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Transcriptomic signatures of 
cellular and humoral immune 
responses in older adults after 
seasonal influenza vaccination 
identified by data-driven clustering
Emily A. Voigt1, Diane E. Grill2, Michael T. Zimmermann2, Whitney L. Simon1, Inna G. 
Ovsyannikova1, Richard B. Kennedy1 & Gregory A. Poland1

PBMC transcriptomes after influenza vaccination contain valuable information about factors affecting 
vaccine responses. However, distilling meaningful knowledge out of these complex datasets is often 
difficult and requires advanced data mining algorithms. We investigated the use of the data-driven 
Weighted Gene Correlation Network Analysis (WGCNA) gene clustering method to identify vaccine 
response-related genes in PBMC transcriptomic datasets collected from 138 healthy older adults (ages 
50–74) before and after 2010–2011 seasonal trivalent influenza vaccination. WGCNA separated the 
14,197 gene dataset into 15 gene clusters based on observed gene expression patterns across subjects. 
Eight clusters were strongly enriched for genes involved in specific immune cell types and processes, 
including B cells, T cells, monocytes, platelets, NK cells, cytotoxic T cells, and antiviral signaling. 
Examination of gene cluster membership identified signatures of cellular and humoral responses to 
seasonal influenza vaccination, as well as pre-existing cellular immunity. The results of this study 
illustrate the utility of this publically available analysis methodology and highlight genes previously 
associated with influenza vaccine responses (e.g., CAMK4, CD19), genes with functions not previously 
identified in vaccine responses (e.g., SPON2, MATK, CST7), and previously uncharacterized genes 
(e.g. CORO1C, C8orf83) likely related to influenza vaccine-induced immunity due to their expression 
patterns.

Worldwide, influenza affects 5–10% of adults annually, and results in an estimated 250,000 to 500,000 deaths1. 
Influenza morbidity and influenza-associated deaths increase significantly with age2,3, and more than 90% of 
influenza-associated deaths occur in individuals ≥65 years of age4. Although seasonal influenza vaccination offers 
protection against severe influenza disease, levels of protection vary between seasons, individuals, and age—
tending to be lower in elderly populations5–12. In fact, the effectiveness of seasonal trivalent inactivated influenza 
vaccination among community-dwelling older adults has been estimated to be only 30–40%6,12–14. With the aging 
of populations in the U.S. and globally, it is imperative that influenza vaccine-induced immunity in older adults 
be better understood15–17.

Systems vaccinology and vaccinomics, the application of systems biology to the study of vaccines, are a prom-
ising method to better understand human immune responses to vaccines from a holistic perspective18,19. A sem-
inal paper by Querec et al. in 2008 applied a systems biology approach to study yellow fever vaccine-induced 
immunity and identified novel genes involved in vaccine-induced antibody and CD8+ T cell responses whose 
expression levels could predict immunogenicity of the vaccine in subjects, setting a new standard for vaccine 
studies20. Such systems biology approaches provide complementary insights to reductionist approaches by 
revealing novel interactions between immune system processes critical to developing immune responses to vac-
cines21. Systems biology approaches have been previously applied to the study of seasonal influenza vaccination 
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in humans, resulting in the identification of important players in, and predictors of, immune responses. These 
include the frequencies of specific immune cell subsets, pre-existing immunity from previous influenza vaccina-
tion or infection, and gene expression signatures of immune response in ex vivo human immune cells9,22–28.

Such systems studies of the human response to vaccination require complex analytical methods to mine 
important immune-related information out of large datasets. In particular, the in-depth study of transcriptional 
changes in peripheral blood mononuclear cells (PBMCs) post-vaccination may lead to a better understanding of 
the development of humoral and cellular immune responses after influenza vaccination; however, systems-level 
characterization of PBMC responses to vaccination requires analytical techniques to prune large transcriptomics 
datasets to the subset of biologically relevant genes. As transcriptomic datasets are large (thousands of genes at 
multiple time points), the identification of single genes as predictors of immune responses is challenging29,30. This 
issue is exacerbated in biological situations where marginal associations are weak and/or noisy, leading to high 
rates of false-positive identifications. PBMCs also represent a complex mixture of immune cell types, each with its 
own changing pattern of gene expression, inherently providing additional complexity to transcriptomic datasets. 
As genes work within networks, not individually, effective analytical methods to identify important drivers of 
immunity that focus on groups of genes may better model the mechanisms of response31.

Weighted Gene Correlation Network Analysis (WGCNA) is a new data-driven clustering algorithm that can 
be used to identify clusters of genes that act similarly across individuals32,33. This gene clustering method was 
developed in order to effectively study transcriptomic data from complex systems, such as human disease states 
and plant microbiome interactions32,34–36. For biological scenarios where with low signal-to-noise ratios and weak 
marginal associations, WGCNA cluster analysis has been demonstrated to be more reproducible and less prone to 
finding false positives than marginal meta-analysis statistical techniques37. WGCNA has been utilized to identify 
subsets of genes from transcriptomic datasets that are involved in the biological questions studied, while exclud-
ing genes that are likely unrelated38–40. To date, WGCNA has been sparsely used in the study of human immu-
nology, and thus further validation of this technique for such applications, and comparisons of results to those 
of previous systems studies of influenza vaccination in humans is essential. We tested the utility of WGCNA in 
analyzing transcriptomic profiles of PBMCs from older adults after seasonal influenza vaccination. The algorithm 
generated fifteen gene expression clusters, eight of which were highly enriched for immunity-related genes. These 
immune-relevant clusters had distinct and biologically interpretable functions, and cluster gene expression cor-
related with subject immune responses corresponding to those biological functions. These gene clusters allowed 
us to identify independent marker genes for the development of cellular (PBMC cytokine secretion) and humoral 
(serum antibody, B-cell ELISPOT) immunity. These results compared well with previous studies using alternative 
analysis approaches. Further study of these clusters identified likely involvement of specific immune cell subsets 
in the development of cellular, memory B-cell, and antibody immune responses.

Materials and Methods
The study population and laboratory methods described herein are similar or identical to those published in our 
previous studies41–46.

Recruitment. A cohort of generally healthy recipients of the 2010/11 seasonal trivalent inactivated influenza 
vaccine (TIV; Fluarix; containing the A/California/7/2009 NYMC X-191 (H1N1), A/Victoria/210/2009 NYMC 
X-187 (H3N2; an A/Perth/16/2009-like virus), and B/Brisbane/60/2008 viral strains) was used for this study41,47. 
Subjects were 50–74 years of age, and vaccination was administered by standard protocol into the deltoid mus-
cle using a 1 inch needle. Vaccine lot #AFLUA524AA (GlaxoSmithKline) was used for all subjects. Blood sam-
ples (100 ml each) were collected before vaccination (Day 0) and at Days 3 and 28 post-vaccination (Fig. 1)41. 
Recruitment was performed at Mayo Clinic, Rochester, MN; a complete dataset was obtained from 138 individu-
als, and these datasets were used for further analysis.

