stability.

Sonar imaging has the advantages of long-distance detection and strong penetration. Therefore, it is being exten-
sively used for underwater inspections, hydrographic and bathymetric surveys, underwater positioning, dredging, 
cable-laying, pipe-line inspections, and numerous other marine applications. The underwater sonar image con-
tains three kinds of regions, including object-highlight, shadow and background regions. The purpose of object 
detection is to segment the object-highlight and shadow regions from complex background region and preserve 
as much of the original edge information of underwater sonar image as possible1. A number of techniques have 
been proposed to detect underwater objects of the sonar image. A fuzzy clustering method on the sonar image 
has been proposed to solve the detection problem2. However, fuzzy clustering is very sensitive to speckle noise. 
A Markov segmentation algorithm was used for three-class sonar image detection3. Later, many improved image 
detection algorithms on Markov random field model were proposed by scholars4. Although their results are satis-
factory, the processing procedures are quite complex and computationally costly. Maria Lianantonakis and Yvan 
R. Petillot developed active contours and level set methods, which were applied to the detection of regions like the 
seabed5. Subsequently, Implicit Active Contours were used in sonar image detection6. On this basis, Xiu-FenYe 
et al. proposed a new detection method of sonar images, Gauss-Markov random field model was integrated into 
level set energy function model to dynamically extract regions of interest7. Wang Xingmei et al. presented a nar-
rowband Chan-Vese model by adaptive ladder initialization to precisely and quickly detect underwater objects 
of sonar images8. However, sometimes if the block mode k-means clustering algorithm cannot quickly and accu-
rately complete initial segmentation, approximate position of object-highlight and shadow regions will not be 
obtained, and higher detection precision will not be possible.
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In recent years, the cultural algorithm (CA) has gradually attracted more global attention. It can provide a 
powerful framework for the solution of complicated problems9. Youlin Lu et al. proposed a hybrid multi-objective 
cultural algorithm to solve short-term hydrothermal scheduling problems, which combined the differential 
evolutionary algorithm with CA framework10. It can obtain a more accurate solution. Later, Zhou Wei et al. 
presented the cultural particle swarm optimization algorithm (CPSO) to solve the partner selection problems 
of virtual enterprise11. The proposed algorithm has some feasibility and efficiency. To solve the optimization 
problems, Noor H. Awad et al. proposed a CA with an improved local searching algorithm12. Compared with 
the basic CA, the performance of this algorithm is greatly improved. Mostafa Z. Ali et al. combined the niche 
algorithm with the Tabu search algorithm in CA to solve engineering optimization problems, which was efficient 
and robust to some extent13. Tianyu Liu et al. introduced the QPSO into CA to solve multiobjective optimiza-
tion problems14. The proposed algorithm has high efficiency. Through the comparative analysis, many intelligent 
optimization algorithms can be used as evolution strategy in the population space, which can increase pop-
ulation diversity, improve the searching ability and promote efficiency. Among intelligent optimization algo-
rithms, QPSO is one of most commonly used algorithms in the population space of CA. This algorithm supposes 
that particles have quantum behaviour such that particles are attracted by a quantum potential well centered on 
its local attractor. It has fewer parameters and a relatively good searching ability15. The contraction-expansion 
coefficient is the only parameter in the QPSO algorithm, which plays an important role in balancing the global 
and local searching abilities. However, it is a random value, which easily leads to blindness in the searching 
process. To solve this problem, the revised QPSO algorithm regarded iterative times as an important factor to 
adjust the contraction-expansion coefficient16. The contraction-expansion coefficient can linearly decrease with 
the increase of iterative times in the interval [0.5 1). Although this method is often used in practice, it only 
solves the linear problem and easily falls into the local optimal solution in the searching process of complex 
problems. Subsequently, in order to improve the performance of the QPSO algorithm, Jun Sun et al. further 
presented a diversity-maintained QPSO algorithm17. When the population diversity is lower than a set value, 
contraction-expansion coefficient is set as the boundary of convergence, or contraction-expansion coefficient 
linearly decreases. On this basis, Tian Jin constructed a new contraction-expansion coefficient using Sigmoid 
function to solve high-dimensional multimodal functions optimization problems in the QPSO algorithm18. This 
method can make the contraction-expansion coefficient decrease nonlinearly with the iterative times and increase 
the flexibility of the QPSO algorithm. Although these adjustments of the contraction-expansion coefficient in the 
QPSO algorithm can to some extent improve searching ability, these algorithms only regard iterative times as the 
factor to adjust the contraction-expansion coefficient. In fact, the quality of particles also influences their search-
ing ability. Therefore, the fitness value is an important factor to adjust the contraction-expansion coefficient.

In addition, the communication protocol between population space and belief space can influence the performance 
of CA. Accept function is used to set the rate of accepted individuals in the population space, and the rate of accepted 
individuals usually decreases with iterative times. Ricardo Landa Becerra and Carlos A.Coello improved accept func-
tion by resetting the rate of accepted individuals when the best solution had not changed over the last several itera-
tions19. Since this method can improve the performance of CA, it is widely used in CAs20,21. However, appropriate range 
of rate is different when solving different problems, the rate of accepted individuals still need to be reset. To enhance 
the flexibility, the fitness values of individuals were used in accept function22. Although this adjustment can somewhat 
enhance the flexibility, the utilization of evolution information was not adequately used. Influence function is used to 
guide the evolution of poor individuals in the population space by the knowledge in the belief space. Different types of 
knowledge are chosen according to different problems23,24. These types of knowledge can determine the searching step 
size and searching direction of the individuals in the population space.

