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Automatic multiple zebrafish 
larvae tracking in unconstrained 
microscopic video conditions
Xiaoying Wang1, Eva Cheng2, Ian S. Burnett2, Yushi Huang3 & Donald Wlodkowic3

The accurate tracking of zebrafish larvae movement is fundamental to research in many biomedical, 
pharmaceutical, and behavioral science applications. However, the locomotive characteristics of 
zebrafish larvae are significantly different from adult zebrafish, where existing adult zebrafish tracking 
systems cannot reliably track zebrafish larvae. Further, the far smaller size differentiation between 
larvae and the container render the detection of water impurities inevitable, which further affects 
the tracking of zebrafish larvae or require very strict video imaging conditions that typically result in 
unreliable tracking results for realistic experimental conditions. This paper investigates the adaptation 
of advanced computer vision segmentation techniques and multiple object tracking algorithms to 
develop an accurate, efficient and reliable multiple zebrafish larvae tracking system. The proposed 
system has been tested on a set of single and multiple adult and larvae zebrafish videos in a wide variety 
of (complex) video conditions, including shadowing, labels, water bubbles and background artifacts. 
Compared with existing state-of-the-art and commercial multiple organism tracking systems, the 
proposed system improves the tracking accuracy by up to 31.57% in unconstrained video imaging 
conditions. To facilitate the evaluation on zebrafish segmentation and tracking research, a dataset with 
annotated ground truth is also presented. The software is also publicly accessible.

As zebrafish (Danio rerio) larvae have emerged as a vertebrate and mammal model for many biomedical appli-
cations including screening for biochemical abnormalities1 and behavioral science investigations2, the tracking 
of the larvae has emerged as a challenge. Typical manual tracking approaches are tedious, commonly requiring 
significant periods of manual observation and labelling of the image features to represent the activity for a single 
experimental task3. Furthermore, as a subjective manual task, the results are difficult to reliably repeat and repro-
duce. Recent research attention has therefore focused on the development of automatic multiple zebrafish larvae 
tracking systems due to the increased availability of digital microscopy and video storage systems.

Many automatic single and multiple tracking systems have been recently developed for adult zebrafish1,4–9, 
such as the state-of-the-art based on deep learning7, particle filtering9, and the well-known idTracker5, reporting 
outstanding tracking performance for adult zebrafish. However, the locomotive characteristics of zebrafish larvae 
are dramatically different from adult zebrafish. Adult fish are continually swimming, whilst zebrafish larvae can 
display little or no movement over time8,10, thus their dynamic responses can be imbalanced. Zebrafish larvae 
can exhibit a mean proportion of activities less than 0.075 over time, according to the statistics reported in8. This 
is the first primary cause of tracking failure in these systems and traditional statistical tests based on movement 
features to track and analyse larvae behaviour. Moreover, the intensity contrast between adult fish with the water 
background is also greater than that for zebrafish larvae, due to the transparent larvae body peripheral. However, 
both the adult zebrafish tracking systems in5,7 are based on the assumption of high intensity contrast, which is 
another common and required imaging condition constraint for existing zebrafish tracking systems.

Though the widely used LSRtrack and LSRanalyse1, VideoHacking4 and the state-of-the-art approach in8 
explored zebrafish larvae tracking, the video input must be under strict constraint imaging conditions. As 
reported in1 and7, even small impurities inside the water (as shown in Fig. 1a) and lighting reflections (as shown 
in Fig. 1b) will affect the tracking result. In addition, the small size difference between the zebrafish larvae and 
the petri dish (as shown in Fig. 1c) and that of adult zebrafish with the fish tank (as shown in Fig. 1d) causes water 
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impurities such as water bubbles (as shown by the red circles in Fig. 1e), excretion, small particles (as shown by 
the red triangles in Fig. 1f) that are not usually detectable in adult fish experiments but inevitably affect the detec-
tion of zebrafish larvae. Strict input imaging conditions are impossible to maintain in practice: for example, even 
if a clean environment is originally used to house the organism, excretions produced by the organisms during the 
experiment can render it impossible to maintain a completely clean and transparent container background during 
long-term organism observation. IdTracker5 even explicitly defined the smallest acceptable size ratio between the 
zebrafish and the tank for creating the clear background environment required for the video data. In addition, 
these larvae tracking systems1,4,8 use a petri dish plate to separate individual zebrafish larvae, allowing only one 
zebrafish larvae in each petri dish to avoid overlapped and swapped trajectories that can result from multiple 
zebrafish larvae housed in one container (as shown in Fig. 1c). However, limiting experiments to one zebrafish 
per dish strictly constrains the research application as interaction and grouping behaviour cannot be studied.