Ethics Statement. Written informed consent was obtained from each participant, and the Mayo Clinic 
Institutional Review Board approved the study. Review Board approved the study. All methods were performed 
in accordance with the relevant guidelines and regulations.

Figure 1. Study design. Adults were vaccinated with trivalent seasonal influenza vaccine. At Days 0, 3, and 28 
post-vaccination, blood samples were drawn and serum antibody (HAI, VNA) titers measured. PBMCs were 
assayed for anti-influenza memory activity by influenza A/H1N1-specific B-cell, and mRNA transcriptomic 
profiles measured by NextGen sequencing. PBMCs were also stimulated in vitro by influenza A/H1N1 virus, 
and resulting cytokine secretion (IFNγ, IL1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNFα) was 
measured by ELISA.
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The virus was propagated in nine-day-old embryonated chicken eggs obtained from Charles River 
Laboratories in Storrs, CT, USA. Mayo Clinic’s Institutional Animal Care and Use Committee (IACUC) policy 
does not require review of research on unhatched embryonated eggs destroyed before hatching, in accordance 
with the Office of Laboratory Animal Welfare and the National Institutes of Health policy.

MDCK cells were obtained from the American Type Culture Collection.

Isolation of peripheral blood mononuclear cells. PBMCs were isolated from whole blood samples as 
described previously using BD Vacutainer® CPTTM Cell Preparation Tubes with sodium citrate43. The cells were 
then resuspended in freezing medium, aliquoted, and cryopreserved for future use42–44.

Growth of influenza virus. The influenza A/California/7/2009/H1N1-like virus strain used in this study 
was provided by the Centers for Disease Control and Prevention (Atlanta, GA). As previously described, the virus 
was propagated in embryonated chicken eggs and harvested from the allantoic fluid. 50% tissue culture infectious 
dose (TCID50) measurement of virus stock titers was conducted by infection of MDCK cells with serial dilutions 
of the virus and addition of red blood cells (RBC) five days after infection. Hemagglutination (HA) was then 
determined in wells with successful virus replication42,44,48–50

Previous measurement of immune response to influenza vaccine. Hemagglutination-inhibition 
influenza A/H1N1 antibody (HAI) titers, virus-neutralizing influenza A /H1N1antibody (VNA) titers, and influ-
enza A/H1N1-specific B-cell ELISPOT counts for these subjects before and after vaccination were previously 
published by our group42,44–46. Participants’ influenza A/H1N1-specific HAI titers were measured from sera at 
each timepoint pre- and post-vaccination. Serum influenza A/H1N1-specific neutralizing antibody titers were 
measured by a cell-based microneutralization assay at each timepoint with influenza A/H1N1 virus stimulation 
(200 plaque-forming units per 5 µl), as previously described46. Quantification of influenza A/H1N1-specific B 
cells (memory-like IgG B cells) was performed on subjects’ PBMCs using the MabTech Human IgG ELISpotPLUS 
Kit (Mabtech, Inc.; Cincinnati, OH), as described previously44. Influenza A/H1N1 virus stock was diluted 1:50 
(50,000 TCID50/well) before coating the ELISPOT plates.

In vitro chemokine/cytokine assays. PBMCs were thawed, counted, and plated at 2 × 105 cells 
per well in 96 well plates. Six wells were plated per subject; three of these were stimulated with influenza A/
California/7/2009/H1N1-like virus (MOI 0.5) and three left unstimulated. Two additional wells were stimulated 
with 5 μg PHA (positive control). Plates were incubated for 48 hours at 37 °C, after which supernatants were har-
vested, plated in a new 96-well plate, and frozen until use. The Meso Scale Diagnostics (MSD; Rockville, MD) 
V-PLEX Proinflammatory Panel 1 (human) Kit was used according to the manufacturer’s protocol to measure 10 
cytokines (IFN-ɣ, IL-10, IL-12p70, IL-13, IL-1β, IL-2, IL-4, IL-6, IL-8, and TNF-α) in the aforementioned super-
natants. Cytokines were categorized as TH1 (IFN-γ, IL-2), TH2 (IL-10, IL-4), and pro-inflammatory (TNFα, IL-6); 
the data for each cytokine were transformed to a uniform scale and then averaged within-category.

Statistical Methods
RNA-seq. The mRNA sequencing methods were identical to those published in previous transcriptomics 
studies51. Briefly, total RNA was extracted from each cryopreserved subject PBMC sample using RNeasy Plus 
mini kits and RNAprotect reagent (Qiagen; Valencia, CA). cDNA libraries were created in Mayo Clinic’s Gene 
Sequencing Facility using the mRNA-Seq. 8 Sample Prep Kit (Illumina; San Diego, CA), and poly-A RNA was 
isolated using magnetic purification. Single-end read sequencing was performed using an Illumina HiSeq. 2000. 
Sequencing reads were aligned to the human genome build 37.1 using TopHat (1.3.3) and Bowtie (0.12.7). Quality 
control and normalization of the mRNA-sequencing gene counts data are as described by Ovsyannikova et al.51 
Briefly, gene counts were normalized using Conditional Quantile Normalization52, and 14,197 genes with at least 
32 counts at one of our three timepoints (Day 0, 3, or 28) were used in subsequent analyses.

WGCNA. Weighted Gene Coexpression Network Analysis (WGCNA) was used to create data-driven 
phenotype-agnostic gene clusters using the Day 28 normalized gene expression data33,53,54. For all pairs of genes, 
a co-expression similarity matrix was calculated as Sij = |0.5 + 0.5*cor(xi, xj)|. This signed similarity matrix was 
used to construct an adjacency matrix, calculated as Aij = Sij

β, with soft-thresholding to preserve the strength 
of the correlation between the genes. The parameter β was selected as the smallest value that achieves scale free 
topology (β = 12 for this analysis). The topological overlap dissimilarity was calculated from the adjacency matrix, 
and hierarchical clustering was used to define the gene clusters. Each gene cluster’s eigengene is used as a sum-
mary of the cluster’s gene expression activity, representing the first principal component of the gene expression 
levels within the cluster. Pearson’s correlation was used to correlate subject immune phenotypes with each clus-
ter’s eigengene to identify which clusters were related to vaccination responses.

Gene enrichment analyses. We performed enrichment analysis using the RITAN55 package (https://
github.com/MTZimmer/RITAN) and leveraging previously published Blood Translation Modules (BTMs)56.

