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Feed gas effect on plasma 
inactivation mechanism of 
Salmonella Typhimurium in onion 
and quality assessment of the 
treated sample
Muhammad Saiful Islam Khan1, Eun-Jung Lee2, Seok-In Hong3 & Yun-Ji Kim1,3

A submerged dielectric barrier discharge (DBD) plasma reactor was used to inactivate artificially 
inoculated reference strains of Salmonella Typhimurium ATCC 14028 on sliced onion (3 cm × 3 cm). 
Salmonella Typhimurium reductions obtained after 10 min of treatment were 3.96 log CFU/slice and 
1.64 log CFU/slice for clean dry air and N2 feed gas, respectively. Variations observed in Optical Emission 
Spectra (OES) for different feed gases are responsible for the inactivation level variations of Salmonella 
Typhimurium. The physiochemical properties of the onion slices, such as quercetin content, ascorbic 
acid content and color parameters, were monitored before and after treatment and the changes that 
occurred were measured to be in the acceptable range. Quercetin content was reduced only 3.74–5.07% 
for 10 min treatment, higher reduction was obtained for the use of clean dry air than that of N2 feed 
gas. Ascorbic acid loss was measured to be 11.82% and 7.98% for a 10 min treatment with clean dry air 
and N2 feed gas, respectively. The color parameters did not show significant changes upon treatment 
(p > 0.05) of the same duration for the uses of different feed gases.

In our daily diet, fresh vegetables and fruits are essential items. The application of certain processing technologies 
and widespread use of pesticides to keep foods fresh and safe are becoming growing concerns in the context of 
food safety issues1. Bacterial contamination accounts for 34% of all global food safety issues every year2. The 
recent Escherichia coli O157:H7 contaminations of cucumbers in Europe and Listeria-tainted cantaloupe in the 
US have raised renewed awareness regarding food safety across the world3. Therefore, effective and easy-to-apply 
approaches for pathogen inactivation in fruits and vegetables have taken on a high priority. Several thermal, 
chemical and non-thermal sterilization methods, such as irradiation by ultraviolet (UV) and gamma rays, have 
been used to eliminate microbes. For instance, while thermal treatment is effective because of its high tempera-
ture (approximately 121 °C or 134 °C), it is not suitable for use in food processing because of its negative effects on 
food quality with respect to nutrient standards and sensory properties and due to its high energy use4. Chemical 
treatments, such as chlorinated water, formaldehyde, ethylene oxide (EtO), H2O2 and other chemical compounds 
for sterilization, are of limited applicability because of their toxicity5. In the case of UV and gamma ray irradia-
tion, the generated energetic photons can seriously damage the structure of DNA and, most importantly, such 
photons are carcinogenic in humans6. The above mentioned drawbacks are the major causes of the large scale 
practical utilization.

Thus, a variety of research efforts are ongoing worldwide to develop novel techniques that can effectively 
eliminate microbial contaminants without degrading the sensory quality and functional properties of treated 
foods7. Among the non-thermal inactivation techniques, increased attention has been devoted to physical inac-
tivation methods, such as the plasma inactivation technique8. The use of thermal plasma is limited due to its 
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high temperature (2,000–10,000 K) as elevated temperature causes the tissue damage9. On the other hand, the 
non-thermal plasma method works at room temperature, and due to its high efficiency and safety, it has been 
demonstrated to be appropriate for various applications such as surface modification of polymers10, air purifica-
tion11, and sterilization for biological and medical purposes12. Dielectric Barrier Discharged (DBD) plasma under 
water is a fast and reliable non-thermal plasma technique that has been used extensively for microbe inactiva-
tion13. Environmentally friendly plasma discharged water has been widely studied in the context of environmental 
and wastewater treatment14, and it has recently been introduced in bacterial inactivation studies for food safety15. 
A number of DBD plasma discharge techniques have been introduced to inactivate bacteria, and different reduc-
tion levels for Escherichia coli O157:H7 were obtained using different discharges and devices15. Various reactive 
species were reported to give rise to different levels of inactivation of Escherichia coli O157:H7. Different types of 
reactive species are generated by different types of electrical discharge; for example, pressure waves and UV light 
are generated by pulsed high-current discharge underwater, low pH and hydrogen peroxide (H2O2) are generated 
by gliding arc discharge, and atomic oxygen, atomic hydrogen and hydroxyl (OH) radical species are generated 
by capillary discharge. Dielectric barrier discharge (DBD) produces ozone, UV light, reactive oxygen species 
(ROS) and reactive nitrogen species (RNS), which exhibit high bacterial inactivation capability16. Additionally, 
variations in gas composition can give rise to differences in the inactivation of food-borne pathogens because dif-
ferent gas components can produce different types of reactive species17. Air, oxygen, nitrogen, argon, and helium 
are commonly used as feed gases for plasma generation. Because argon and helium are expensive, both air and 
nitrogen may have greater potential for industrial applications. Although air gas has often been used to generate 
plasma18, nitrogen gas has been used as often as air in studies of bacterial pathogen inactivation19. The complete 
elimination of the microorganisms depends on several factors such as the plasma power, the gas, the type of bac-
teria, and the type of medium.

