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Morphophysiological mechanism 
of rice yield increase in response to 
optimized nitrogen management
Wei Zhou  1,2, Tengfei Lv1,3, Zhiping Yang1, Tao Wang1,2, Yong Fu1, Yong Chen1, Binhua Hu3 & 
Wanjun Ren1,2

The yield-increasing mechanism of an optimized nitrogen fertilizer application (OFA) in rice was 
reported in this work through a three-year test. Results showed that the number of branches and 
spikelets increased, panicle length, the diameter and vascular bundle number of panicle-neck internode 
improved with OFA. Under the condition of OFA, high effective leaf areas, especially for the flag and the 
second upper leaf areas, increased, the net photosynthetic rate of the upper three leaves promoted, 
so the photosynthetic productivity went up by a large margin; moreover, the content of soluble 
protein and chlorophyll of leaf also increased, and the content of soluble sugar and malondialdehyde 
(MDA) decreased, as a result in slowing down the senescence speed in leaves, and increasing the 
photosynthetic time. Gene expression level, including MOC1, LAX1, SP1, GS1;1, were up-regulated 
obviously in different panicle initiation stage under OFA condition, which conduced to the increase in 
the secondary branches and spikelets. So we concluded that the changes in organ formation and panicle 
structure, together with the responses in physiological and molecular made the photosynthetic area, 
rate and time all increased with OFA, which provided the matter basis for the big panicle development, 
consequently, got a higher yield.

Over the centuries, rice (Oryza sativa L.) has been the major source of calories for a large proportion of the world’s 
population. Since the first green revolution in the 1960s, the preference was given to high-yield semi-dwarf 
modern rice varieties1 to satisfy the demands of the rapidly increasing population. Meanwhile, because of the 
improved lodging resistance of semi-dwarf and dwarf rice varieties, the fertilizer application rate, especially that 
of nitrogen fertilizer, have been increasing rapidly. Heffer2 reported that about 15% of total nitrogen fertilizers 
used in agriculture is applied to rice alone. However, the excessive fertilization and unique conditions of paddy 
fields promote nitrogen losses to the environment, which results in low utilization rate and unstable grain pro-
duction. In the past few years, many optimized nitrogen management strategies have been put forward and tested 
for field production, such as site-specific nitrogen management, integrated soil-crop system management, top-
dressing, and others3–7. A core technology implemented in those strategies to increase rice yield and nitrogen use 
efficiency is split fertilization, especially topdressing, applied during the panicle initiation stage.

Nitrogen is one of the key nutrients that limit crop growth and yield potential of cereals in many production 
systems. Studies have shown that application of nitrogen fertilizer at the young panicle differentiation stage could 
increase the number of spikelets significantly5,8. There is a close relationship between the spikelet number and 
the amount of nitrogen accumulated by the late spikelet differentiation stage9,10. However, topdressing time and 
frequency of fertilization varies widely among the nitrogen management strategies, and farmers cannot easily 
or conveniently estimate topdressing time. On the basis of previous research and the experience gained during 
the many years of practical production, we put forward an optimized nitrogen fertilizer application (OFA)11 
appropriate for the indica hybrid rice, which is cultivated over a wide area and plays an important and irreplace-
able role in rice production system in China. The OFA is a four-step fertilization method: nitrogen fertilizer is 
applied at one day before transplantation, seven days after transplantation, jointing stage, and 15 to 20 days after 
the jointing stage. Farmers can easily identify the jointing stage, and therefore, the topdressing time of OFA can 
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be easily selected without any instruments or assays. In addition, our previous studies have demonstrated that 
OFA increases nitrogen use efficiency and significantly improves rice yield by increasing the number of spikelets 
without increasing the nitrogen fertilizer application rate11,12.

The number of filled spikelets at the mature stage is a consequence of the differentiation, degeneration, and 
setting percentage of spikelets. Studies have shown that nitrogen fertilizer applied at the young panicle differenti-
ation stage increases spikelet number5,8, but the mechanisms underlying this increase remain largely unknown. In 
addition, the number of spikelets is always negatively correlated with the setting percentage; hence, nutrient supply 
in the filling stage is very important for increasing the number of filled spikelets. Nutrient sources needed to fill 
spikelets are obtained mainly from two resources: one is dry-matter production before heading and the other is 
photosynthates in functional leaves after heading. Zhai et al.13 confirmed that dry-matter production after heading 
and its synchronization with grain filling are the key approaches to increase rice yield. Accordingly, we hypothesize 
that the OFA strategy can increase the number of spikelets remarkably, improve the production capacity of func-
tional leaves after heading, and promote matter transport from source to sink, therefore increase rice production.