Cluster-cluster interaction analysis. Databases of known regulatory interactions were examined using 
RITAN to further understand the biologic relationships between the individual genes found in the WGCNA gene 
clusters. Interactions from the Pathway Interaction Database57, Transcription Factor Encyclopedia58, a directed 
protein interaction network59, HPRD60, CCSB61, HumanNet62 (minimum score ≥ 0.0), and STRING63(minimum 
score ≥700) were accessed using RITAN. This integrated network resource provided a comprehensive summary 
of known interactions across the human proteome.

https://github.com/MTZimmer/RITAN
https://github.com/MTZimmer/RITAN
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Using this interaction network, we computed a gene cluster interaction metric quantifying the extent to which 
the genes in two clusters are directly regulated by one another. The fraction of genes in one gene cluster that 
interacted with genes in the second gene cluster was calculated, then compared to the expected interaction of two 
randomly-generated gene clusters of the same size, as follows: for gene clusters s1 = {g1

1, g2
1,…, gn

1} and s2 = {g1
2, 

g2
2,…, gm

2} that contain ||s1|| = n and ||s2|| = m genes, let the neighbors of a gene be A(g). Further, let the neigh-
bors of genes in cluster s1 that are also members of cluster s2 be denoted A(s1)2 and U the cluster union. Finally, 
let the overlap between the two clusters be: O(s1, s2) = U(A(s1)2, A(s2)1). The interactivity is formally defined as: 
G = ||O(s1, s2)||/||U(s1, s2)||. We used permutation tests to judge the significance of observed interactivity scores. 
To assess the significance of an individual cluster-cluster interactivity score, randomly selected groups of genes 
of the same respective sizes as the clusters were generated and interactivity was calculated. This was repeated 
1,000 times, resulting in a randomly generated distribution of interactivity scores. We declared the original 
cluster-cluster interactivity value as significant when it was at least three median-based standard deviations away 
from the median of this empirical null distribution (p-value <0.001).

Results
Vaccination boosts cytokine responses of human PBMCs. In order to assess PBMC cytokine recall 
responses in response to influenza vaccination, we sampled subject PBMCs immediately prior to vaccination and 
28 days post-vaccination. Harvested PBMCs from 138 subjects were stimulated in vitro with A/H1N1 influenza 
virus, and supernatants were removed after 48 hours and assayed for secreted cytokines (Fig. 2).

PBMCs collected post-vaccination produced significantly more IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-10, and 
TNFα in response to in vitro influenza A/H1N1 virus stimulation than PBMCs harvested prior to vaccination 
and identically stimulated (Fig. 2, panel A). Some individuals demonstrated high pre-vaccination PBMC cytokine 

Figure 2. Influenza vaccination primes human PBMCs to secrete cytokines in response to influenza A/H1N1 
virus stimulation. Panel A: Influenza A/H1N1-stimulated cytokine responses in PBMCs harvested prior to 
seasonal influenza vaccination were measurable, representing significant pre-existing immunity. However, 
cellular cytokine responses were significantly boosted above pre-vaccination levels for TH1 (IFN-γ, IL-2), 
TH2 (IL-4, IL-10), and proinflammatory (IL-6, TNF-α) cytokines. IL-1β, IL-12p70, and IL-13 cytokines were 
secreted at low levels approaching the assay limit of detection. IL-8 showed high levels of assay variability. Panel 
B: TH1, TH2, and pro-inflammatory post-vaccination (Day 28) cytokine responses are highly correlated.
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recall responses, which is evidence of pre-existing immunity to influenza A/H1N1. Levels of IL-1β, IL-12p70, 
and IL-13 were deemed too low for meaningful analysis (i.e., post-stimulation samples below the assay limit of 
detection in 31%, 80%, and 20% of subjects, respectively). IL-8 responses were highly variable between replicates 
(standard deviation between replicates was more than triple that of other cytokines), and these data were accord-
ingly removed from further analyses.

TH1 cytokines (IFN-γ, IL-2) were more highly secreted than pro-inflammatory cytokines (IL-6, TNFα), which 
are in turn more highly secreted than TH2 cytokines (IL-4, IL-10). Secreted cytokine levels in individuals are 
highly inter-correlated, with subjects typically showing consistently high (or low) secretion across TH1, TH2, and 
pro-inflammatory cytokines (Fig. 2, panel B). Secreted cytokines were not found to correlate significantly with 
VNA, HAI, or B-cell ELISPOT responses (data not shown).

WGCNA clusters transcriptomic data from human PBMCs after vaccination according to 
expression patterns across subject. Gene expression (mRNA-Seq) data was previously collected from 
study subjects’ PBMC samples collected before and after vaccination51,64. This effort successfully measured expres-
sion levels of 14,197 genes across subjects before, three days after, and 28 days after vaccination. Full transcrip-
tomic and immune datasets were finally available after strict quality control for 138 study subjects.

In order to identify genes that correlate highly with immune responses and are influential in vaccine-induced 
immunity, we clustered gene-expression data into groups of similarly behaving genes across our subjects using 
WGCNA33. This data-driven clustering method used average-linkage hierarchical clustering to group genes 
according to their expression patterns across the subjects. WGCNA clustering of Day 28 gene-expression levels, 
based on the expression across the 138 subjects with full transcriptomic and immune datasets, resulted in the 
construction of 14 non-overlapping gene clusters (Supplementary Table S1). The size of these gene clusters ranged 
from 54 genes to 2,790 genes. For simplicity, we assigned a color to each gene cluster and refer to each specific 
cluster by color coding throughout this work. There were 1,112 genes that did not fit into other clusters and were 
grouped into a fifteenth “grey” cluster.

WGNCA gene clusters are highly enriched for specific immune cell types and/or immune-related 
functions. To investigate the biologic relevance of the gene clusters created by WGCNA, gene enrichment 
analysis was conducted on the 100 genes in each cluster with the highest correlation with the cluster eigengene, 
using Blood Translation Modules (BTMs) as references. BTMs were developed from a systems-biology study of 
responses to five human vaccines and represent many of the known gene signatures of vaccine-related immu-
nological processes and immune cell types56. Results of the enrichment analysis are shown in Table 1. Similar 
enrichment results were obtained using the DAVID functional annotation and Gene Ontology analysis (data not 
shown)65–67.

The WGCNA algorithm, acting solely on transcriptomic data, was able to separate clusters of genes with 
similar transcriptomic patterns across the 138 subjects (i.e., high responding vs. low responding subjects). These 
gene clusters were associated in turn with a variety of BTMs corresponding to PBMC functions (Table 1). The Tan 
cluster, for example, is highly enriched for genes involved in cell cycle and transcription, while the Greenyellow 
cluster is highly enriched for genes involved in B cell signatures and responses. The Yellow gene cluster contains a 
large number of genes related to monocytes, cell cycle and transcription, and inflammatory signaling (including 
innate antiviral responses). The Magenta cluster is highly enriched for genes involved in platelet activation, mye-
loid cells, and monocytes. The Salmon and Purple clusters are enriched for genes active in NK cells, and the Pink 
cluster appears to be involved in monocyte and immune activation. Finally, the Green and Black gene clusters are 
enriched for T cell differentiation and activation. The remaining clusters—Blue, Brown, Cyan, Turquoise, Red, 
and Grey—were not enriched for any BTM gene signatures with currently known functions.