Onion (Allium cepa L.) is one of the most commonly consumed vegetables20. It is recognized for its various 
biological activities, such as antioxidant and antibacterial effects, which are mediated by the presence of sulfur, 
phenolic, and selenium compounds21. The reactive radicals and other active species present in DBD plasma dis-
charged water play key roles in microbial inactivation processes; on the other hand, due to the short lifetimes of 
radicals, they are unable to leave any residual trace contaminants behind22. Therefore, DBD plasma discharged 
water may change the chemical contents of the treated onions. Among the chemical contents, quercetin and 
ascorbic acid are at high risk due to their OH radical scavenging capacity23. Quercetin is one of the flavonoids 
present in onion with a wide range of health benefits, including antioxidant, antithrombotic, anti-asthmatic and 
antibiotic effects21. Vitamins are important component of fresh fruit and vegetables, and among them, vitamin C, 
which is mainly ascorbic acid, is the most common ingredient24. However, until now the physiochemical quality 
changes of treated vegetables have not been studied extensively. Among the physical parameters, color is probably 
the primary quality factor for the consumer’s acceptance. Hence, it becomes imperative to evaluate the changes 
in the physiochemical properties of onions before and after treatment with DBD plasma discharged water. In this 
study, we investigated the inactivation efficacy and mechanism for different feed gases used as well as the physi-
ochemical quality changes of onion caused by DBD plasma discharged water treatment. DBD plasma discharged 
water was applied to slices of onions contaminated with Salmonella Typhimurium, which is the most common 
cause of infections leading to nausea, vomit, fever, diarrhea or even death. The inactivation efficacy was evaluated 
by counting the colony forming units (CFU) before and after plasma treatment. The quercetin and ascorbic acid 
(Vitamin C) content of the onion slices was monitored quantitatively by HPLC before and after plasma treatment. 
The color of the slices was also evaluated by a colorimeter to obtain precise values for the color change.

Results
Radicals produced by the DBD plasma discharged water. Optical emission spectroscopy (OES) of 
the DBD plasma discharge used in this experiment shows that OH radicals and the 2nd positive system N2 (C-B) 
gave rise to the main peaks in the near-UV region (300–400 nm) of the OES spectrum in Fig. 1 for clean dry air 
gas. These peaks imply that OH radicals and RNS were produced by the DBD plasma discharge. Ozone gas (O3) 
and hydrogen peroxide (H2O2) were also generated in the water by DBD plasma discharge25. N2 feed gas also 
shows that the 2nd positive system N2 (C-B) gave rise to the main peaks in the near-UV region (300–400 nm) of 
the OES spectrum, except peak 309 (OH), and this could be the reason for the partial inertness of N2 plasmas. 
In our previous study25, it was observed that after 6, 4 and 8 min of plasma treatment time the amount generated 
for OH radical was 1.81 × 10−5 M, dissolved ozone gas was 1.5 ppm and H2O2 was 2.5 × 10−6 M, respectively. The 
data for dissolved ozone and H2O2 until 8 and 10 min, respectively, showed a constant trend. In the case of the OH 
radical, it was observed that after 6–8 min of DBD operation, the intensity or concentration of 2-hydroxytereph-
thalic acid (HTA) or OH radical (1 mol of OH radical ≡ 1 mol of HTA) was decreased whereas the concentration 
of HTA (OH radical) was supposed to either increase or remain constant. The phenomenon of decreasing OH 
radical was described in detail with experimental evidence in previous work25,26. Mutual reactions occurring 
among the species generated might be the cause of all three species remaining constant throughout the plasma 
treatment. Detailed data were not included in this manuscript as no significant difference from previous work was 
observed regarding the final concentration of all the species.

Salmonella Typhimurium inactivation by DBD plasma discharged water. DBD plasma discharged 
water was applied to reduce S. Typhimurium inoculated on sliced onion (3 cm × 3 cm). The onion slices were 
placed in a polypropylene jar containing 2.0 L of distilled water. To generate plasma two different feed gases 
i. e., clean dry air gas and pure N2 gas was blown separately and the inactivation effect for two different feed 
gases were evaluated. The reduction in inoculated S. Typhimurium was 3.96 log CFU/slice onion and 1.64 log 
CFU/slice onion after 10 min of DBD plasma treatment inside water by clean dry air and N2 gas, respectively. 
Samples were collected at 1, 3, 5 and 10 min following the start of plasma discharge. Figure 2 shows the viability 
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of S. Typhimurium determined with respect to the DBD plasma treatment time, with the number of survivors 
observed as colony-forming units (CFU). Result from blank experiment confirms that the water circulation 
decreases the viable count by approximately 4%; the inactivation difference observed for 10 min of water flow 
was much lesser than the inactivation observed in association with plasma operation (Fig. 2). This observation 
suggests that cell detachment occurs because of the plasma treatment and not because of water circulation.