In these regards, to obtain more accurate detection results, this paper presents an ACA-IQPSO to detect under-
water sonar image. In the population space, the contraction-expansion coefficient of the IQPSO is adaptively 
adjusted according to iterative times and the fitness value of particles. In the belief space, a new update strategy is 
adopted to update the cultural individuals using the idea of SFLA. In addition, accept function and influence func-
tion are redesigned in the new communication protocol. The new communication protocol can make belief space 
with adequate evolutionary information that can more precisely guide the evolution of particles in the population 
space and further improve the searching ability of the algorithm. The new communication protocol can enhance 
convergence efficiency of the algorithm. The experimental results demonstrate that the ACA-IQPSO can locate 
good clustering centres according to the grey distribution information of underwater sonar images, and accurately 
complete underwater object detection. Through the analysis of benchmark functions, it can show that the proposed 
ACA-IQPSO is significantly better than other algorithms in searching ability, convergence efficiency and stability. 
Therefore, the proposed method has important theoretical and practical value.

Methods
CA and QPSO. CA. CA is a model with double level evolutionary space. It defines both population space 
and belief space. The two spaces evolve respectively, and the communication protocol between these spaces is 
accomplished by accept function and influence function. The schematic diagram is shown in Fig. 1. In the popu-
lation space, the intelligent optimization algorithm can be used as evolution strategy to achieve the evolution of 
individuals. These individuals in the population space can contribute their experience and evolution information 
to the belief space through accept function. In the belief space, the experience and evolutionary information are 
converted into the cultural individuals. And the knowledge is extracted from the cultural individuals to guide 
the evolution of individuals in the population space. There are five types of knowledge in the belief space, includ-
ing situational knowledge, normative knowledge, historical knowledge, topographical knowledge and domain 
knowledge. These types of knowledge are used to influence the evolution of poor individuals in the population 
space by influence function, and guide individuals to generate elite offspring.
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QPSO. The QPSO supposes that particles have quantum behaviour, and they move in a quantum potential well 
centred on its local attractor. When one particle finds a local optimal state, some particles quickly converge to it, 
and others appear on any position of the whole space in a certain probability. Particles with quantum-behaved 
maintain high levels of population diversity, which can avoid falling into the local optimal solution to a certain 
extent. In addition, it only updates the position without speed. Therefore, the QPSO has relatively fewer parame-
ters and a good searching ability.

In the D-dimensional space, N is the population size. The particle swarm is defined as X = [X1, X2, X3, ... XN], 
and Xi = [Xi1, Xi2, Xi3, ... XiD] represents the current position of the i th particle. The position update of particles 
is shown as:
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Figure 1. Schematic diagram of CA.

Figure 2. Position distribution of particles in IQPSO and QPSO. (a) Position distribution of particles on Sphere 
function. (b) Position distribution of particles on Griewank function.
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where μ is a random number in the interval [0,1], Pm(t) is the local attractor, L(t) is the characteristic length of the 
wave function, and t is the current iterative times.

Pm(t) is defined as:

ϕ ϕ ϕ= ⋅ + − ⋅ ∈P t P t G t( ) ( ) (1 ) ( ) (0, 1) (2)m i

where Pi(t) is the personal best position of the particle, and G(t) is the global best position.
L(t) is expressed as:

β= ⋅ −L t mbest t X t( ) 2 ( ) ( ) (3)i

where β is the contraction-expansion coefficient, which can control the convergence speed of the algorithm. The 
contraction-expansion coefficient β has an important influence on the searching ability of particles. mbest (t) is 
the mean best position of all particles.

mbest(t) is given by:

Figure 3. The optimization results in IQPSO and QPSO. (a) The optimization results of Sphere function. (b) 
The optimization results of Griewank function.

Figure 4. The optimization results in ACA-IQPSO and CA-IQPSO. (a) The optimization results of Sphere 
function. (b) The optimization results of Griewank function.

Image ACA-IQPSO CA-IQPSO CPSO IQPSO QPSO PSO

Fig. 5 2.3020 2.2544 2.2464 2.1809 2.1765 2.2887

Fig. 6 2.2001 2.1540 2.1533 2.1132 1.9859 1.9523

Fig. 7 2.2512 2.2096 2.1312 2.0992 2.0823 2.0685

Fig. 8 2.4308 2.1970 2.0857 2.1590 2.1374 2.1065

Table 1. The best fitness values of detection results.
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According to Eq. (1) and Eq. (3), the position of the particles can be expressed as:
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The proposed ACA-IQPSO. Population space. The IQPSO is integrated into CA as the evolution strategy 
of the population space in the ACA-IQPSO.

IQPSO: In the QPSO, the quality of particles influences their behaviour in the searching process. The 
contraction-expansion coefficient is an important factor to control the particles’ behaviour. It only regards iter-
ative times as the factor to generally adjust the contraction-expansion coefficient. However, this method easily 
falls into the local optimal solution in the searching process of complex problems. Furthermore, the quality of 
particles depends on information carried by themselves in each iteration, and all the information also has impor-
tant influence on particles’ behaviour in the searching process. Therefore, iterative times and the fitness value of 
particles are used to adaptively adjust the contraction-expansion coefficient in IQPSO. In each iteration, when 
the quality of particles is worse, the contraction-expansion coefficient is larger, and the global searching ability of 
the particles is relatively stronger. When the quality of particles is better, the contraction-expansion coefficient is 
relatively smaller, and the local searching ability of the particles is stronger.