Expression of genes in WGCNA-derived gene clusters correlates with different aspects of meas-
ured immune responses to vaccination. To examine the possible function of genes within the WGCNA 
clusters, we examined the correlation between the expression of each gene and the subjects’ measured immune 
outcomes: antibody responses (HAI/VNA)42,44,46, memory B cell responses (B-cell ELISPOT)44, and PBMC 
cytokine recall responses (secretion of IFN-γ, IL-2, IL-4, IL-6, IL-10, and TNF-α) (Supplementary Table S2). 
A heatmap of these correlations is shown in Fig. 3, left panel. The eigenvector of each cluster (first principal 
component of the cluster genes’ transcriptional data, representing the overall expression behavior of genes in the 
cluster) was also tested for correlation with subjects’ immune outcomes using Pearson’s correlation test (Fig. 3, 
right panel).

The WGCNA clustering algorithm separated the 14,197-gene transcriptomic dataset into biologically mean-
ingful clusters of similarly behaving genes. The WGCNA-derived gene clusters that were highly enriched for 
specific immune-related gene functions (Table 1) also exhibited significant correlations with relevant subject 
immune outcome measures. Gene clusters that were enriched for T cell activation, antiviral signaling, and mono-
cyte activation proved to be correlated with PBMC cytokine recall responses (Red, Black, Green, Cyan, Pink, 
Yellow; 4,963 total genes). Gene clusters enriched for NK and T cell activity (Salmon and Purple; 321 genes total) 
were found to correlate with subject antibody responses (HAI and VNA titers).

The cluster most strongly associated with B-cell activity (Greenyellow; 135 genes) was appropriately found to 
strongly correlate with subject B-cell ELISPOT responses. Thus, through this clustering technique, the total tran-
scriptomic dataset (14,197 genes) was narrowed to 135 similarly acting genes likely involved in the development 
and maintenance of influenza A/H1N1-specific B cells. Notably, these 135 genes are not significantly correlated 
with PBMC cytokine recall responses to influenza A stimulation. B cell ELISPOT activity is also more weakly 
correlated with another gene cluster enriched for T cell activity (Black cluster; 629 genes).
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WGCNA cluster gene membership allows for identification of biologically-relevant gene mark-
ers of vaccine-induced immunity. To see if WGCNA clustering of gene expression data can be used to 
detect biologically relevant gene markers of vaccine-induced immunity, we examined the gene membership in the 
WGCNA clusters that correlate with subject immune outcomes. The top five genes in each cluster—with behavior 
most closely mirroring each cluster’s “average” eigengene behavior—are listed in Table 2.

We found that the top genes in each cluster typically display clear biological association with the summary 
class (See Table 1) of that cluster, and logically link to the immune outcomes with which they correlate. Some 
genes are better correlated with immune outcomes than others, and may therefore be better gene markers of these 
immune outcomes. WGCNA allows creation of gene signatures of different aspects of vaccine-induced immunity 
with clear biological meaning, using data-driven methods alone, unbiased by current knowledge.

Cluster name # genes Enriched for: (Top 3 BTMs)
Strength of enrichment 
(p-value) Summary class

Tan 115

mitotic cell cycle (M4.7) <10−25

Cell cyclecell cycle and transcription (M4.0) <10−25

cell cycle (I) (M4.1) <10−25

Greenyellow 135

plasma cells & B cells, 
immunoglobulins (M156.0) <10−25

B cell activity
enriched in B cells (I), (II), (VI) 
(M47.0, M47.1, M69) <10−25

B cell surface signature (S2) 10−23.3

enriched in B cells (III) 10−13.2

Yellow 1780

enriched in monocytes (II) (M11.0) <10−25

Monocytes and 
inflammation

cell cycle and transcription (M4.0) <10−25

Monocyte surface signature (S4) 10−11.7

TLR and inflammatory signaling 
(M16)/lysosome (M209) 10−10.5

Magenta 269

Platelet activation - actin binding 
(M196) 10−22.3

Platelets and 
monocytes

platelet activation and blood 
coagulation (M199) 10−14.5

enriched in myeloid cells and 
monocytes (M81) 10−14.9

Salmon 96

NK cells surface signature (S1) 10−21.6

NK cell activityenriched in NK cells (I) (M7.2) 10−17.2

enriched in NK cells (II) (M61.0) 10−9.9

Purple 225

enriched in NK cells (I) (M7.2) <10−25

NK and T cell activityenriched in NK cells (II) (M61.0) 10−5.8

enriched in T cells (I) (M7.0) 10−5.8

Pink 289

immune activation - generic cluster 
(M37.0) 10−6.7

Monocyte activationenriched in monocytes (II) (M11.0) 10−6.6

CCR1, y and cell signaling (M59) 10−4.9

Green 1144

enriched in T cells (I) (M7.0) 10−5.6

T cell activationT cell activation (I) (M7.1) 10−4.7

T cell activation (III) (M7.4) 10−2.8

Black 629

T cell activation (I) (M7.1) 10−4.5

T cell activationenriched in T cells (I) (M7.0) 10−4.4

T cell activation (III) (M7.4)/T cell 
differentiation (M14) 10−2.6

Blue 2504
TBA (M177.0) 10−2.5

none
No further enrichment found —

Brown 1988
TBA (M177.0) 10–0.9

none
No further enrichment found —

Grey 1112 No enrichment found — none

Turquoise 2790 No enrichment found — none

Red 1067 No enrichment found — none

Cyan 54 No enrichment found — none

Table 1. WGCNA-determined gene clusters are strongly enriched for genes linked to particular cell types and 
functions. The top 100 genes in each gene cluster most concordant with the cluster eigengene were tested for 
enrichment for BTMs. The top 3 enriched-for BTMs are listed for each cluster.
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WGCNA-derived gene clusters represent distinct but interacting immune processes. To char-
acterize the relationships of these non-overlapping WGCNA-derived gene clusters with one another, we exam-
ined the interaction of genes in each cluster with the genes in each of the other gene clusters. For each pair of gene 
clusters, we calculated the fraction of genes in one cluster that have known interactions with genes in the second 
cluster, and used this to calculate a cluster-cluster interaction score indicating whether the two gene clusters are 
enriched (or depleted) for interacting genes. The matrix of cluster-cluster interconnectivity scores is displayed in 
Fig. 4. Groups of highly interacting gene-expression clusters can be seen along the diagonal.