Quercetin content evaluation. Figure 3A shows that the quercetin standard was completely destroyed 
within 5 min of plasma operation with clean dry air feed gas. Several fragmented compounds were observed at 
different retention times (4.67, 7.55, 10.76, 24.13, 33.19 min). The fragmented compounds show an increasing 
and decreasing pattern in the chromatogram peak observed at different retention times. For example, most of 
the peaks increase until 60 to 90 sec of treatment and then decline; for instance a magnified view for the product 
obtained at 7.5 min is shown as an inset in Fig. 3A. In the case of N2 feed gas, 95% of the quercetin standard was 
destroyed within 10 min of plasma operation (Fig. 3B), and no fragmented compounds were identified by our 
present setup; a magnified view of the quercetin standard obtained at 44 min is shown as an inset in Fig. 3B. A 
reduction of only 3.74–5.01% (Table 1) of the quercetin content of onion slices occurs after plasma treatment; 
clean dry air gas treatment shows a greater reduction compared to the treatment with nitrogen gas. Figure 4A and 
B show chromatograms of extracted quercetin before and after plasma treatment with clean dry air gas. Figure 4C 
shows the spectrum with the addition of an internal standard to ensure that the extracted product is the target 

Figure 1. Optical emission spectra (OES) of clean dry air and N2 gas plasma generated from a dielectric barrier 
discharge plasma reactor.

Figure 2. Inactivation of Salmonella Typhimurium ATCC 14028 on onion slices by BDB plasma discharged 
water with air and N2 feed gases. *Denotes significant difference compared with untreated control, Mann–
Whitney-U test (p < 0.05).
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analyte. The chromatograms obtained before and after treatment are similar in terms of the peak obtained at dif-
ferent retention times. Blank experimental result confirms that 2.13% quercetin reduction occurs due to leaching 
of water for the highest operation time (10 min) used in this experiment. No significant differences were observed 
for the alteration of the feed gas used.

Ascorbic acid content evaluation. Figure 3C shows that the ascorbic acid standard was nearly destroyed 
within 1 minute of plasma operation with clean dry air feed gas and no fragmented compounds were identified 
by our present setup a magnified view for the standard ascorbic acid obtained at 3.30 min was shown as an inset 
in Fig. 3C. In case of N2 feed gas 25% of standard ascorbic acid was destroyed within 10 min of plasma operation 
(Fig. 3D) and no fragmented compounds were identified a magnified view for the ascorbic acid standard obtained 
at 3.30 min was also shown as an inset in Fig. 3D. The amount of ascorbic acid loss in onion slices in 10 min of 
plasma treatment is shown in Table 1; treatment with clean dry air feed gas shows the higher reduction (11.82%) 
of ascorbic acid compared to treatment with N2 gas (7.98%). Figure 5A and B show chromatograms of extracted 

Figure 3. HPLC chromatograms (monitored at 280 nm) showing the reduction of the quercetin and ascorbic 
acid standard and fragmented smaller molecular weight products for different plasma operation times. (A) The 
quercetin standard treated with clean dry air feed gas. Inset: The fragmented product obtained at retention time 
7.4 to 7.9 min. (B) The quercetin standard treated with N2 feed gas. Inset: Quercetin obtained at retention time 
approx. 45 min. (C) The ascorbic acid standard treated with clean dry air feed gas. Inset: ascorbic acid obtained 
at retention time approx. 3 min. (D) The ascorbic acid standard treated with N2 feed gas. Inset: ascorbic acid 
obtained at retention approx. 3 min.

Feed gas Component
Before Plasma treatment 
(mg/100 g, Mean)

After Plasma treatment 
(mg/100 g, Mean)

Loss (%), 
Mean

Loss due to 
leaching (%), 
Mean

Loss contributed 
by plasma only (%), 
Mean ± SD

Air
Quercetin 29.15 27.68 5.07 2.13 2.94 ± 0.27

Ascorbic Acid 3.40 2.93 11.82 5.21 6.61 ± 0.52

Nitrogen
Quercetin 31.05 29.89 3.74 2.17 1.61 ± 0.21

Ascorbic Acid 3.51 3.23 7.98 5.01 2.77 ± 0.70

Table 1. Determination of the loss of Quercetin and Ascorbic Acid content for the 10 min of plasma treatment 
for two different feed gases used in this study.
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ascorbic acid before and after plasma treatment with clean dry air gas. Figure 5C shows the spectrum with the 
addition of an internal standard to ensure that the extracted product is the target analyte. Chromatograms 
obtained before and after treatment are similar in terms of the peak obtained at different retention times. The 
chromatogram for the N2 feed gas was not shown because the pattern obtained is somewhat similar to the pattern 
obtained for clean dry air gas and because the reduction of quercetin and ascorbic acid was also smaller. Blank 
experimental result confirms that 5.21% ascorbic acid reduction occurs due to leaching of water for the highest 
operation time (10 min) used in this experiment. No significant differences were observed for the alteration of 
the feed gas used.