The contraction-expansion coefficient β is defined as follows:
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where T is the maximum iterative times, fg is the fitness value of G(t), f  is the average fitness value of particles in 
the population space, fi is the fitness value of the i th particle, and fw is the fitness value of the worst particle. k is a 
positive integer, that can adjust β to balance the relationship between iterative times and the fitness value of 
particles.

The performance analysis of IQPSO: To verify the superiority of the IQPSO in searching ability, Sphere func-
tion and Griewank function are used in this paper to test position distribution of particles. Sphere function is uni-
modal and contains only one global optimal solution. Griewank function is multimodal and contains many local 
optimal solutions, but only one global optimal solution. Fig. 2 shows position distribution of particles in IQPSO 
and QPSO16. The relevant parameters are as follows. The dimension of the solution space is 2, the population size 
is 30, and the maximum number of iterations is 5.

As seen from Fig. 2, the solution scope is relatively larger in the IQPSO, and IQPSO more easily obtains the 
global optimal solution. Therefore, compared with the QPSO, the IQPSO can increase population diversity and 
improve searching ability.

To further verify the effectiveness of the IQPSO in searching ability, the fitness values are calculated by Sphere 
and Griewank functions in the IQPSO and the QPSO. The optimization results are shown in Fig. 3. The relevant 
parameters are as follows. The dimension of the solution space is 10, the population size is 30, the maximum 
number of iterations is 30, and the experiment runs for 30 times in each algorithm.

Function Name Searching range Global optimum Dimension Modality

F1 Sphere [−5.12, 5.12] 0 10/30/50 unimodal

F2 Generalized Griewank [−600, 600] 0 10/30/50 multimodal

F3 Stretched_V sine [−10, 10] 0 10/30/50 multimodal

F4 Generalized Rastrigin’s [−5.12, 5.12] 0 10/30/50 multimodal

F5 Generalized Rosenbrock’s [−2.048, 2.048] 0 10/30/50 unimodal

F6 Quartic [−1.28, 1.28] 0 10/30/50 unimodal

F7 Schwefel’s problem 2.22 [−10, 10] 0 10/30/50 unimodal

F8 Alpine [−10, 10] 0 10/30/50 multimodal

F9 Salomon [−100, 100] 0 10/30/50 multimodal

F10 Zakharov [−5, 10] 0 10/30/50 unimodal

Table 2. The details of benchmark functions.
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As depicted in Fig. 3, whether it is unimodal function or multimodal function, the fitness values of the IQPSO 
are always smaller than the QPSO in the iterative process. Therefore, the optimal solutions of the IQPSO are 
always better than the QPSO. The optimization results further show that the searching ability of the IQPSO is 
better than the QPSO.

Belief space. In the ACA-IQPSO, the cultural individuals in the belief space are updated by a new update strat-
egy. Meanwhile, three types of knowledge are extracted from the cultural individuals. These types of knowledge 
are used to influence the evolution of particles in the population space by influence function, and guide particles 
to generate elite offspring.

Update strategy: Cultural individuals are updated by selection, crossover and mutation in many CAs11. 
However, this update strategy needs many parameters that make the algorithm not easy to control and lead to 
poor searching ability. In SFLA, the worst frog is updated by the step size that is the difference between the best 
frog and the worst frog. This update strategy has few parameters, powerful searching ability and is easy to imple-
ment25. Therefore, a new update strategy is adopted to update the cultural individuals in the belief space according 
to the idea of the update strategy in SFLA. The new update strategy adopts the difference between the situational 
knowledge and the cultural individuals as step size. New update strategy is expressed as follows:

( )Y t Y t rand S t Y t( 1) ( ) ( ) ( ) (7)j j j+ = + ⋅ −

where Yj(t) is the position of the j th cultural individual, S(t) is situational knowledge of the t th iteration in belief 
space, and rand is a random number in the interval [0,1].

Knowledge structure: Situational knowledge, normative knowledge and domain knowledge are adopted in 
the belief space of ACA-IQPSO. In each iteration, these types of knowledge are updated by cultural individuals.

Situational knowledge contains the best cultural individual in the belief space. In each iteration, when the fit-
ness value of the best cultural individual is larger than that of the current situational knowledge, the best cultural 
individual is used as situational knowledge in the update process. Update formula of situational knowledge is:
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where Yg(t) is the best cultural individual in the t th iteration, fS(t) is the fitness value of S(t), and fyg(t) is the fitness 
value of Yg(t).

Normative knowledge describes the feasible solution space of the problem in the belief space. It stores the 
boundary information that can guide particles in the population space to search for a better region. The update 
of normative knowledge reflects the change of the feasible search space. With the increase of iterative times, the 
searching scope can be concentrated in the dominant region. Therefore, when an excellent cultural individual is 
out of the current searching scope in each iteration, normative knowledge is updated. Update formula of norma-
tive knowledge is as follows:
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where Yj(t) is the position of the j th cultural individual, fj(t) is the fitness value of Yj(t), fl(t) is lower limit of fitness 
value in the t th iteration, fu(t) is upper limit of fitness value in the t th iteration.

Domain knowledge is used to statically or dynamically guide the particles in the population space to evolve 
along the predictive direction, and record a good evolutionary trend. In the belief space, the centre of gravity can 
reflect the overall distribution of the cultural individuals and guide the particles in the population space to search 
better solutions. The evolutionary direction of the particles in the population space can be predicted by updating 
the centre of gravity in each iteration, which can improve the searching efficiency. Therefore, domain knowledge 
stores the centre of gravity in the belief space to guide the evolution of particles in the population space in this 
paper. The centre of gravity GT(t) is defined as follows:

∑ ∑ ∑

= ...