The interconnectivity analysis resulted in five major groups of gene clusters, as illustrated by the boxed clusters 
in Fig. 4. Highly interacting gene clusters tended to correlate with similar immune response outcomes. For exam-
ple, the expression of genes in the Yellow, Cyan, and Pink cluster grouping all correlate positively with cytokine 
responses (Fig. 3). These three clusters represent three sets of genes with different expression patterns from one 
another, yet interact heavily with one another and correlate with the same immune outcomes. Conversely, the 
highly interacting Red-Black-Green gene clusters correlate with similar biological responses (negatively correlated 
with cytokine recall responses from PBMCs), yet the Black cluster is not particularly interconnected with the Red 
cluster. This illustrates that different genesets may contribute to the same immune outcomes, yet they do not dis-
play high levels of gene-gene interactions. The Green cluster is highly interconnected with all other clusters, pos-
sibly through the inclusion of a few particularly well-linked genes (i.e., transcription factors, ribosomal proteins).

The Salmon, Purple, and Pink clusters are enriched for interacting genes. The antibody-correlated Salmon and 
Purple clusters interact with Pink cluster genes, which appear to link these influenza antibody-response related 
genes with those involved in cytokine recall responses (i.e., the Cyan, Yellow, Magenta, and Black clusters). While 
the Salmon and Purple cluster genes interact highly with one another, and both of these clusters correlate with 
antibody titers, we find evidence that they do have distinct behavior from one another: the Salmon cluster is also 
correlated with IL-6 responses, while the Purple cluster is not. Finally, the Greenyellow cluster interacts solely 
with the Black cluster, which is the only other gene cluster correlated with B-cell ELISPOT outcomes. This sug-
gests that these genes are exclusively involved in driving ELISPOT responses.

Time development of correlations between PBMC cytokine recall responses with gene expres-
sion clusters reveals signatures of pre-existing immunity. To look for pre-existing gene expression 
signatures that predict influenza immune outcomes, we examined the relationship of baseline (Day 0) gene 

Figure 3. Gene clusters (transcriptomic data 28 days post-vaccination) correlate meaningfully with immune 
response outcomes after vaccination. Gene expression (mRNA-Seq) data from PBMC samples of 138 older 
adults after influenza vaccination was clustered using WGCNA. Cluster membership is indicated by color. Left 
panel: heatmap of the correlation between each gene (row) and subjects’ immune response outcomes – cytokine 
recall responses (IFN-γ, IL-2, IL-4, IL-6, IL-10, TNF-α), H1N1 antibody responses (HAI/VNA), and memory 
B-cell responses (B-cell ELISPOT). Center column: cluster enrichment labels from Table 1. Right panel: 
Pearson’s correlation coefficient and p-value for relationships between cluster eigenvector (representing overall 
behavior) and subject immune outcomes. Heatmap shading indicates strength of correlations in both panels; see 
scale bar at right.
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Immune Outcome
Genes from 
Cluster:

Cluster enrichment 
summary Top 5 genes

Correlation with B 
cell ELISPOT Correlation p-value Gene name

B-cell ELISPOT Greenyellow B cell activity

CD79A 0.31 2.1E-04 B-cell antigen receptor complex-associated 
protein alpha chain

RALGPS2 0.30 2.9E-04 Ras-specific guanine nucleotide-releasing 
factor

CD22 0.28 9.1E-04 B-cell receptor

CD19 0.33 8.1E-05 B-lymphocyte antigen

FCRLA 0.37 7.6E-06 Fc receptor-like A

Immune Outcome Genes from 
Cluster:

Cluster enrichment 
summary Top 5 genes Correlation with HAI 

titers Correlation p-value Gene name

Antibody titers

Salmon NK cell activity

SPON2 0.24 4.0E-03 Spondin-2

KLRF1 0.19 2.5E-02 Killer cell lectin-like receptor subfamily F 
member 1

AKR1C3 0.23 6.3E-03 Aldo-keto reductase family 1 member C3

NCR1 0.26 2.4E-03 Natural cytotoxicity triggering receptor 1

PRF1 0.20 1.8E-02 Perforin-1

Purple NK and T cell activity

FCRL6 0.11 1.9E-01 Fc receptor-like protein 6

GZMA 0.15 8.3E-02 Granzyme A

MATK 0.16 6.6E-02 Megakaryocyte-associated tyrosine-protein 
kinase

CST7 0.12 1.6E-01 Cystatin-F

NKG7 0.15 7.5E-02 G-CSF-induced gene 1 protein

Immune Outcome Genes from 
Cluster:

Cluster enrichment 
summary Top 5 genes Correlation with in 

vitro IL-6 secretion Correlation p-value Gene name

PBMC cytokine 
recall

Yellow Monocytes and 
inflammation

ANKRD50 0.22 8.2E-03 Ankyrin repeat domain-containing protein 
50

RAB31 0.22 1.1E-02 Ras-related protein Rab-31

CORO1C 0.29 6.6E-04 Coronin-1C

C8orf83 0.21 1.4E-02 Triple QxxK/R motif-containing protein

CD68 0.22 9.7E-03 Macrosialin

Pink Monocyte activation

USP32 0.23 6.2E-03 Nucleolar transcription factor 1

VPS37C 0.26 2.3E-03 Ubiquitin carboxyl-terminal hydrolase 32

DIRC2 0.23 7.9E-03 Vacuolar protein sorting-associated

NHS 0.13 1.2E-01 Disrupted in renal carcinoma protein 2

STX11 0.25 2.8E-03 26S protease regulatory subunit 8

Cyan None

PTPRS 0.19 2.9E-02 Receptor-type tyrosine-protein phosphatase 
E

KCNK10 0.11 1.8E-01 Potassium channel subfamily K member 10

CLEC4C 0.24 5.1E-03 C-type lectin domain family 4 member C

CUX2 0.19 2.8E-02 Homeobox protein cut-like 2

LILRA4 0.21 1.4E-02 Leukocyte immunoglobulin-like receptor 
subfamily A member 4

Green T cell activation

RPL13A −0.32 1.0E-04 60S ribosomal protein L13a

RPL3 −0.33 9.5E-05 60S ribosomal protein L3

OCIAD2 −0.30 4.3E-04 OCIA domain-containing protein

RPL10 −0.32 1.1E-04 60S ribosomal protein L10

SNRPN −0.28 1.1E-03 small nuclear ribonucleoprotein-associated 
protein N

Black T cell activation

CDR2 −0.32 1.3E-04 Cerebellar degeneration related protein 2

FLT3LG −0.34 4.7E-05 Fms-related tyrosine kinase 3 ligand

MLLT3 −0.22 8.1E-03 Protein AF-9

CAMK4 −0.36 1.2E-05 Calcium/calmodulin-dependent protein 
kinase type IV

SFMBT1 −0.27 1.1E-03 Scm-like with four MBT domains protein 1

Red None

PRPF39 −0.17 4.7E-02 Pre-mRNA processing factor 39

ZNF37BP −0.21 1.3E-02 Zinc finger protein 37B, pseudogene

TUBGCP6 −0.17 4.8E-02 Gamma-tubulin complex component 6

CUL9 −0.17 5.2E-02 Cullin-9

NEURL4 −0.12 1.4E-01 Neuralized-like protein 4

Table 2. Top five genes in immune-related WGCNA gene clusters. The five genes in each WGCNA cluster that 
are most closely correlated with the cluster eigengene are listed, along with their correlation with the relevant 
immune outcomes.
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expression data with subject immune outcomes 28 days after vaccination. To do so, we clustered Day 0 gene 
expression data according to WGCNA clusters described above. The correlation of each gene cluster’s eigengene 
(median expression behavior) at Day 0 with PBMC cytokine recall responses measured at Day 28 is shown in 
Fig. 5.

Genes in clusters related to PBMC cytokine recall responses showed baseline (Day 0) expression levels that 
correlated with post-vaccination PMBC cytokine responses. This correlation suggests the presence of signifi-
cant pre-existing cellular immunity to influenza virus. This method has identified transcriptomic signatures of 
pre-existing cellular immunity embedded in PBMC transcriptomic profiles prior to vaccination. We found tran-
scriptional signatures of preexisting immunity for PBMC cytokine responses specific to influenza A/H1N1, but 
did not find equivalents for antibody HAI/VNA or memory B-cell ELISPOT responses to the same virus.

Time development of correlations between humoral and cellular immunity measures and gene 
expression clusters reveals stages of humoral and cellular vaccine response. To further examine the 
development of our gene expression correlations with antibody and B-cell ELISPOT, for which we did not find tran-
scriptomic signatures of pre-existing immunity, we clustered baseline and early responding gene expression data (Day 
0 and Day 3) according to the WGCNA clusters developed using the Day 28 gene expression data. The correlation 
of the eigengene (overall behavior) of each gene cluster at each time point with final antibody (VNA) and memory 
B-cell (ELISPOT) responses was also calculated. Significant correlations are shown in Fig. 6, along with correlations 
between each of the top 50 genes in each cluster and the corresponding Day 28 immune outcome (inset panels).

Development of the transcriptomic clusters’ correlation with immune outcomes reflects the progression of 
immune responses to vaccination. Initially (Day 0), the Yellow “monocytes and inflammation” gene cluster shows 
significant negative correlation with peak antibody (VNA) titers, which disappears after vaccination. Late in 
response, the Purple “NK and T cell activity,” and Salmon “NK cell activity” gene clusters show correlation with 
antibody titer (Fig. 6A).

While baseline expression of genes in the Greenyellow gene cluster does not correlate with B-cell ELISPOT 
responses to vaccination, transcriptomic activity of these genes three days after vaccination is related to ultimate 
ELISPOT responses, and this relationship is maintained through Day 28 (Fig. 6B). Expression of genes in the 
Greenyellow cluster appears to be important for development of B-cell immune memory to the influenza vaccine 
strains, both early and late in responses.

Discussion
Development of humoral and cellular immunity to influenza after seasonal influenza vaccination is a complex 
process integrating the activity of multiple immune cells. Transcriptomic data from human PBMCs sampled 
post-vaccination contains a wealth of valuable information about human immune responses to vaccination; how-
ever, such data is complex and difficult to meaningfully analyze. We used WGCNA, a hierarchical clustering 
technique, to examine PBMC gene expression data from 138 subjects before and after vaccination and more fully 
examine relationships between gene expression and subject immune outcomes.

When applied to post-vaccination PBMC transcriptomic data, the data-driven WGCNA algorithm clustered 
the 14,197 genes into 15 gene clusters, which ranged in size from 2,790 to 54 genes. Gene expression in nine of 
these clusters (5,419 genes) demonstrated significant correlation with immune responses measures. Six gene 
clusters (4,963 genes) correlated with PBMC cytokine recall responses, and two clusters (321 genes) correlated 
significantly with influenza A/H1N1 neutralizing antibody measures (Purple, Salmon). A single small 135-gene 
cluster (Greenyellow) correlated strongly with B-cell ELISPOT measures.

Gene expression relationships with post-vaccination PBMC cytokine recall responses. Cross- 
reactive T-cell and other cellular memory responses are important for long-term protection against influenza in 
older adults. While not yet well worked out, ex vivo cellular immune response measures have been associated with 
vaccine-induced protection in the elderly, while serum antibody response may be a poorer measure of vaccine 
efficacy in older people when used alone6,68,69.

Our data identified gene clusters related to cellular immunity after vaccination, potentially elucidating the 
processes underlying the development of this immunity. Of the six gene clusters that correlated with our ex vivo 
measures of PBMC cytokine recall responses, we identified two negatively correlated clusters (Black, Green) 
enriched for T cell genes. The genes whose behavior is most representative of these clusters included ribosomal 
proteins (RPL13A, RPL3, RPL10, SNRPN), and FLT3L, which is a key gene acting to support dendritic cell action 
and enhance systemic T cell and humoral immunity after vaccination70,71. CAMK4, a kinase previously impli-
cated in transcriptional regulation in lymphocytes72, and MLLT3 (aka AF9), a transcriptional regulator known 
to be involved in hematopoiesis and involved in monocyte-macrophage maturation73,74, were both prominent 
members of the Black gene cluster, suggesting that these genes have significant roles in immune responses to 
vaccination. CAMK4 has been previously identified as a key negative regulator of antibody responses to trivalent 
seasonal influenza vaccines25, thus validating the ability of WGCNA to identify key genes regulating immune 
responses after vaccination. The role of MLLT3 in vaccine responses has not been previously described. MLLT3 is 
a component of the super elongation complex that functions to increase the rate of RNA polymerase II transcrip-
tion. MLLT3 is a regulator of human hematopoiesis, where mutations are associated with various leukemias75, and 
increased expression promotes the output of erythroid and megakaryocytic progenitors73. It is possible that lower 
expression of this protein instead encourages the formation of monocytes, thus affecting immune responses to 
vaccination. Such hypotheses should be further explored in future studies.