Results
Panicle phenotypic change and molecular regulation. Morphological and structural features of pan-
icles, including the number of filled and unfilled spikelets and secondary branches, panicle length, and diameter 
and number of vascular bundles of the neck-panicle internode were determined to identify phenotypic changes 
after the OFA. Nitrogen application had a significant effect on the number of branches and spikelets in rice pani-
cle. The number of total spikelets in OFA treatments was higher by 6.8–20.2% compared to that in treatments with 
traditional nitrogen fertilizer application (TFA) (the difference was significant in 2014 and 2016) and contributed 
to the 3.7–19.7% increase in the number of filled spikelets at the mature stage (Fig. 1a). Figure 1b shows a signifi-
cant increase in the number of secondary branches in plants after OFA, which was, on average, 20.5% higher than 
that in TFA treatments. The panicle after OFA treatment was longer than that after TFA treatment in the three 
years of experiment; the difference was significant in 2014 and 2016 (Fig. 1c). The dry matter produced before 
or after heading only go through the neck-panicle internode can be transported to panicle for grain filling. The 
diameter of the neck-panicle internode ranged from 1.60 to 3.57 mm in TFA and from 1.67 to 3.86 mm in OFA 
treatments, on average, the OFA increased the diameter of the neck-panicle internode by 12.23% compared to 
that reported for TFA treatments (Fig. 1d). Similarly, as reported in another study14, the number of spikelets per 
panicle was positively related to the neck internode diameter. Vascular bundle, as a part of the transport system, 
transports photoassimilates and moves water and nutrients, reflecting the capacity of rice ear for transporting 
nutrients during the grain-filling stage15. The results of the present study also revealed that the number of large 
and small vascular bundles, as well as the total number of vascular bundles, in the neck-panicle internode were 
significantly greater in plants after the OFA than after the TFA (Fig. 1e,f). The changes in phenotypic features 
demonstrated that the OFA promoted the formation of large panicles.

Figure 1. Phenotypic changes and morphological response to different nitrogen applications. (a) number of 
spikelets per panicle; (b) number of secondary branches; (c) panicle length; (d) diameter of the panicle-neck 
internode; (e) number of vascular bundles. BVB: large vascular bundle; SVB: small vascular bundle; TVB: total 
vascular bundle. (f) cross-section of vascular bundles. OFA: optimized nitrogen fertilizer application; TFA: 
traditional nitrogen fertilizer application; * and ** indicate significant difference of the two nitrogen treatments 
at 0.05 and 0.01 probability levels, respectively.



www.nature.com/scientificreports/

3SCIEntIFIC RepoRts | 7: 17226  | DOI:10.1038/s41598-017-17491-y

Rice sink is determined by the number of spikelets and their weight. Since grain weight is genetically relatively sta-
ble, the number of spikelets is the primary determinant of the capacity of rice sink16. Many researches proved that nitro-
gen topdressing is highly effective in maximizing spikelet production5,8, and similar results were found in our study. 
The panicle length and the number of secondary branches are important predictors of spikelets. Thus, the number of 
spikelets was significantly and positively correlated with panicle length and the number of secondary branches. The 
linear equation slopes under OFA conditions were higher than that under TFA conditions (Fig. 2a,b), indicating that 
the increase in panicle length and number of branches provided more space for spikelets development and increased 
spikelet density per panicle. In addition, the number of filled spikelets and the weight per panicle were positively cor-
related with the number of spikelets (Fig. 2c,d); therefore the increase in the number of spikelets improved rice yield.