=








...






= = =

GT t GT t GT t GT t

M
Y t

M
Y t

M
Y t

( ) [ ( ), ( ), ( )]

1 ( ), 1 ( ), 1 ( )
(11)

D

j

M

j
j

M

j
j

M

jD

1 2

1
1

1
2

1

where M is the size of cultural individuals, and D is the dimension of cultural individuals.

New communication protocol. The communication protocol between the population and belief spaces is accom-
plished by accept function and influence function. To enhance utilization of information in the population and 
belief spaces, accept and influence functions are redesigned in the new communication protocol.
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Accept function: Accept function is used to set the rate of accepted particles in the population space. To fur-
ther improve the flexibility of the rate, accept function is redesigned in this paper. The new accept function can 
adaptively change the rate of accepted particles according to the quality of particles in each iteration. Meanwhile, 
it can enhance utilization degree of information in the population space. When the quality of particles is better, 
the accept rate is larger. The new accept function is defined as follows:

=
−

∑ −=

Af
f f

f f (12)
w

i
N

i1

where f  is the average fitness value of particles in the population space, fw is the fitness value of the worst particle 
in the population space, and fi is the fitness value of the i th particle.

Therefore, the number of accepted particles in population space is calculated according to Eq. (12). It is:

= ⋅num N Af (13)⌊ ⌋

where N is the population size.
For new accept function, Eq. (12) is analysed in detail. The fitness values of particles in population space are 

sorted in descending order. Therefore, if there is a position c where the fitness value fc is larger than f , and the 
fitness value fc + 1 is smaller than f . Af is:
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where c is an integer in the interval [1, N − 1], A = fc + 1 + ... + fN, and A ≥ (N − c) . fN.
Therefore, Eq. (15) is as follows:
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As seen from Eq. (15), when c = N − 1, the maximum value of Af is 0.5. When c is relatively larger, there are 
more particles whose fitness values are larger than the average fitness value, and the quality of particles in the 
population space is better. Correspondingly, more particles are accepted. When c is relatively smaller, there are 
fewer particles whose fitness values are larger than the average fitness value, and the quality of particles in the 
population space is worse. Correspondingly, fewer particles are accepted. Therefore, new accept function is effec-
tive in this paper.

Influence function: Influence function is used to guide the evolution of poor particles in the population space 
by using the knowledge in the belief space. These types of knowledge determine searching step size and searching 
direction of the particles in the population space. To enhance utilization of information in the belief space and 
more precisely guide the evolution of poor particles in the population space, influence function is also redesigned 
in this paper. The new influence function adopts situational, normative and domain knowledge to guide the 
evolution of poor particles in the population space. Situational and domain knowledge are used to determine 
searching step size, and normative knowledge is used to determine searching direction. When the fitness values 
of the poor particles are less than the lower limit of fitness value in the belief space, domain knowledge is used to 
control searching step size. When the fitness values of poor particles are less than the upper limit of fitness value 
in the belief space, situational knowledge is used to control searching step size. Otherwise, the positions of poor 
particles are randomly generated in the solution space.

The influence function is defined as follows:
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where bound1 and bound2 are the lower bound and upper bound of solution space respectively. α, ω, and rand are 
random number in the interval [0,1].

The performance analysis of new communication protocol: To verify the effectiveness of the new accept 
function and influence function in the ACA-IQPSO, Sphere and Griewank functions are used to compare 
the ACA-IQPSO with a cultural algorithm with improved quantum-behaved particle swarm optimization 
(CA-IQPSO). The CA-IQPSO introduces the IQPSO into CA, which uses the communication protocol in cul-
tural algorithm for power system stabilizer (CA-PSS)20. The fitness values are calculated by Sphere and Griewank 
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functions in the ACA-IQPSO and the CA-IQPSO. The optimization results are shown in Fig. 4.The relevant 
parameters are as follows. The dimension of the solution space is 10, the population size is 30, the maximum num-
ber of iterations is 30, the size of cultural individuals is 8, and the experiment runs for 30 times in each algorithm.

As depicted in Fig. 4, whether it is unimodal function or multimodal function, the ACA-IQPSO can converge 
to global optimal solution after 10 iterations, convergence speed of ACA-IQPSO is faster in the iterative process. 
It can indicate that convergence efficiency of the ACA-IQPSO is superior to the CA-IQPSO. Meanwhile, the 
fitness values of the ACA-IQPSO are smaller than the CA-IQPSO. The new communication protocol can make 
belief space with adequate evolutionary information that can more precisely guide the evolution of particles in the 
population space. Therefore, the new communication protocol can further improve searching ability remarkably.

Results and Discussion
Experimental results and discussion of sonar image detection. In this section, the original sonar 
image has serious noise. To remove some noise points and make the image smoother, Butterworth lower-pass 

Figure 5. Detection results of original sonar image (image size: 277 × 325). (a) Original sonar image. (b) 
Smoothed image. (c) ACA-IQPSO. (d) CA-IQPSO. (e) CPSO. (f) IQPSO. (g) QPSO. (h) PSO.