The constraints on the input imaging conditions as required by existing systems are largely due to poor object 
detection and segmentation results from the input videos. Thus, improving the segmentation method will remove 
the need for input imaging constraints, where it has been shown that improving the segmentation accuracy can 
result in more reliable tracking performance11. However, this assumption of improving segmentation accuracy to 
enhance tracking performance has not yet been examined.

This paper investigates the novel adaptation of advanced computer vision techniques and multiple object 
tracking algorithms to develop an automatic, accurate and effective multiple zebrafish larvae tracking system 
using microscopic larvae videos, without any constraints on the input video imaging conditions. The proposed 
system is designed to segment and track the ‘bursty’ movement characteristics specific to zebrafish larvae, where 
the resultant tracking trajectories generated by the proposed system can then be used for further study, including 
the analysis of larvae movement characteristics. The performance of the proposed system is evaluated based on 
segmentation and tracking accuracy using a zebrafish larvae dataset also presented in this paper, and compared 
with the current state-of-the-art idTracker system5 and the off-the-shelf commercial Lolitrack system6, which 
allows for both single and multiple zebrafish larvae tracking. For reproducible research, the dataset generated 
for evaluation and the software for the proposed zebrafish larvae tracking and evaluation methods are publicly 
available online.

Methods and Materials
Figure 2 outlines the proposed automatic zebrafish larvae tracking system, which consists of multiple stages: 
background subtraction, zebrafish larvae segmentation, association or matching of the larvae between successive 
frames, followed by bridging any remaining gaps amongst the trajectory fragments.

Figure 1. Video frame examples in variant imaging conditions: (a,b) Small water impurities as indicated by 
the red circle in (a) and water reflection or ripple in (b) can affect the head detection claimed by7; (c) Frame 
example with larvae occlusion, which will not been seen when the larvae are separated in petri dish plates; (d) 
idTracker5 required frame input with clear tank edges, and large size ratio between adult fish and the container; 
(e) Frame example with labelling as indicated by the red arrows, water bubbles as highlighted by the red circles, 
and larvae with low intensity contrast between the well edge shadow as shown by the red rectangle; (f) Frame 
example with small water particles as shown by the red triangles.
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Background Subtraction. The efficient estimation and removal of the video frame background is essential 
for the zebrafish larvae tracking, in particular to address water impurities and ‘bursty’ movement characteristics. 
The water particles, ripples and bubbles (as shown in Fig. 1) when stirred up by the larvae tail beating produce 
motion data, which means that larvae detection methods based on motion and frame-to-frame differences cannot 
be applied12. As the movement of water impurities is relatively temporary compared to the larvae movement, the 
proposed system applies an improved adaptive Gaussian Mixture Model (GMM)13.

The distribution probability density model parameters for the GMM are calculated according to the mix-
ing weight and Minimum Message Length (MML) criterion13, and the improved adaptive GMM introduces an 
exponential decay envelope shaped by the constant factor α to adapt to background changes. The decay envelope 
factor α strongly weights the pixel samples representing the temporary movement of these water impurities and 
illumination changes, to minimise the influence of this temporary movement and enable fast adaptation to back-
ground changes. Therefore, the zebrafish larvae regions in the video frames are distinguished as moving objects 
and segmented by subtracting the calculated background model from the original video frames. That is, in the 
proposed system there are no requirements on the video images to have a clear background, use transparent con-
tainers without edge shadows, or have high intensity contrast between the zebrafish larvae and the background.

The time interval, T, is the length of samples and is determined as per the work in13, where the first 500 frames 
of videos are used to estimate the GMM model parameters so as to obtain a consistent background model. In 
practice, however, there are many short microscopic zebrafish larvae videos where the number of frames is less 
than the required time interval, T. As a solution, duplicate video frames are added at the beginning of short videos 
to allow GMM model background estimation. This process is explained and illustrated in Supplementary Note 
in the dataset14.