Evaluation of surface color parameters of onion slices. The changes in color parameters (L*, a*, b*) of 
onions treated with clean dry air and nitrogen gas were measured and shown in Table 2. Plasma treatment for 10 min 
resulted in ΔE* values of 1.03 and 1.90 for the clean dry air and N2 feed gas treatments, respectively. According to 
reference27, total color differences (ΔE*) are considered to be very distinct (ΔE* > 3), distinct (1.5 < ΔE* < 3), 
or small differences (ΔE* < 1.5). In our experiments, the ΔE* values are in the small difference range (ΔE* 1.03) 
for air treatment and in the distinct range (ΔE 1.90) for the N2 treatment. The leaching contributed more in color 
change as compare to plasma operation, whereas variation of feed gas does not contributed much. The overall color 
changes result is tabulated in the Table 2 instead of the detail for blank experiments results.

Discussions
DBD plasma discharged water treatment was performed successfully to determine the efficiency and the mecha-
nism of inoculated S. Typhimurium inactivation and the changes in physicochemical properties of onion. Among 
the radicals produced by DBD plasma discharged water, OH radicals play a major role in inactivation, with dis-
solved O3 gas ranking next in importance. H2O2 was found to play no role in E. coli O157:H7 inactivation in our 
study because the amount of hydrogen peroxide produced during our treatment time was very low (2.5 × 10−6 
M) and remained constant throughout the operation25. The bactericidal effect of ozone is well known and has 
already been used for sterilization in various industries28. However, some researchers found that up to 28 ppm 
of ozone gas had no effect on E. coli O157:H7 inactivation when they performed a 30 min treatment with a DBD 
generator in room air at 60% relative humidity29. In our previous study it was observed that the reduction of 
planktonic E. coli O157:H7 cells by RNS were not very significant with this current plasma set up. Toshihiro et al., 
2014 reported that N2 plasma can generate positive nitrogen (N+4) with three-body collisions, and underwater it 
produces NO2

−, NO3
−, NH3 and OH radicals30. The NO concentration obtained for both gases is somewhat simi-

lar shown in Fig. 6A, the highest concentration obtained for nitrogen oxides is about 5.8 × 10−7 M for air feed gas, 
hence, at this lower concentration, nitrogen oxides do not play a major role in bacterial inactivation. It was already 
shown that the majority of bacterial inactivation occurs by OH radical and O3

25; therefore the lower inactivation 
obtained with N2 plasma is obvious as the measured OH radical (secondary species) concentration was also much 

Figure 4. HPLC chromatograms (monitored at 280 nm) showing quercetin extracted from onion slices. (A) 
Non-treated, (B) treated with air (C) with internal standard to ensure accurate identification of quercetin. Inset: 
magnified superimposed peak view of three chromatograms at intensity 72630 to assess the reduction level of 
quercetin easily.
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lower (Fig. 6B) as compare to OH radical generated for air plasma. However, to understand the effect of nitrogen 
radicals and NH3, extensive research needs to be performed through some alternative approach, which is beyond 
the limit of the present study. Effect of UV was measured using a UV lamp for 10 min of exposure instead of 
plasma source and no inactivation was found for the UV generated by our present set-up (data is not shown here). 
From the above discussion, it is clear that DBD plasma discharged water significantly reduces S. Typhimurium 

Figure 5. HPLC chromatograms (monitored at 280 nm) showing ascorbic acid extracted from onion slices. 
(A) Non-treated, (B) treated with air (C) with internal standard to ensure accurate identification of ascorbic 
acid. Inset: magnified superimposed peak view of ascorbic acid chromatograms at intensity 49000 to assess the 
reduction level of ascorbic acid easily.