Figure 6. Detection results of original sonar image (image size: 203 × 257). (a) Original sonar image. (b) 
Smoothed image. (c) ACA-IQPSO. (d) CA-IQPSO. (e) CPSO. (f) IQPSO. (g) QPSO. (h) PSO.
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filter is used for the noise smoothing26. On this basis, numerical examples are shown to validate the effectiveness 
and adaptability of the proposed ACA-IQPSO for sonar image detection. Meanwhile, the ACA-IQPSO is com-
pared with CA-IQPSO, CPSO11, IQPSO, QPSO16, and PSO27. In addition, the fitness function is mainly used to 
evaluate the quality of particles in the process of sonar image detection. Therefore, a fitness function combining 
intra-class difference with inter-class difference is adopted in these algorithms28.When the fitness value is larger, 
the detection result is better. The relevant parameters are as follows. The number of clustering centers is 4, the 
population size is 20, the maximum number of iterations is 20, the acceleration coefficient is c1 = c2 = 2, the iner-
tia weight is w = 0.8 in CPSO and PSO, size of cultural individuals is M = 8 in the ACA-IQPSO, CA-IQPSO and 
CPSO, and the contraction-expansion coefficient β linearly decreases from 1.0 to 0.5 in the QPSO.

Fig. 5 shows the detection results of the original sonar image with floating objects.

Figure 7. Detection results of original sonar image (image size: 259 × 368). (a) Original sonar image. (b) 
Smoothed image. (c) ACA-IQPSO. (d) CA-IQPSO. (e) CPSO. (f) IQPSO. (g) QPSO. (h) PSO.

Figure 8. Detection results of original sonar image (image size: 173 × 167). (a) Original sonar image. (b) 
Smoothed image. (c) ACA-IQPSO. (d) CA-IQPSO. (e) CPSO. (f) IQPSO. (g) QPSO. (h) PSO.
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As depicted in Fig. 5, the proposed ACA-IQPSO can better detect object-highlight and shadow regions from 
complex background region. The edge information is preserved as much as possible in Fig. 5(c). While the detec-
tion result of the CA-IQPSO can only detect the shadow region in Fig. 5(d), it is not suitable for detecting the 
sonar image with floating objects. Although the CPSO can detect the object-highlight and shadow regions, it 
has serious information loss in the object-highlight region in Fig. 5(e). At the same time, IQPSO can also detect 
the object-highlight and shadow regions, but the detection result contains a lot of noise and the integrity of the 
underwater object is seriously weak in Fig. 5(f). The detection result of the QPSO has serious noise, which is not 
an ideal detection result in Fig. 5(g). PSO can only detect the object-highlight region in Fig. 5(h).Therefore, com-
pared with the detection results of CA-IQPSO, CPSO, IQPSO, QPSO and PSO, the proposed ACA-IQPSO can 
locate good clustering centres according to the grey distribution information of the underwater sonar image with 
floating objects and accurately complete underwater object detection.

To further verify the effectiveness of the proposed ACA-IQPSO, Fig. 6 shows the detection results of the 
original sonar image with underwater stones on the bottom, which has a relatively weak contrast. Fig. 7 shows 
the detection results of structured seabed that is an object in sand ripples. Fig. 8 shows the detection results of 
larboard original sonar image including rocks, which are partly buried in the sand.

Figure 10. Detection results of original sonar image (image size: 130 × 201). (a) Original sonar image. (b) 
Smoothed image. (c) Detection result of ACA-IQPSO.

Figure 9. Variation of the fitness values in each iteration. (a) Variation of fitness values of Fig. 5. (b) Variation of 
fitness values of Fig. 6. (c) Variation of fitness values of Fig. 7. (d) Variation of fitness values of Fig. 8.
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As seen from Figs 6, 7 and 8, the proposed ACA-IQPSO can obtain relatively better detection results 
in Figs 6(c), 7(c) and 8(c). While Fig. 6(d) has information loss in the object-highlight region. Although 
Fig. 6(e),(f),(g) and (h) can detect the object-highlight region and shadow region, the detection results have 
serious noise, especially in Fig. 6(g) and (h). Therefore, QPSO and PSO are failed to detect the sonar image with 
relatively weak contrast. Meanwhile, some information is lost in the object-highlight region and shadow region 
in Fig. 7(d),(e),(f),(g) and (h), which is not conducive to the subsequent feature extraction and underwater object 
recognition. In Fig. 8, the detection results of Fig. 8(d),(f),(g) and (h) show information loss in the shadow region 
and over detection in object-highlight region. At the same time, the detection results have different degrees of 
noise. Fig. 8(e) has serious information loss in object-highlight region. They are not ideal detection results.

Through the above comparative experiments, the proposed ACA-IQPSO can obtain relatively accurate results 
in sonar image detection. Moreover, the detection results of the CA-IQPSO are not better than ACA-IQPSO, 
which further verifies the effectiveness of the new communication protocol in this paper. Meanwhile, IQPSO can 
relatively obtain better detection results than QPSO, this indicates that IQPSO can improve searching ability of 
particles.

To demonstrate the advantages of proposed ACA-IQPSO more clearly, Table 1 shows the best fitness values 
after 20 iterations for the ACA-IQPSO and other intelligent optimization algorithms. Fig. 9 shows the variation 
of the best fitness values in each iteration.

It can be seen from Table 1 and Fig. 9 that the best fitness values of the proposed ACA-IQPSO are larger than 
other intelligent optimization algorithms after 20 iterations, which shows the powerful searching ability and high 
convergence efficiency of ACA-IQPSO. Meanwhile, the best fitness values of CA-IQPSO are larger than IQPSO 

Figure 11. Detection results of original sonar image (image size: 393 × 218). (a) Original sonar image. (b) 
Smoothed image. (c) Detection result of ACA-IQPSO.