We also detected transcriptomic signatures of pre-existing cellular immunity to influenza (Day 0 gene expres-
sion that correlated with PBMC cytokine secretion) in these Red, Black, Green, Cyan, Pink, and Yellow clusters that 
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Figure 4. Cluster interconnectivity matrix. The cluster interconnectivity matrix shows gene cluster pairs found 
to be enriched or depleted for cross-cluster gene interactions. Red squares indicate that two gene clusters are 
enriched for cross-cluster gene interactions, blue squares indicate two clusters depleted for cross-cluster gene 
interactions, and a lack of either enrichment or depletion is denoted in white. Groups of highly interconnected 
gene clusters are identified (black boxes), and network diagrams of these meta-clusters, displaying known gene-
gene interactions between the top 100 individual genes from each involved cluster, are displayed in the inset 
circles.

Figure 5. PBMC gene expression prior to vaccination (Day 0) correlates with post-vaccination (Day 28) PBMC 
cytokine recall responses. Gene expression data at baseline (Day 0) was clustered according to the Day 28 
WGCNA gene clusters, and the correlation coefficient of each cluster’s Day 0 eigengene with PBMC cytokine 
responses is shown, colored as in previous figures.
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correlated with cytokine recall responses. We note that no equivalent transcriptional signatures for pre-existing 
antibody or B-cell ELISPOT responses were found. This may indicate that pre-existing B cell responses require 
little maintenance on a transcriptional level, and/or may reflect that influenza-specific memory B cells reside pre-
dominantly outside of the blood and their transcriptional signatures may be too weak to detect in PBMCs.

Interestingly, when the WGCNA algorithm was applied to fold-change gene expression datasets, the resulting 
gene clusters were larger in size, fewer in number, and did not correspond to biological functions (via enrich-
ment analysis). We believe this is due to pre-existing immunity, as seen in Fig. 5. For subjects with high levels of 
pre-existing immunity, subtracting the baseline gene expression data, which already captures this pre-existing 
immunity, from the Day 28 post-vaccination responses (once again in immune homeostasis) may obscure the 
existing signature of immunity.

Accounting for pre-existing immunity to influenza virus is a considerable challenge in studies of influenza 
vaccine-induced immune responses, yet maintenance of cellular immunity via annual revaccination is important 
for protection in older adults76,77. Our study provides insight into the genes involved in this pre-existing cellular 
immunity.

Gene expression relationships with humoral immune responses. Baseline gene expression of the 
Yellow gene cluster enriched for genes involved in monocyte induction, cell cycle & transcription, and inflam-
matory/antiviral signaling was found to be negatively correlated with antibody titers. This correlation disappears 
post-vaccination. Curiously, in addition to genes related to monocytes and inflammation, the Yellow gene cluster 

Figure 6. Time development of gene expression correlation with antibody and B-cell ELISPOT immune 
outcomes reveals temporal patterns leading to vaccine responses. Gene expression data at baseline (Day 0), 
Day 3, and Day 28 after vaccination was clustered according to the Day 28 WGCNA gene clusters, and the 
correlation of each cluster’s eigengene with final antibody (panel A) and B-cell ELISPOT (panel B) immune 
outcomes was calculated at each time point. Inset panels: time development of individual genes’ correlation with 
indicated immune outcomes for the top 50 genes in each displayed cluster.



www.nature.com/scientificreports/

1 2Scientific REPORTS |  (2018) 8:739  | DOI:10.1038/s41598-017-17735-x

includes multiple toll-like receptors (TLRs) known to be involved in innate responses (TLR1, 4, 5, 6, 7, and 8) that 
have been previously identified as part of early (Day 3) gene signatures positively predicting antibody responses 
to seasonal influenza vaccine25,51. This finding is consistent with findings of Nakaya et al.23: in a meta-analysis 
of multiple influenza vaccine studies, the group found baseline expression in monocyte- and cell cycle-related 
gene modules that included many TLRs (BTMs M11.0 and M4.0, corresponding to many genes in our Yellow 
cluster) that also correlate negatively with antibody titers23. Our findings lend further support to the hypothesis 
that baseline inflammation may inhibit the induction of vaccine-induced antibody responses, as proposed by 
others23,78,79. Interestingly, in a comparison of baseline expression in young vs. old subjects, Nakaya et al.23 also 
found increased levels of monocyte cell populations and corresponding monocyte-related gene expression, sug-
gesting that monocyte activity may be a key mediator of inflammation and a correspondingly reduced ability of 
the elderly to develop antibody responses to influenza vaccination.

Of the five genes whose behavior most strongly mirrored that of the Yellow gene cluster as a whole, two—
CORO1C and C8orf83—are less well-studied and have not been previously associated with influenza vaccine 
responses. CORO1C encodes the coronin-1C protein, a member of the WD repeat protein family that is involved 
in a variety of cellular processes, including signal transduction and gene regulation, and may be involved in 
fibroblast migration80. C8orf83 encodes TRIQK, which is a small protein highly conserved across vertebrates 
with largely unknown function and may have undiscovered roles in immunity81. These genes may play heretofore 
undescribed roles in the development of immunity in response to influenza vaccine.

Day 28 gene expression of two WGCNA gene clusters (Purple and Salmon; 321 total genes) correlated sig-
nificantly with HAI and VNA antibody measures; however, in these clusters, gene expression in Days 0 and 
3 demonstrated no correlation with antibody titers. The genes in these clusters were found to be enriched for 
genes involved in the control of NK and cytotoxic T cells rather than B cells. While NK and dendritic cells are 
involved early in the induction of immune responses leading to antibody secretion82, the fact that no correlation 
was observed between baseline/Day 3 expression of these NK-related genes and antibody measures leads us to 
believe that the genes in the Purple and Salmon gene clusters may not be directly involved in the induction of 
antibody responses, but rather in processes that parallel the development of antibody-secreting B cells. In the 
Purple and Salmon NK-related gene clusters, eight and four genes, respectively, are KIR and KLR (killer cell 
immunoglobulin-like and lectin-like receptor) genes, which are known to be inhibitory receptors expressed by 
NK and CD8+ T cells and inhibit their cytotoxic activity83. This leads us to believe that higher expression in 
these clusters may lead to lower cytotoxic activity, subsequent lower levels of inflammation, and culminate in 
high levels of antibody production. Others have noted that the frequency, type, and activity of NK cells tends to 
change with age23,24,84–86, with increased frequencies of NK and CD8+ T cells, and corresponding gene expression 
changes. Thus, these Purple and Salmon gene clusters may serve as post-vaccination indicators of successful 
humoral responses in older populations, and may also account for immunosenescence.

Additional genes found in the Salmon clusters of note include SPON2 and AKR1C3 genes. AKR1C3 encodes 
a protein involved in sex steroid metabolism87. Expression of AKR1C3 is regulated by IL-688, appears to change 
in PBMCs during aging, and may be an endocrine link with immunosenescence89. Further investigation of this 
gene may help us better understand the poor responses of the elderly to influenza vaccine. The SPON2 gene 
encodes Spondin-2, also known as mindin. Mindin is an essential component of the innate immune response, 
as it is a pattern recognition molecule that binds to macrophage-presented receptors during responses to patho-
gens90. Mindin has previously been associated with the intranasal clearance of influenza viruses in mice91, by both 
binding directly to influenza virus particles and also activating macrophages. Mice lacking mindin have been 
demonstrated to have impaired responses to bacterial and influenza virus infections90,91, indicating a potentially 
critical role in influenza vaccine responses that has not previously been reported and should be further studied.