Treatment L* a* b* ΔE2 ΔE ± SD

Control

78.59 −3.40 13.98

78.64 −3.43 14.04

78.53 −3.37 13.97

78.67 −3.39 13.98

78.58 −3.42 14.03

Air-Plasma

78.93 −3.04 13.15 0.93

1.03 ± 0.10

78.90 −3.03 13.14 1.38

78.81 −3.01 13.13 0.91

78.70 −2.99 13.10 0.93

77.89 −2.98 13.12 1.50

N2-Plasma

77.36 −2.96 12.66 3.45

1.90 ± 0.09

77.25 −2.95 12.62 4.18

77.42 −2.98 12.64 3.15

77.3 −2.99 12.68 3.73

77.37 −2.96 12.68 3.50

Table 2. The L*, a*, b*, and ΔE* values for onion slices after 10 min of plasma treatment for non-treated 
(Control), treated with clean dry air gas (Air-Plasma), and treated with N2 gas (N2-Plasma).
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at different rates for the different feed gases used. Clean dry air gas shows higher inactivation compared to N2 
gas with 10 min of plasma operation. In this study, the concentration obtained for control sample is equal to the 
concentration of S. Typhimurium inoculated on onion slice (~106 logCFU/mL), hence we can say there was no 
antimicrobial activity shown by onion slices during the entire experimental procedure. Also, the water tempera-
ture does not have any effect on microbial reduction as it remains constant throughout of the plasma operation.

In our previous work, it was observed that 1 min of DBD plasma discharged water treatment can reduce 2.5 log 
of S. Typhimurium from perilla leaf surface31. In this work, 2.5 log of inoculated S. Typhimurium reduction was 
obtained after 5 min of plasma treatment (Fig. 2). The differences in the inactivation efficiency may be attributed 
to differences in the surface roughness, thickness and moisture content of the tested samples. The slices were dried 
for one hour to let the surface liquid water evaporates and to settle the microbes on the surface; internal juices in 
the tissue continue to diffuse out. According to reference32, the more residual moisture remains on the slice, the 
easier it is for microbial cells to move and penetrate deep into the slice, which enhances the chances of their sur-
vival. Surface thickness and moisture content might play the major role in the lower inactivation efficiency when 
S. Typhimurium is inoculated on onion than on perilla leaf as both the surface thickness and moisture contents 
are higher for onion slices.

The efficiency of DBD plasma on S. Typhimurium inactivation in water was evaluated in our previous work31 
(E.-J. Lee et al.31), it was observed that approximately 7.0 log of reductions occur within 80 sec and incase of 
pre-treated water complete inactivation occurs within 20 sec. This express reduction for bacterial suspension 
in water helps us to decide not to perform any post-treatment measurement in regards to the bacterial survival 
numbers in the leftover water of working vessel. However, observed 4% bacterial detachment during 10 min of 
plasma operation, result obtained from blank experiment, is considered to be the presence of very less number of 
S. Typhimurium in water. Therefore, with the evidence of our previous result we can infer that, the possibility of 
surviving of this fewer numbers of S. Typhimurium is almost impossible after 10 min of plasma treatment.

Flavonoids are known to be natural OH radical scavengers, and oxidative degradation of flavonoids occurs 
upon interaction with hydroxyl free radicals, leading to the formation of low molecular weight phenolics. The 
degradation follows pathways similar to heat-induced oxidative cleavage23,33. Thus, questions were raised con-
cerning the plasma chemical interactions of flavonoids and how such interactions could result in flavonoid deg-
radation. To elucidate the influence of plasma immanent species on stability, quercetin was chosen as one of the 
flavonoids present in onion. Figure 3A shows that quercetin was cleaved into lower molecular weight phenolic 
compounds when the clean dry air feed gas was used. The smaller fragments underwent some further chemical 
reactions with the plasma generated species to degrade or produce secondary fragments, as after 90 s (Inset of 
Fig. 3A) of plasma treatment the fragmented peaks started decreasing and by 10 min they disappeared. No lower 
molecular weight compounds were observed in the chromatogram (Fig. 3B) when N2 gas was used as a feed gas, 
most likely due to the different radicals generated by plasma producing different types of compounds for the 
different feed gases. Figure 3A and B also shows that quercetin degradation occurs at a faster rate with clean dry 
air feed gas compared to N2 gas. From the above discussion it is ascertained that the rate of degradation and the 
product generation for plasma inactivation depends on the feed gas used. Detailed mechanism elucidation of the 
reaction between plasma generated radicals and quercetin was not the primary focus of this study; hence, further 