Figure 12. Detection results of original sonar image (image size: 197 × 211). (a) Original sonar image. (b) 
Smoothed image. (c) Detection result of ACA-IQPSO.
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and the best fitness values of CPSO are larger than PSO, which can demonstrate the effectiveness of CA. Among 
IQPSO, QPSO and PSO, the best fitness values of IQPSO and QPSO are close, but the IQPSO is superior to the 
QPSO, and they are larger than PSO. These results indicate that IQPSO has the merit of searching ability.

To further verify the adaptability of the proposed ACA-IQPSO in this paper, Fig. 10 shows the detection 
results of another original sonar image with floating objects. Fig. 11 shows the detection results of starboard 
original sonar image with ship. Fig. 12 shows the detection results of an original sonar image with bottom tire.

From the results shown in Figs 10, 11 and 12, the proposed ACA-IQPSO can better detect original sonar 
image with floating objects, partly buried objects and objects on the bottom in this paper, and it has a certain 
effectiveness and adaptability. Moreover, it provides better preconditions for the subsequent feature extraction 
and underwater object recognition.

Experimental results and discussion of benchmark functions. To further verify the performance 
of the proposed ACA-IQPSO, 10 benchmark functions are used to compare the ACA-IQPSO with CA-IQPSO, 
CPSO, IQPSO, QPSO, and PSO. Among these benchmark functions, unimodal functions and multimodal func-
tions are used to test local searching ability and global searching ability respectively. The details of benchmark 
functions are shown in Table 2.

Fun Eva ACA-IQPSO CA-IQPSO CPSO IQSO QPSO PSO

F1

min 0.001e-016 0.032 0.011 0.015 0.003 0.351

max 3.391e-016 2.834 5.402 4.206 5.926 1.953

mean 0.192e-016 0.958 1.203 1.042 1.458 1.079

Std 0.754e-016 0.924 1.707 1.345 1.644 0.426

F2

min 0.001e-7 0.681 0.796 0.670 0.593 1.949

max 2.986e-7 16.011 17.917 13.338 17.836 10.359

mean 0.212e-7 4.046 5.221 3.379 4.634 5.001

Std 0.709e-7 4.023 4.603 3.443 4.923 2.055

F3

min 3.933 9.215 6.677 6.543 8.427 8.899

max 16.723 17.619 18.490 18.422 17.623 17.052

mean 12.947 13.028 10.908 13.865 13.677 13.632

Std 3.340 2.908 2.824 3.304 2.350 2.222

F4

min 0.004e-7 12.681 17.006 13.178 14.619 49.939

max 5.933e-7 69.138 73.348 78.304 70.314 81.346

mean 0.567e-7 38.767 36.329 44.271 46.230 66.521

Std 1.434e-7 14.791 14.522 18.715 15.437 10.228

F5

min 2.649e-10 1.325e-009 6.888e-9 0.388 1.645 16.785

max 4.215 6.986 6.680 74.023 62.363 101.409

mean 0.533 2.578 1.755 18.506 22.168 35.422

Std 1.184 2.164 2.238 25.789 20.582 24.832

F6

min 0.003e-37 2.394e-6 1.782e-5 2.569e-5 5.216e-5 1.253e-4

max 8.433e-36 0.894 0.095 0.105 0.180 0.030

mean 1.041e-36 0.078 0.023 0.015 0.042 0.007

Std 2.004e-036 0.220 0.032 0.030 0.056 0.007

F7

min 0.241e-8 0.186 0.723 0.134 0.330 4.795

max 3.673e-8 21.762 38.13 25.642 33.333 15.042

mean 0.993e-8 7.362 9.168 9.518 12.018 9.494

Std 0.795e-8 5.823 9.072 6.622 9.465 3.415

F8

min 0.011 0.785 0.984 9.407 10.707 9.575

max 7.469 6.767 6.350 17.312 19.301 18.995

mean 2.586 3.449 3.077 14.455 14.093 14.944

Std 1.782 1.434 1.454 2.0588 2.704 2.467

F9

min 2.842e-16 15.831 5.857 0.427 6.068 0.168e + 3

max 3.572e-11 2.743e + 3 2.346e + 3 2.290e + 3 2.125e + 3 0.911e + 3

mean 2.385e-12 0.750 e + 3 0.570e + 3 0.474e + 3 0.571e + 3 0.451e + 3

Std 7.875e-12 0.923 e + 3 0.697e + 3 0.665e + 3 0.631e + 3 0.183e + 3

F10

min 3.666e-13 14.815 7.553 1.650 13.058 20.870

max 5.889e-6 120.323 94.352 101.203 75.740 340.018

mean 3.091e-7 65.831 35.188 46.302 49.468 88.978

Std 1.311e-6 25.901 22.231 27.809 15.914 74.781

Table 3. Comparative results of different algorithm benchmark functions (10 dimension).
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Minimum value, maximum value, mean value and standard deviation are obtained after each algorithm 
running 20 times. These values are used to evaluate the performance of algorithms in this paper. The relevant 
parameters of each run are as follows. The population size is 50, the maximum number of iterations is 50, and 
the dimensions are 10, 30 and 50 respectively. The acceleration coefficient is c1 = c2 = 2, the inertia weight is 
w = 0.8 in CPSO and PSO, size of cultural individuals is M = 15 in ACA-IQPSO, CA-IQPSO and CPSO, and the 
contraction-expansion coefficient linearly decreases from 1.0 to 0.5 in QPSO.

The performance of the algorithms is related to the dimension. When the dimension increases, the perfor-
mance differences will be more significant. To analyse the performance of the algorithms in different dimensions, 
Table 3 shows the minimum value, maximum value, mean value and standard deviation of the different algo-
rithms when the dimension is 10.