To address the ‘bursty’ movement specific to zebrafish larvae, with sudden swimming locomotion interspersed 
with substantially stationary periods of little movement10, the applied GMM model13 in the proposed system adds 
flexibility to the description of the background by adaptively and recursively selecting the number of Gaussian 
components used to represent each pixel compared with traditional GMM models with one or a fixed number of 
components to model each pixel. To determine the number of Gaussian components, the Dirichlet prior15 and 
the MML criteria13 are used to select the number of components on the basis of the final value of the component 
mixing weights. The same approach and initialization settings used in16 are applied to recursively update the 
mixing weights for each new sample. For the initialisation stage, the approach and number of randomly gener-
ated components are taken from16, and the Dirichlet prior is applied. After each update, components holding a 
negative weight will be discarded by the MML criteria, with the components remaining taken as the number used 
in the model. The background model enables the removal of stationary background regions such as the zebrafish 
container and labels drawn on the petri dish; hence, unlike existing techniques, the proposed system is able to 
process larvae videos under practical experimental conditions.

However, if a larva in the video becomes static for some time, its body pixels will start to generate an additional 
stable cluster of pixels. But with the previously calculated background being occluded, the starting weight of the 
new stable cluster is very small. The cluster will only be classified to background model when its weight is larger 
than a threshold (referred to as cf in13) when the larvae remains static for long enough, which will consistently 
increase the weight of the newly generated cluster. Thus, the detection period of larvae with no movement is 
extended for approximately α− −clog(1 )/log(1 )f  frames as calculated in13.

Figure 2. Overview of the proposed zebrafish larvae tracking system.
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Organism segmentation. After background subtraction, the resultant image generally still contains dis-
tortion due to a scattering of small noise fragments that are detected by the GMM model as moving objects. Thus, 
to remove these noise fragments the proposed system applies a median filter with a 3 × 3 square moving window 
(the smallest available window size for removing small fragments) and morphological gray scale erosion17.

Water ripples evoked by zebrafish larvae movement are also often detected by the GMM model. Further, the 
ripples cannot be completely removed by the median filter and mathematical morphological operation because 
their relative region size is typically larger than the noise. For these distortions, a binary image/bitmap is firstly 
obtained from the grayscale image based on the global normalized threshold calculated using Otsu’s method18. 
Then, the system calculates the number of pixels from each connected component in the binary image, and esti-
mates the average size across the regions in the image. Regions which are less than 20% of the average larvae size 
(based on the typical relative size of ripples evoked by the larvae) are then removed from the segmentation image. 
This 20% threshold is taken from the experiments in5, and empirical tests were conducted to verify this threshold 
as appropriate to the proposed system.

Organism association between frames. After organism segmentation, the moving zebrafish larvae are 
associated or matched between successive frames to obtain organism tracking trajectories. A n × m matrix D is 
created to annotate the cost of associating source objects = …O O O O{ , , , }n1 2  in the frame t to the target objects 

= …T T T T{ , , , }m1 2  in the frame t + 1:
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where n is the detected number of zebrafish larvae in the frame t, and m is the number of zebrafish larvae seg-
mented in the successive frame t + 1. The element dO T,i j

 in the matrix denotes the cost to connect the i-th object in 
the frame t, to the j-th object in the frame t + 1. The value of dO T,i j

 is calculated as the Euclidian distance from the 
source object to the target object based on the centroids of the segmented regions in Cartesian coordinates Oi(xi, 
yi) and Tj(xj, yj), as given by:

= − + −d x x y y( ) ( ) (2)O T j i j i,
2 2

i j

The frame-to-frame organism assignment based on the cost matrix is performed using the Muncres imple-
mentation of the Hungarian algorithm19, which searches for unique assignments i.e., assigns source object i to 
only one target object j in the secondary frame. The assignment is based on the global minimum of the smallest 
sum of squares distance amongst all of the possible associations, and allows ≠n m in case of organism detection 
failure or larvae occlusion. Water impurities and well edge shadows may still remain in the binary bitmap, and to 
avoid these remaining noise fragments the maximum value distmax( )GT  of organism displacement extracted from 
the tracking ground truth is defined as the distance threshold19. In the cases where dO T,i j