The number and the size of panicles are closely related to the growth of tillers, although moderate tillering 
contributes greatly to rice yields, excessive tillering leads to high tiller abortion, poor grain setting, and small 
panicle size, and further reduces the grain yield17. Results of three years’ experiments showed that OFA can reduce 
the emergence of ineffective tillers and increase the ear-bearing tiller percentage (Fig. 3). Compared with TFA, 
the number of ineffective tillers of OFA decreased by 13.7%, 23.2%, and 44.2% in the year of 2014, 2015, and 
2016 respectively; and the ear-bearing tiller percentage under OFA condition increased by 8.6%, 11.4%, and 24% 
respectively. As a result, the number of effective tillers of OFA was a little more than that of TFA, and with less 
ineffective tillers, they could get more nutrients to grow stronger.

The expression levels of related genes were also examined. We explored the expression levels of LAX 
PANICLE1 (LAX1) and MONOCULM1 (MOC1) in three panicle differentiation stages (Fig. 4). These genes 
control the branches outgrowth18,19. The results showed that the expression level of MOC1 in plants after OFA 
compared to that in plants after TFA was lower at the first bract primordium differentiation stage (T1) and the 
primary branch primordium differentiation stage (T2), but significantly higher (reaching as high as 3.3) at the 
secondary branch and spikelet primordium differentiation stage (T3). The expression of LAX1 at T1 and T2 was 
higher in plants after OFA than in plants after TFA. Except for the number of secondary branches, the number of 
spikelets and panicle length in OFA treatment were increased significantly. We also determined the expression of 
Short Panicle1 (SP1) and Glutamine Synthetase1;1 (GS1;1), which are related to panicle size and spikelet number, 
respectively18,20. The results showed that the expression levels of SP1 and GS1;1 at T1, T2, and T3 in OFA treat-
ment were higher than those in TFA treatment (expect for the expression of SP1 in T2); the differences between 
the two treatments were significant or highly significant (expect for the expression of GS1;1 in T3).

Improvement of the photosynthetic area and net photosynthetic rate. The contribution ratio 
of photosynthates after heading in OFA and TFA treatments was 37.20% (24.61–46.01%) and 20.54% (8.81–
38.81%) higher, respectively, than that of dry-matter production before heading (Fig. 5). These results indicated 

Figure 2. Correlation between the number of spikelets and panicle type. (a) correlation between the number 
of spikelets and the number of branches; (b) correlation between the number of spikelets and length of panicle; 
(c) correlation between the number of spikelets and the weight of panicle; (d) correlation between the number 
of spikelets and the number of filled spikelets. OFA: optimized nitrogen fertilizer application; TFA: traditional 
nitrogen fertilizer application.
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that dry-matter production after heading contributed more to grain yield of the indica hybrid rice, especially in 
OFA treatments. The leaf area, net photosynthetic rate, and foliar function period, especially for the upper three 
leaves, determined the capacity for dry-matter production after heading.

Consistent with the total effective leaf area, the high-effective leaf area, flag leaf area, and the second upper leaf 
area were larger in OFA than in TFA treatments; the flag leaf and second upper leaf area after OFA were signifi-
cantly higher, by 18.43%, 11.89%, and 15.96%, 9.27% in 2015 and 2016, respectively, compared to those after TFA 
(Fig. 6a). A similar trend was found for the net photosynthetic rate of the upper three leaves in the heading stage 
and 15 days after heading—the net photosynthetic rate of the flag leaf was significantly higher than that of the 
second and third upper leaf, and the net photosynthetic rate after OFA was higher than that after TFA (Fig. 6b). 
These results indicated that the flag leaf was the main source of dry-matter production after heading, and the 
apparent increase in flag leaf area and the improved net photosynthetic rate denoted greater matter production 
ability under the OFA conditions.

Extending the length of leaf function. The length of foliar function is influenced by many factors. Zhou 
et al.21 demonstrated that transferring too much of dry matter or too fast into panicle gives rise to premature leaf 
senescence, which adversely affects grain yield. Our previous study showed that postponing nitrogen applica-
tion could increase chlorophyll content in rice leaves and delay leaf senescence22. The present study showed that 
the translocation amount and contribution ratio of dry-matter production before heading in OFA treatments 
decreased (Fig. 5), indicating that more matter was retained in the source, especially in green leaves, since the 
total amount of dry matter accumulated before heading was not different between the two nitrogen treatments.