Table 4 shows the minimum value, maximum value, mean value and standard deviation of the different algo-
rithms when the dimension is 30.

Table 5 shows the minimum value, maximum value, mean value and standard deviation of the different algo-
rithms when the dimension is 50.

From the comparative results in Table 3, Table 4 and Table 5, mean values of the IQPSO are smaller than the 
QPSO when the dimension is 10, 30 and 50, which indicates that the searching ability of the IQPSO is stronger 
than the QPSO. The standard deviation of the IQPSO and QPSO are close when dimension is 10, while standard 

Fun Eva ACA-IQPSO CA-IQPSO CPSO IQSO QPSO PSO

F1

min 0.039e-15 0.426 3.022 0.807 1.483 12.816

max 6.512e-15 43.273 92.352 38.831 42.565 63.996

mean 1.359e-15 14.248 29.618 16.657 16.566 30.769

Std 1.641e-15 10.955 25.664 10.757 12.917 12.267

F2

min 00.003e-10 2.779 19.372 4.260 13.011 52.608

max 2.068e-10 96.362 218.610 166.551 124.224 188.514

mean 0.150e-10 50.053 81.213 72.252 56.278 104.889

Std 0.454e-10 29.201 218.620 47.163 31.852 40.233

F3

min 0.003 31.242 36.615 22.703 32.767 54.192

max 0.008 70.987 71.181 70.508 71.353 76.834

mean 0.005 55.235 54.264 53.203 53.933 68.053

Std 0.002 10.980 8.427 12.734 10.160 6.381

F4

min 0.011e-11 113.299 109.928 163.012 171.195 251.666

max 2.876e-11 265.058 287.250 262.475 312.808 342.299

mean 0.491e-11 191.147 186.260 204.204 234.890 304.058

Std 0.755e-11 46.833 39.916 34.786 38.261 23.294

F5

min 0.116 1.452 1.861 20.269 23.604 253.122

max 20.526 17.469 14.236 294.183 386.263 1.938e + 3

mean 9.896 7.640 7.447 118.545 146.226 818.542

Std 6.325 3.799 3.155 55.172 79.135 462.124

F6

min 0.006e-32 0.004 1.782e-5 0.003 0.019 0.857

max 3.368e-31 9.526 0.095 5.822 7.337 14.646

mean 0.405e-31 1.853 0.023 1.163 1.391 4.836

Std 0.788e-31 2.551 0.032 1.508 1.858 3.681

F7

min 0.484e-7 17.658 19.433 3.982 18.169 39.452

max 3.909e-7 97.709 1.216e + 3 96.656 394.806 8.842e + 3

mean 1.416e-7 52.346 110.072 47.747 67.819 1.343e + 3

Std 0.847e-7 25.481 260.379 26.436 83.225 2.664e + 3

F8

min 4.566 4.629 3.721 8.549 6.546 7.514

max 29.001 26.483 35.020 19.312 18.643 20.997

mean 16.498 19.514 18.621 13.845 14.355 14.919

Std 6.683 6.553 7.576 2.320 3.120 3.079

F9

min 1.160e-14 17.427 273.426 0.001 4.816 72.762

max 5.880e-11 1823e + 4 2.092e + 4 634.916 750.721 1.332e + 3

mean 7.973e-12 6.332e + 3 5.224e + 3 138.511 165.441 409.494

Std 1.569e-11 5.626e + 3 5.019e + 3 185.771 187.897 257.137

F10

min 3.785e-7 201.443 59.370 4.303 4.763 10.925

max 0.683 357.637 353.937 30.387 42.082 190.550

mean 0.044 280.598 169.655 17.611 22.617 79.999

Std 0.152 48.145 74.141 7.403 9.759 46.027

Table 4. Comparative results of different algorithm benchmark functions (30 dimension).
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deviation of the IQPSO are smaller than QPSO when dimension is 30 and 50. This demonstrates that the stabil-
ity of the IQPSO is superior to QPSO in high dimension. Meanwhile, compared with the other algorithms, the 
proposed ACA-IQPSO is relatively closer to the global optimum value 0 after 50 iterations, which shows that the 
ACA-IQPSO has high convergence efficiency. In addition, minimum values, maximum values, mean values and 
standard deviation of the ACA-IQPSO in different benchmark functions are the smallest, which indicates that the 
proposed ACA-IQPSO has obvious advantages in searching ability and stability.