 is greater than the dis-
tance threshold, the value of dO T,i j

 in the cost matrix D is set to Inf before mapping association.
In the cases where zebrafish larvae fail to be detected or segmented in one frame but reappear in subsequent 

video frames, a ‘gap’ in the moving trajectory of this object will appear at the frame where the zebrafish larvae 
detection initially failed, with a resulting new trajectory created from the frame where the zebrafish reappears. 
Scenarios of multiple object occlusion7 and misdetection of long-term stationary larvae objects can generate such 
trajectory ‘gaps’. Thus, in the proposed tracking system a ‘gap bridging’ stage is performed using the nearest neigh-
bour algorithm20 to connect trajectory fragments and improve the inter-frame organism association. However, 
the trajectory gap will not be connected if the squared distance calculated between the two frames of trajectory 
fragments is greater than the distance condition calculated as . ⁎ dist1 2 max ( )GT

2 . The ratio of 1.2 is extended by 
20% beyond unity to set a margin for rebound, similar to the threshold ξ in the gap filling stage of7, with the tra-
jectory at that frame recorded as an error.

Zebrafish larvae video dataset. Largely due to the time and manual labour required to generate ground 
truth segmentation and tracking, standard datasets for benchmarking moving objects in video sequences are still 
emerging. For this work, the authors have not yet discovered any publicly available zebrafish larvae video segmen-
tation and tracking datasets. Thus, this paper generated a dataset with segmentation and tracking ground truth 
annotated per frame, labelling the zebrafish and background for segmentation and tracking accuracy evaluation.

Wild zebrafish embryos (Danio rerio) were incubated at 28 °C in a Petri dish filled with an E3 medium. 
Any debris and unfertilised embryos were manually removed three hours post-fertilization (hpf). Five days 
post-fertilization, the larvae were obtained from hatched zebrafish embryos. For data acquisition, zebrafish larvae 
were transferred to poly (methyl methacrylate) (PMMA) housing wells. Low frame rate videos were recorded 
with a Dino-Lite AD7013MT microscope at frame rates of 14 or 15 fps. High frame-rate videos were captured 
by an Imaging Development Systems (IDS) UI-3360CP-C-HQ microscope, with a high resolution 12.5 mm focal 
lens.

The dataset consists of 10 video sequences with 3056 frames in total, with various durations and imaging 
conditions as summarized below (the detailed sequence information and the code to facilitate the ground truth 
generation are freely available online14):



www.nature.com/scientificreports/

5ScIenTIfIc REPORTS | 7: 17596  | DOI:10.1038/s41598-017-17894-x

•	 Video durations from 110–759 frames with frame rates of 14–15fps (seq. 1–6, 8–9) and a high frame rate of 
117fps (seq. 7, 10)

•	 Single zebrafish larvae (seq. 5, 6) and multiple zebrafish larvae (seq. 1–4, 7–10) swimming in round (as shown 
in Fig. 1c,e) or square (as shown in Fig. 1d,f) well containers

•	 Clear and obstructed well containers e.g., well edge shadowing (seq. 1, 10), water particles (seq. 2, 4–8), water 
bubbles (seq. 8), labels (seq. 4, 8–9)

Segmentation evaluation metrics. This paper uses three standard metrics and proposes a new metric to 
numerically quantify the segmentation performance by calculating dissimilarity with the manually generated 
ground truth. Let S and S  denote the segmentation ground truth and the result of a segmentation algorithm for 
image X = {x1, x2, …, xN} of N pixels. Then, denote a pixel xi in the detected object region C(S, xi) and C(S , xi), in 
the ground truth and algorithm result, respectively. The three standard segmentation metrics are defined in 
Equations 3–5 as:
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C S x C S x

C S x
( , ) ( , )

( , ) (3)
i i

i

∩=Precision
C S x C S x

C S x
( , ) ( , )

( , ) (4)
i i

i

=
∗ ∗

+
F Recall Precision

Recall Precision
2 ( )

(5)measure

= −
∗

SI F Num
Num2 (6)measure

miss

GT

The proposed Similarity Index (SI) metric in Equation (6) accounts for the number of correctly segmented 
objects by penalizing missing objects or object occlusion. Nummiss and NumGT are the number of objects missed, 
and objects detected in the ground truth, respectively. The recall and precision metrics estimate 
under-segmentation and over-segmentation, respectively. The Fmeasure is a weighted calculation of the precision 
and recall.