Figure 6. Measurement of radicals concentration (A) oxides of nitrogen (NO) and (B) hydroxyl radical (OH).
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experiments were not performed in this regard. However, when plasma was applied on onion slices, there were 
no such additional peaks observed in Fig. 4 before versus after plasma treatment for 10 min, which was observed 
to start appearing after 30 s of plasma treatment in the quercetin standard chromatogram (Fig. 3A). The absence 
of additional peaks on the extracted quercetin chromatogram (Fig. 4) after plasma treatment for 10 with respect 
to the chromatogram from before plasma treatment is the evidence that no quercetin degradation occurs by the 
generated radicals during plasma treatment. For clarity (generation of any lower molecular weight phenolic com-
pounds), the quercetin content was also measured at different plasma treatment times such as 0.5, 1, 1.5, 3 and 
5 min (data not shown here), and no additional peaks were observed (like Fig. 3A) with respect to the non-treated 
one. However, a small quercetin reduction was measured (3.74–5.07%, Table 1) for both the feed gases used, 
where leaching contributed minimum of 2.13%. If rest of the slight reduction measured in this study truly happen 
for the radicals generated, therefore we may consider the absence of the lower molecular weight fragmented peaks 
in the extracted quercetin chromatogram is the out of detection limit of HPLC. Hence, the causes of the small 
reductions were remaining unknown except leaching. Less penetration depth22 of the plasma species is advanta-
geous for protecting the chemical contents, i.e., quercetin, of the onion, or the complex nature of the food item 
helps to protect its chemical nature against plasma radicals.

The effectiveness of plasma radicals at reducing ascorbic acid in onion slices was also found to be insignificant; 
the greatest loss of ascorbic acid, 11.82%, was obtained in the case of clean dry air feed gas, whereas N2 feed gas 
plasma reduces ascorbic acid by only 8.0%. Elez-martinez et al.34 studied the effect of pulsed electric field (PEF) 
treatment on vitamin C concentration in orange juice and found that a maximum 12.5% reduction occurs, which 
was lower than the reduction induced by pasteurization at 90 °C for 1 min (17.6%)34. Therefore, our result for 
ascorbic acid (vitamin C) reduction is considered to be within an acceptable range. Among the reduced ascorbic 
acid, at least 5.01% was contributed by leaching. The rest of the reduction of quercetin and ascorbic acid content 
that occurs especially on the surface of the onion slices is most likely due to oxidation by the generated plasma 
radicals22. In addition, ascorbic acid is light sensitive35; therefore, UV generated by the plasma may also play an 
important role in the higher ascorbic acid degradation compared to quercetin degradation. Using N2 gas provides 
lower reduction for both quercetin and ascorbic acid.

Changes in the color parameters (L*, a*, b*) of onion slices from DBD plasma discharged water treatment 
were measured, and little visible change was found to occur on the onion slices. The major changes occur due 
to leaching of water during the operation; rest of the slight changes may contributed by the radicals generated 
or some other unknown reasons. The redness (a*) for air plasma and N2 plasma treated onion increases slightly 
over that of the non-treated onion, whereas the yellowness (b*) decreases for both the cases. The lightness (L*) 
of the N2-treated onion decreases slightly, but that of the air-treated onion remains the same. Considering the 
overall results for color parameters, to protect the original color, using clean dry air gas is advantageous. As a 
whole it is clear that DBD plasma discharged water treatment shows significant effects on reducing inoculated S. 
Typhimurium, with different reduction levels for the different feed gases used. The color parameters, quercetin 
content and ascorbic acid content of the sliced onions were found to be only minimally affected, and the changes 
that occurred were measured to be in the acceptable range. Considering the data obtained for color parameters, 
quercetin content and ascorbic acid content of the sliced onions, clean dry air shows better performance than N2 
as plasma feed gas. To the best of the authors’ knowledge, this study is one of the first attempts to provide a quan-
titative analysis of the effect of DBD plasma discharged water on the physiochemical properties of treated onion 
sample. The results presented here can be considered a successful use of DBD plasma discharged water treatment 
for bacterial inactivation of surface contaminated fresh vegetables. However, further studies are required for 
the potential use of DBD plasma discharged water treatment in any large-scale industrial application for food 
decontamination.

Methods and Materials
DBD plasma discharged water apparatus. A schematic diagram of the experimental apparatus and 
conditions used in this work is shown in our previous work, Khan et al. (AIP Adv. 2015)25. The DBD plasma 
discharge apparatus consists of an electrode (DBD reactor), a power supply, and a gas supply. A quartz tube with 
an internal diameter of 30 mm was used as a dielectric barrier. Two rod-type copper (Cu) electrodes that were 
7 mm in diameter and a ground Cu electrode that was 1 mm in diameter were coiled around the quartz tube. The 
plasma discharge occurred between the tube and the ground electrode. A neon transformer (18 kV, 20 kHz) with 
an input voltage of 220 V was used as the power supply. To diffuse the generated plasma, feed gases were fed into 
the inside of the quartz tube at a rate of 5 L/min, with the flow rate controlled by a regulator. The DBD reactor was 
submerged in an acrylic water bath (450 × 200 × 155 mm3), with the water in the bath acting as a coolant. The 
plasma jet was diffused through a round shaped diffuser in a separate plastic water jar by immersing the round 
bubbler in 2.0 L of distilled water. The water temperature in the vessel was measured to be 22 °C and remains 
constant throughout the plasma operation.