Figure 3. Effects of nitrogen applications on the number of tillers. N90: total nitrogen application rate of 
90 kg ha−1; N180: total N application rate of 180 kg ha−1.

Figure 4. Relative expression levels of related genes. T1: differentiation stage of the first bract primordium; T2: 
differentiation stage of the primary branch primordium; T3: differentiation stage of the secondary branch and 
spikelet primordium; MOC1: MONOCULM1, LAX1:LAX PANICLE1; SP1: Short Panicle1; GS1;1: Glutamine 
Synthetase1;1; OFA: optimized nitrogen fertilizer application; TFA: traditional nitrogen fertilizer application; 
* and ** indicate significant difference of the two nitrogen treatments at 0.05 and 0.01 probability levels, 
respectively.
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Figure 5. Effects of nitrogen applications on dry matter transportation. N90: total nitrogen application rate of 
90 kg ha−1; N180: total N application rate of 180 kg ha−1; DMBH: dry matter production before heading; DMAH: 
dry matter production after heading; TDM: total dry matter accumulated; OFA: optimized nitrogen fertilizer 
application; TFA: traditional nitrogen fertilizer application.

Figure 6. Changes in photosynthetic area and net photosynthetic rate (Pn) in response to different nitrogen 
applications. (a) leaf area; (b) net photosynthetic rate. OFA: optimized nitrogen fertilizer application; TFA: 
traditional nitrogen fertilizer application; N90: total nitrogen application rate of 90 kg ha−1; N180: total N 
application rate of 180 kg ha−1; AH: after heading stage; Pn: net photosynthetic rate; * and ** indicate significant 
difference of the two nitrogen treatments at 0.05 and 0.01 probability levels, respectively.
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During leaf senescence, photosynthetic rates decline and leaf metabolism changes, affecting the content of 
chlorophylls, proteins, and sugars, and the antioxidases activities. The chlorophyll content gradually declined 
from the heading to maturing stage, although it remained higher in plants treated with OFA than in plants treated 
with TFA (Fig. 7a). The soluble sugar content decreased, reaching the lowest levels at 14 days after heading, and 
then increased gradually; the soluble sugar content was lower in OFA than in TFA treatment, although the differ-
ence between the two treatments was not significant until 34 days after heading (Fig. 7b). The contents of soluble 
proteins increased at a faster rate from the heading stage to seven days after heading and declined afterwards; 
they remained higher in plants treated with OFA than in plants treated with TFA after heading (Fig. 7c). With the 
advancement of leaf senescence in rice, the content of malondialdehyde (MDA) rose gradually until 14 days after 
heading, and it was lower under the OFA than under the TFA conditions (Fig. 7d). The activity of antioxidases, 
including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), was altered with the senescence 
process moving forward, while little difference was observed between heading stage and 34 days after heading 
(Fig. 7e,f and g). Taken together, the OFA treatment resulted in lower activity of CAT and POD and higher activity 
of SOD compared to those in TFA treatment. Therefore, the reduction in translocated amount of dry matter pro-
duced before heading increased the chlorophyll and soluble proteins content and decreased the MDA and soluble 
sugar content from the heading to mature stage and extended the foliar function period, which together with the 
improvement in leaf area and net photosynthetic rate of functional leaves (Fig. 5a,b) made the promotion in dry 
matter production capacity after heading under the OFA conditions.

Discussions
Our previous study have shown that tillers of different grade and leaf position affect significantly the growth 
and productivity of rice23. The results presented herein showed that OFA treatment decreased the occurrence 
of ineffective tillering, improved the ear-bearing tiller percentage, and promoted the growth of superior till-
ers (Fig. 3), which provides a stronger material foundation for development of functional leaves and young 
panicle in the late development stage. The survey of the heading stage showed that the high-effective leaf 
area was increased significantly (Fig. 6a). The vascular bundle in neck-panicle internode is the only way for 
nutrient transport from vegetative organs to reproductive organ. Liu et al.14 showed that the number of spike-
lets per panicle is positively related to the neck internode diameter. In the present study, the diameter of the 
panicle-neck internode and the number of large and small vascular bundles in the panicle-neck internode were 
increased after OFA (Fig. 1d,e and f), which has the potential to promote matter transport from source to sink 
and help the development of spikelets.