Tracking evaluation metrics. To enable the objective evaluation of tracking performance on the database, 
this paper employs the widely utilized standard Multiple Object Tracking (MOT) metric: Classification of Events, 
Activities and Relationships (CLEAR MOT)21.

CLEAR MOT consists of two metrics: Multiple Object Tracking Precision (MOTP), which estimates the loca-
tion precision of all detected objects compared to that of the manually labelled zebrafish larvae positions in each 
frame (known as ground truth); and, Multiple Object Tracking Accuracy (MOTA), which measures the accuracy 
in tracking object trajectories (producing exactly one trajectory per object), and the ability to consistently label 
objects over time. Mathematically, the MOTP and MOTA metrics are represented as:
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where |Di,t − GTi,t| indicates the Euclidian distance between the pair-wise matched position of the i-th segmented 
object in the t-th frame (Di,t) and the position of this object in the ground truth (GTi,t), averaged by the total num-
ber of matches in the entire video sequence.

In the MOTA metric, mt, fpt, and mmet for each frame t indicate the number of missed zebrafish detections, 
false positive segmentation (i.e., image noise fragment detected as zebrafish), and the swapping of identities for 
individual zebrafish larvae, respectively. gt represents the total number of objects presented in frame t.

Results
To evaluate the segmentation approach in the proposed tracking system, the proposed segmentation approach 
is compared with the segmentation method within idTracker5, and the well-known motion feature based optical 
flow22 and SIFT flow23 methods. The overall tracking accuracy of the proposed system is then compared with 
idTracker5, and the widely used commercial LoliTrack system6. All evaluation experiments were performed using 
the zebrafish larvae segmentation and tracking dataset presented in this paper, annotated with manually gener-
ated segmentation and tracking ground truth.

Segmentation evaluation. Figure 3 shows the average Fmeasure and SI scores presented with the 95% confi-
dence intervals for each of the 10 video sequences in the dataset, presented in the order that the first sequence has 
clearest background and the 10th (last) sequence has the most complex background.
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The results as seen in Fig. 3 show that the overall segmentation accuracy of the proposed method has an aver-
age 7.54%, 22.72% and 56.12% higher Fmeasure than idTracker, optical flow and SIFT flow, respectively. The pro-
posed approach also exhibits an 8.74% and 21.30% higher similarity index compared to idTracker, and optical 
flow, respectively, indicating an improved performance in relation to missing or occluded objects. In particular, 
the proposed method is more robust against challenging background environments, such as unclear zebrafish 
well containers with labels (as illustrated by seqs. 8 and 9). The robust segmentation accuracy as seen in Fig. 3 
across the 10 videos under variant background conditions evaluated with the proposed system further shows that 
the segmentation performance does not depend on video input tested.

The sensitivity of the segmentation accuracy due to the tuning factor α was examined in12, where the range of 
α values evaluated showed a consistent and reliable segmentation performance. In turn, the robust segmentation 
accuracy seen in Fig. 3, which illustrates the 10 videos under variant background conditions evaluated with the 
proposed system shows that the segmentation performance does not depend on the video input tested. Further, 
optical flow, SIFT flow and idTracker respectively exhibit 1.95%, 2.45% and 0.47% more variance in all of the 
evaluation metrics studied, which suggests that the segmentation results are less reliable across the complex video 
sequences evaluated.

Tracking accuracy evaluation. Figure 4 summarises the tracking accuracy using the MOTP and MOTA 
metrics21 evaluated over the 10 video sequences, where the raw tracking accuracy for each video is provided in 
Supplementary Table S1. Seq. 1 has the clearest background, seq. 2–6 each have one type obstruction (well edge 
shadows, particles, particles, labels on well, and well edge shadows, respectively), and seq. 7–8 each have two types 
of obstruction, and seq. 10 has the most complex container background conditions. Both the proposed tracking 

Figure 3. Segmentation accuracy over the 10 video sequences.