Additional prominent genes in the Purple gene cluster include MATK (encoding megakaryocyte-associated 
tyrosine-protein kinase), which is an essential regulator of immune cells in mice92. MATK may play a role in 
signal transduction during megakaryocytopoiesis and may enhance MAPK activation in RAS-mediated signal-
ing93. CST7 encodes cystatin-F, an immune cell-specific inhibitor that plays a role in immune responses through 
regulation of specific enzyme targets such as cathepsin C, which in turn regulate the cytotoxicity of NK and T 
cells94–96. Thus, these two genes not previously connected with influenza vaccine responses may well influence 
immune responses to influenza vaccine and are candidates for future studies.

B-cell ELISPOT measures correlated strongly with one small gene cluster (Greenyellow, 135 genes) whose 
Day 0, Day 3, and Day 28 expression patterns were found to be largely unassociated with antibody titers. The 
Greenyellow cluster is dominated by B-cell genes, with four of the top five genes involved in the B-cell antigen 
receptor complex (CD19, CD22, CD79A, FCRLA). The final top gene, RALGPS2, is a RAS-specific GTPase impli-
cated in cell survival and cell cycle control97. Interestingly this gene’s expression patterns grouped it with B-cell 
related genes, rather than with other cell cycle-related genes in the Brown or Yellow gene clusters. This suggests a 
potential role of RALGPS2 in B-cell activity beyond that of other RAS-specific GTPases.

Many of the B cell-related genes found in our Greenyellow cluster were found by others25 to correlate with 
antibody responses; however, these correlations were measured at Day 7 post-vaccination and reflect peak 
antibody-secreting cell (ASC) populations and activity24, a timepoint our study did not include. If a future study 
were conducted with a Day 7 timepoint, we would expect to find such correlations between Day 7 ASC gene 
expression and antibody titer.

A previous study examining a subset of this dataset used per-gene logistic regression models to identify indi-
vidual genes whose expression correlated with HAI response across 94 subjects51. Of the 30 top-associated genes 
in that study, nine are members of WGCNA gene clusters associated with immunity, of which just six are found in 
our HAI-associated Salmon or Purple clusters. Individual genes from this transcriptomic dataset that correlated 
with B-cell ELISPOT responses were also previously identified64. Notably, just a single gene from this previous 
study, USP6NL, was clustered into our B-cell ELISPOT-associated Greenyellow cluster. These results indicate that 
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logistic regression models and WGCNA analysis highlight significantly different genes and genesets. Langfelder 
et al. demonstrated that, in biological systems where marginal associations are weak or noisy, WGCNA gene 
cluster membership is more reproducible than single-gene selection by marginal37. Thus, the use of WGCNA as 
an alternative or additional method for analysis of large-scale post-vaccination gene expression data may prove 
invaluable for future studies. Additionally, WGCNA identification of genes whose expression follows patterns 
similar to other immune-relevant genes may allow for discovery of genes with important but previously unde-
scribed immunological roles.

Strengths and limitations of the study. The transcriptome of human PBMCs after influenza vaccina-
tion reflects contributions from many cell subsets and cellular processes leading to protective immunity, yet such 
data is highly complex and difficult to interpret. Studying individual immune cell subsets is a common strategy 
to simplify gene expression datasets; however, this reductionist approach leaves much to be desired. While tran-
scriptomic profiles of each cell subset differ significantly from the profiles of PBMCs28, measurement of gene 
expression in all possible or even all relevant cell subsets is a difficult and costly process. Additionally, as immune 
cell subsets signal to and affect one another, reductionist study of individual cell subsets necessarily disrupts or 
ignores the behavior of the immune system as a whole. The WGCNA algorithm appears to be capable of sepa-
rating genes involved in different T- and B-cell functions (i.e., cytokine secretion vs. cytotoxic responses, and 
cytokine-producing vs. antibody-producing, respectively) from whole-PBMC transcriptomic data. We propose 
the use of WGCNA as a potential tool with which to study transcriptomic responses after vaccination without the 
disadvantages of a reductionist approach.

Multiple hypothesis testing is always a consideration in high-dimensional studies. The Bonferroni correction, 
which assumes independence, is inappropriately strict in systems with strong correlations between statistical 
tests. We present the actual p-values to allow the reader to draw their own conclusions about the significance of 
the data, as others in the field have also done. Future validation work will be conducted to confirm our results.

Use of a trivalent seasonal influenza vaccine that contains influenza A/H1N1, influenza A/H3N2, and influ-
enza B is a study limitation. While our gene expression data (mRNA-seq) reflects responses to vaccination with 
all three influenza strains, due to practical limitations we conducted studies of immune development (PBMC 
cytokine recall responses after ex vivo influenza stimulation, B-cell ELISPOT, antibody assays) specific to just 
influenza A/H1N1. Despite this, relationships between gene expression and immune outcomes are expected, as 
the development of immunity to the three virus strains occurs concurrently. Further studies may now be con-
ducted on stored PBMC samples to examine the development of cellular and humoral immunity to the other two 
influenza strains.

Conclusions
Through WGCNA clustering of PBMC gene expression data collected after trivalent seasonal influenza vaccina-
tion, we identified individual gene clusters whose expression correlated with subject cellular, memory B-cell and 
antibody responses. This clustering procedure allowed us to identify key marker genes that reflect development of 
vaccine-induced immunity. Our findings validated gene signatures of influenza A/H1N1 vaccination responses 
previously identified by others, and expanded upon these by identification of previously uncharacterized proteins 
with possible immunological roles. Further analysis suggested the involvement of different genes and immune cell 
subsets at key points in the development of long-term immunity after influenza virus vaccination. These results 
may help elucidate the roles that genes and immune cell subsets play during human immune responses to sea-
sonal influenza vaccination, and suggest further utility of the WGCNA gene clustering algorithm in vaccinology.

Further work may use WGCNA clustering to examine the effects of subject characteristics such as age, sex, and 
obesity on pre- and post-vaccination gene expression, and the relationship of these differentially expressed genes 
with vaccine-induced immunity. Additional, future studies may examine the behavior of the cell subsets identi-
fied in this report as likely contributors to particular aspects of vaccine-induced immunity to influenza, allowing 
us to identify the mechanisms by which these cells contribute to immune response. This information may be used 
in the future to reverse-engineering novel influenza vaccine candidates that trigger directed immune responses 
to enhance development of protection.
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