Descriptions of Feed gases. To evaluate the effect of feed gases on microbial reductions with DBD plasma 
discharged water two different feed gases i.e., clean dry air gas and pure N2 gases were purchased from a local 
distributor of Deokyang Co., Ltd, Ulsan, republic of Korea. The clean dry air gas composition was 21% of O2, 0.10 
µmol/mol of CO, 1.90 µmol/mol of H2O, and the rest is N2. The purity for N2 gas was 99.999% with ≤0.04 µmol/
mol of T.H.C., ≤3.0 µmol/mol of O2, ≤1.9 µmol/mol of H2O, ≤0.08 µmol/mol of CO2.

Inoculation of Salmonella Typhimurium on onion and DBD plasma discharged water treat-
ment. Onions were purchased from a local market and were sliced into 3 cm × 3 cm samples. To inoculate 
S. Typhimurium on the sliced onion, a 100-fold diluted (approx. 106 CFU/100 ml) cell suspension was prepared 
from S. Typhimurium overnight culture, 100 µl aliquots of inoculum per slice was inoculated on the back side 
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of the onion slices. The droplets from 100 µl aliquots were deposited on several different locations. Inoculated 
samples were dried for 1 h on a clean bench. Several slices of onion (approximately 20 g) were immersed in the 
water (2 L, 20 °C) that contained the round shaped diffuser. All samples were treated for 1, 3, 5 and 10 min with the 
plasma device switched on. After treatment, samples were immediately transferred to a sterile bag (B01196, Nasco 
Whirl-Pak®, Fort Atkinson, WI, USA) with D/E broth (D/E Neutralizing Broth w/Tween) and homogenized 
with a BagMixer® 400 (Interscience, Saint Nom, France). The enumeration of S. Typhimurium was carried out by 
spread-plating the homogenate, appropriately diluted in saline, on XLD agar (Xylose Lysine Desoxycholate Agar, 
Difco™) and incubated at 37 °C for 24 h. For statistical analysis, minimum three independent experiments were 
carried out for each treatment. A blank experiment was performed (negative control) to rule out the effects of 
water circulation on S. Typhimurium removal from the sliced onion surface in a 10-min treatment in the absence 
of plasma (with the plasma source turned off).

Measurement of Chemical Properties
Extraction and HPLC analysis of quercetin. To extract quercetin from onion, slices were homogenized 
and extracted using the conventional solvent extraction procedure explained in36. 2 g of onion mash was heated 
in a water bath with 10 ml of 80% methanol for 1 h and then filtered using normal filter paper and a hydrophilic 
membrane (0.45 μm). The non-treated filtrate obtained and those treated with clean dry air gas and N2 gas were 
stored for HPLC analysis. The method used in this study is similar to the method described in Adam et al.37. The 
HPLC analyses were performed with a Luna 5U-C18 (2) 100 A column (250 mm × 4.5 mm, 5 µm) plus, equipped 
with a Jasco quaternary gradient pump (pu-2089) and a Jasco UV-2077 4λ intelligent UV/vis detector. The com-
pounds were eluted with a gradient elution of mobile phases A and B. Solvent A consisted of deionized water and 
1% acetic acid, and solvent B consisted of methanol (HPLC grade) and 1% acetic acid. Acetic acid (1%) was added 
to reduce peak tailing. The gradient elution program was modified from that described to obtain better separation 
at a faster rate. The program was as follows: 10.0% B–17.2% B (5 min) 17.2% B–23.0% B (10 min), 23.0% B iso-
cratic (10 min), 23.0% B–31.3% B (5 min), 31.3% B–46.0% B (10 min), 46.0% B–55.0% B (5 min), 55.0% B–100% 
B (5 min), 100% B isocratic (10 min), 10.0% B (5 min) and 10.0% B isocratic (5 min). The injection volume for 
all samples were 50 µl. Quercetin was monitored at 280 nm at a flow rate of 1 ml/min. All determinations were 
performed in triplicate. In the case of quercetin, the treatment and measurements were performed at 0.5, 1, 1.5, 3, 
5 and 10 min. Quercetin was identified by matching the retention time and spectral characteristics against those 
of standards, and the quercetin contents were determined using calibration curves. A blank experiment was per-
formed (with the plasma source turned off) to investigate any quercetin reduction occurs due to the leaching of 
water during 10 min plasma operation.