Figure 4. Tracking accuracy over the 10 video sequences.
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system and existing tracking approaches perform reliably when the videos have restricted background conditions, 
as shown by the MOTP and MOTA values for seqs. 1–4 in Fig. 4. However, when the video conditions increas-
ingly degrade from seqs. 5–10, the proposed system is more reliable than the existing systems as illustrated by the 
consistent performance of the proposed system compared with the existing systems as measured by both metrics 
from seqs. 5–10 in Fig. 4. Further, the proposed system exhibits the smallest position detection error, with a 
decreased overall error of 25.61 and 44.49 pixels using MOTP compared to idTracker and LoliTrack, respectively, 
and an increased accuracy of 31.57% and 27.2% using MOTA compared to idTracker and LoliTrack, respectively.

The proposed segmentation approach is applied as pre-processing to the idTracker system to determine the 
effect of the proposed segmentation approach on the overall tracking accuracy. The result of both the MOTP and 
MOTA values improved by 32.00% and 22.91%, respectively, compared with the original idTracker system. The 
proposed background subtraction and segmentation processing also removes the need to constrain the input 
zebrafish larvae video imaging conditions, and enables the testing of videos under realistic experimental con-
ditions using idTracker. That is, researchers who already use idTracker can apply the proposed segmentation 
method as pre-processing to obtain tracking results of higher accuracy using the existing idTracker system, with 
video data in unconstrained imaging conditions.

Figure 5 is a visual example of the tracking trajectory obtained for seq. 4 by LoliTrack, idTracker and the pro-
posed system. It can be seen that the proposed tracking system exhibits the most complete tracking trajectories 
estimated for realistic experimental conditions. In contrast, LoliTrack (Fig. 5a) detects the well edge shadow as 
zebrafish due to their similar intensity values, whilst idTracker system (Fig. 5b) produces many trajectory gaps 
primarily caused by the false detection (as shown by the light blue line) of larvae objects due to their ‘bursty’ loco-
motive characteristics and small size differentiation with impurities inside water. The resulting identity estimated 
from idTracker is therefore also not reliable, with an estimated reliability of identity of 63% calculated according 
to the trajectory analysis of idTracker as shown by Fig. 5b.

Supplementary Table S2 summarises the total number of individual identities swapped across each tested 
video. The proposed system exhibits the smallest identity swapping rate, with 24.32% less identity swap than 
the idTracker system. In addition to the proposed segmentation method exhibiting a consistently higher accu-
racy segmentation than idTracker as shown in Fig. 3, applying the proposed segmentation method to idTracker 
reduces the zebrafish larvae misdetection and false positive rates, as shown in Fig. 4. However, the identity swap-
ping rate is doubled as shown by Supplementary Table S2, due to the generated binary foreground images provid-
ing limited intensity information for idTracker to generate the required fingerprint.

Conclusion
Compared to the tracking of adult zebrafish in microscopic videos, the dynamic ‘bursty’ locomotive character-
istics and complex video imaging conditions of zebrafish larvae due to their small size relative to background 
imaging artifacts poses many different challenges for the tracking of multiple zebrafish larvae. This paper pro-
poses a zebrafish larvae tracking system for both single and multiple zebrafish larvae under complex video con-
ditions, applying an adaptive GMM probability density model, median filter and morphological operations to 
segment larvae objects from the background, and Hungarian assignment for tracking. Comparisons with existing 
state-of-the-art biological small organism tracking systems illustrated the accuracy and efficiency of the proposed 
system, where the proposed system also removes the strict limitations on input video imaging conditions to 
enable the testing of unconstrained experimental videos. Further, the proposed background subtraction and seg-
mentation approaches applied alone as pre-processing to existing tracking systems (such as idTracker) improve 
the multiple organism tracking accuracy by up to 32%. This is due to decreased zebrafish larvae misdetection and 
false positive rates; however, the identity swapping rate may increase if the identity is generated using intensity 
variance information, such as the approach used in idTracker. The immediate future work is in evaluating the 
proposed tracking system for other biological organisms, including adult zebrafish. Together with the increased 
size and intensity contrast, the continuous swimming movements of adult zebrafish provide consistent motion 
features that can be easily captured by the adaptive GMM model and subsequent object tracking.

Figure 5. Visual example comparing tracking trajectories. (a) Lolitrack; (b) idTracker; (c) Proposed system.
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Data availability. The datasets generated during and/or analysed during the current study are available in 
the GitHub repository, https://github.com/Xiao-ying/-moving-zebrafish-larvae-segmentation-dataset-/tree/
master/Data.
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