Fun Eva ACA-IQPSO CA-IQPSO CPSO IQSO QPSO PSO

F1

min 0.079e-15 5.993 3.022 5.687 10.155 50.737

max 6.226e-15 72.933 92.352 102.872 65.798 120.925

mean 2.789e-15 33.574 29.618 32.045 31.107 83.588

Std 1.763e-15 18.837 25.664 25.771 16.246 18.127

F2

min 0.003e-10 11.413 9.414 18.179 19.553 155.707

max 1.255e-10 239.987 292.441 238.381 352.719 392.073

mean 0.263e-10 143.819 102.649 96.500 130.760 276.319

Std 0.344e-10 66.769 74.853 67.903 94.867 57.905

F3

min 0.007 60.837 76.891 38.798 56.907 108.870

max 0.022 126.338 117.621 117.436 126.870 147.691

mean 0.011 93.902 94.424 91.066 84.466 125.894

Std 0.004 18.486 12.151 20.197 19.590 10.936

F4

min 0.011e-11 274.721 287.470 230.325 269.614 512.951

max 1.199e-11 493.853 586.535 447.801 513.792 625.668

mean 0.344e-11 381.700 361.106 359.192 388.933 558.881

Std 0.332e-11 61.096 74.189 60.012 76.402 32.732

F5

min 1.081 5.610 2.703 21.911 0.062e + 3 812.024

max 26.163 22.874 22.951 967.887 1.110e + 3 4.904e + 3

mean 15.445 11.520 10.221 289.082 0.375e + 3 2.286e + 3

Std 8.625 4.924 5.120 252.810 0.365e + 3 1.230e + 3

F6

min 0.001e-29 0.013 0.025 0.115 0.899 2.226

max 0.540e-28 5.436 17.217 25.656 24.134 71.606

mean 0.053e-28 1.916 3.834 4.258 5.964 30.829

Std 0.121e-28 1.826 4.326 5.827 6.581 18.573

F7

min 0.161e-6 21.388 48.744 25.611 30.336 101.733

max 1.009e-6 403.579 1.868e + 6 262.016 154.344 2.214e + 9

mean 0.429e-6 114.307 8.917e + 4 86.307 80.571 2.212e + 8

Std 0.211e-6 102.428 4.176e + 5 57.587 43.984 5.443e + 8

F8

min 12.171 20.174 15.978 102.736 90.465 8.113

max 67.160 75.547 58.729 126.795 127.968 19.749

mean 38.540 43.109 36.572 111.762 114.639 14.570

Std 14.330 12.646 11.917 7.749 7.380 3.224

F9

min 1.167e-14 1.277e + 3 2.456e + 3 2.320 3.478 278.003

max 1.252e-10 3.376e + 4 3.185e + 4 188.456 636.117 1.140e + 3

mean 1.643e-11 1.253e + 4 1.316e + 4 47.756 113.181 530.507

Std 3.053e-11 9.087e + 3 7.354e + 3 51.224 141.091 212.928

F10

min 1.548e-5 288.425 99.606 1.441 3.799 27.471

max 26.913 927.776 465.631 22.398 33.833 157.421

mean 1.492 552.816 297.274 11.694 17.970 83.039

Std 5.977 168.856 110.946 6.713 7.287 42.022

Table 5. Comparative results of different algorithm benchmark functions (50 dimension).

Dimension
ACA-IQPSO 
vs CA-IQPSO

ACA-IQPSO 
vs CPSO

ACA-IQPSO 
vs IQPSO

ACA-IQPSO 
vs QPSO

10 0.0020 0.0195 0.0020 0.0020

30 0.0059 0.0098 0.0059 0.0059

50 0.0059 0.0137 0.0020 0.0020

Table 6. The p-values of Wilcoxon Signed-Rank Test.
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Similarly, Wilcoxon Signed-Rank Test and the Friedman test in nonparametric tests are adopted to further 
evaluate the performance of the algorithms by 10 benchmark functions in different dimensions29,30. Wilcoxon 
Signed-Rank Test is a paired comparison, which is used to compare the performance differences between two 
algorithms. If the p-values are less than or equal to the statistical significance value τ, the null hypothesis is 
rejected, which indicates that the two algorithms are different in performance. Friedman test is multiple compar-
ison, which is used to compare the performance differences between more than two algorithms. When average 
rank is smaller, the performance of the algorithm is better.

Table 6 shows the p-values of Wilcoxon Signed-Rank Test by 10 benchmark functions in different dimensions 
(the statistical significance value τ = 0.05). Table 7 shows the average rank of Friedman Test by 10 benchmark 
functions in different dimensions.

As seen in Table 6 and Table 7, the p-values between the ACA-IQPSO and other algorithms are smaller than 
the statistical significance value, which shows the significant performance differences between the ACA-IQPSO 
and other algorithms. Meanwhile, the average ranks of the ACA-IQPSO are smaller than the other algorithms. 
It can indicate that the performance of the ACA-IQPSO is superior to other algorithms. Therefore, through the 
analysis of benchmark functions, it can demonstrate that the proposed ACA-IQPSO is obviously better than other 
algorithms in searching ability, convergence efficiency and stability.

Conclusions
Considering the growing requirements of underwater sonar image detection, this paper proposed the 
ACA-IQPSO to detect underwater sonar images In the population space, iterative times and the fitness value 
of particles are used as factors to adaptively adjust the contraction-expansion coefficient of the QPSO. IQPSO 
can make particles adjust their behaviour to improve searching ability. In belief space, a new update strategy 
is adopted to update the cultural individuals according to the update strategy in SFLA. Moreover, to enhance 
utilization of information in population and belief spaces, accept function and influence function are redesigned 
in the new communication protocol. The new communication protocol can make belief space with adequate 
evolutionary information that can more precisely guide the evolution of particles in the population space and fur-
ther improve the searching ability of the algorithm. Furthermore, the new communication protocol can enhance 
convergence efficiency of algorithm.

The proposed ACA-IQPSO is based on a clustering model. The object-highlight, shadow and background 
regions in the sonar image are detected by clustering centres. The experimental results demonstrate that 
ACA-IQPSO can locate good clustering centers and accurately complete underwater objects detection. Compared 
with other algorithms, the proposed ACA-IQPSO has good effectiveness and adaptability, and it has powerful 
searching ability and high convergence efficiency. Meanwhile, the performance of the proposed ACA-IQPSO is 
further demonstrated by the analysis of benchmark functions, it can show that the proposed ACA-IQPSO is sig-
nificantly better than the other algorithms in searching ability, convergence efficiency and stability. Therefore, the 
proposed method can provide better preconditions for the subsequent feature extraction and underwater object 
recognition. It has important theoretical and practical value.
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