Extraction and measurement of ascorbic acid. We assessed the changes in ascorbic acid content caused 
by DBD plasma discharged water treatment with high performance liquid chromatography (HPLC). The method 
used in this study for extracting ascorbic acid is similar to the method described in reference38. The non-treated 
onion slices and those treated with clean dry air gas and N2 gas were blended into a homogenate, which was then 
filtered using normal filter paper and hydrophilic membrane (0.45 μm). The extracted ascorbic acid was stored in 
a vial for HPLC analysis. For ascorbic acid analysis, several gradient conditions were changed to obtain a better 
separation at faster rate; the program was as follows: 25.0% B–50.0% B (2 min) 50.0% B isocratic (3 min), 50.0% 
B–70.0% B (3 min), 70.0% B–100.0% B (2 min), 100% B isocratic (2 min), 50.0% B (3 min) and 10.0% B isocratic 
(5 min). Ascorbic acid was monitored at 280 nm at a flow rate of 1 ml/min. All determinations were performed 
in triplicate. The treatment and measurements were performed at 0.5, 1, 1.5, 3, 5 and 10 min. The concentration 
of ascorbic acid was measured by HPLC and calculated by a standard calibration method. Ascorbic acid was 
identified by matching the retention time and spectral characteristics against those of standards, and the content 
was determined using calibration curves. A blank experiment was performed (with the plasma source turned off) 
to investigate any ascorbic acid reduction occurs due to the leaching of water during 10 min plasma operation.

Measurement of color parameters. To quantify the color differences in the onion slices, the slices were 
homogenized and examined with a colorimeter (Minolta CM-700d spectrophotometer, Konica Minolta Optics, 
Inc., Osaka, Japan) calibrated to a standard white tile (L* = 93.52, a* = 0.32, b* = 0.33). The color was measured 
for non-treated and plasma-treated (10 min) homogenized onion. The L*-axis represents the degree of brightness 
within a sample, ranging from 0 (black) to 100 (white). The a* axis denotes the degree of green (−)/red (+), while 
the b* axis represents the degree of blue (−)/yellow (+) in the sample. Δ denotes the value difference before and 
after the treatment in each group. The total color difference (ΔE*) of the specimen can be calculated from the 
formula (ΔE* = [ΔL*2 + Δa*2 + Δb*2]1/2)39. Homogenized onions were placed inside a Petri dish and placed 
in front of the camera of the colorimeter, and the L*, a*, b* values were determined, from which ΔE* was cal-
culated. All determinations were performed in triplicate. The treatment and measurements were performed at 
0.5, 1, 1.5, 3, 5 and 10 min but the data shown only for the 10 min measurements. Two blank experiments were 
performed (with the plasma source turned off) for the two different feed gases to investigate any color changes 
occur due to the leaching of water during 10 min plasma operation.

Optical emission spectroscopy (OES). OES was applied to identify some of the active species in the 
plasma. End-on light emission was collected via a fiber optic cable and imaged to the entrance slit of a 0.75-m 
spectrometer (Princeton Instrument/Acton Spectra Pro 2750) equipped with an 1800-groove/mm blazed holo-
graphic grating. To obtain a reasonable signal-to-noise ratio with sufficient spectral resolution to isolate the major 
emission lines, the entrance slit was set to 100 μm. An intensified CCD camera (Princeton Instrument I-Max-
512) was used to record the dispersed emission spectra.
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NO radical measurement. Nitric oxide (NO) concentration in the water for both air and nitrogen feed 
gases were determined using a NO assay kit QuantiChromTM Nitric Oxide Assay Kit, (D2NO-100) after 8 min of 
the starting of plasma device. The optical density was read at 540 nm using a Quant 2000 spectrophotometer and 
the concentration was measured with standard calibration method.

OH radical measurement. The concentrations of OH radical generated for both air and nitrogen feed gases 
were measured using terephthalic acid (TA, Sigma Aldrich, USA). TA was dissolved in 0.5 M of NaOH solution to 
prepare 2 × 10−2 M of TA solution; NaOH solution was used because TA does not dissolve in a neutral or acidic 
medium. The pH of the TA solution was 9.73. When the solution containing TA and 2-hydroxyterephthalic acid 
(the product of TA and OH radical, HTA, Sigma Aldrich, USA) molecules is irradiated by UV light (λ = 310 nm), 
HTA molecules emit light at λ = 425 nm, while TA molecules do not. The fluorescence intensity of HTA is inde-
pendent of pH in the 6–11 range. A multi-mode micro plate reader system (SpectraMax i3- Molecular Device) 
was used for the HTA fluorescence measurement. A fluorimeter was used to measure the intensity of HTA, and 
the concentration of 2-hydroxyterephthalic acid was used with a standard calibration method. The stoichiometry 
of the reaction between the OH radical and TA was used to calculate the concentration and the rate of OH rad-
ical generation at a particular time. The detailed procedure for measuring the OH radical concentration will be 
described elsewhere25.

Statistical analysis. The data were analyzed via SPSS statistical program (IBM-SPSS 22.0.0.0), and the sig-
nificant differences were compared with untreated control, Mann–Whitney-U (p < 0.05) a non-parametric test. 
The experiments were repeated a minimum of three times unless stated otherwise.
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