The strength of the source, sink, and flow, and their harmonization determines the level of crop produc-
tion. Rational cultivation management measures that will help to grow crops with strong source and sink and 
an efficient flow are an effective way to acquire high yield. The number of total spikelets and filled spikelets in 
plants after OFA was higher by 11.8% and 9.2%, respectively, than that in plants after TFA, resulting in bigger 
sink capacity. The increase in the number of vascular bundles and the diameter of the panicle-neck internode 
expanded the transport channel from source to sink and expedited the flux. The superior tiller growth with higher 

Figure 7. Physiological response to different nitrogen applications. (a) chlorophyll content; (b) soluble sugar 
content; (c) soluble protein content; (d) MDA content; (e) CAT activity; (f) POD activity; (g) SOD activity. Chl: 
chlorophyll; MDA: malondialdehyde; CAT: catalase; POD: peroxidase; SOD: superoxide dismutase. FW: fresh 
weight; OFA: optimized nitrogen fertilizer application; TFA: traditional nitrogen fertilizer application.
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leaf area enhanced the source for grain filling. In conclusion, morphological structure and material basis changed 
under the condition of OFA rendered the source, sink, and flow stronger and more harmonized and consequently 
increased the rice yield (Fig. 8).

Photosynthesis provides the material basis for crop yield formation, and its production capacity is greatly 
influenced by leaf senescence. Leaf senescence is a complex developmental process that involves chloroplast 
breakdown accompanied by chlorophyll degradation and progressive loss of chloroplast, which causes leaf color 
changes from green to yellow24. During leaf senescence, a series of metabolic changes are inducted to allow recy-
cling and remobilization of nutrients25, predominantly nitrogen. The present study showed that the decrease in 
chlorophyll content commenced at heading, while the content of soluble proteins decreased from seven days after 
the heading stage. Thus, the transfer of nitrogen lagged behind the chlorophyll degradation and the main stage for 
nitrogen transportation was focused mainly between seven and 14 days after heading. Chlorophyll degradation 
was slower under OFA conditions, and the content of chlorophyll remained at relatively high levels. Liang et al.26 
reported that carbohydrate translocation from stems and sheaths to reproductive organs reached a maximum 
value at ten days after full heading. The content of soluble sugars in leaves reported herein fell to their lowest levels 
about two weeks after heading, and then gradually increased with leaf senescence, which indicated that carbohy-
drate translocation into stems and sheaths were more quickly than that in leaves, and carbohydrate translocation 
from vegetative organs to grains was mainly concentrated within two weeks after heading.

Takao et al.27 reported that accumulation of carbohydrates in leaves accelerated the senescence and the decline of 
the photosynthetic capacity, they also reported the negative relationship between carbohydrate content and photo-
synthetic rate observed in treatments with different nitrogen nutrition levels. So we can infer that the higher photo-
synthetic rate in OFA treatment in the later stage (14–34 days after heading) compared to that in TFA treatments was 
due to the content of chlorophyll and soluble sugars. Studies in barley (Hordeum vulgare) and Arabidopsis thaliana 
showed that nitrogen deprivation accelerates leaf senescence, but the supplementation with NO3

− at the start of 
senescence, halted or even reversed the senescence28. Rubisco content in rice remains high in plants given additional 
nitrogen fertilizer and indicates a close correlation between rubisco content and nitrogen levels in leaves29. Our ear-
lier research has shown that the OFA management could significantly improve the nitrogen content in leaves from 
the heading to mature stage11, which may be the main reason for delayed leaf senescence and increased photosyn-
thetic rate. Above all, to promote carbon transport and delay nitrogen transport from leaves to panicle after heading 
is likely to lead to a better photosynthetic productivity and yield, which may be the directions for future research.

The processes of plant aging are regulated by many factors, among which the injury caused by reactive oxy-
gen species is the primary factor leading to leaf senescence30,31. Therefore, the reactive oxygen species scavenger 
system, especially the one that includes essential protective enzymes such as POD, SOD, and CAT, plays a pivotal 
role in hampering the production of intracellular reactive oxygen species32,33. MDA, a decomposition product of 
polyunsaturated fatty acids hydroperoxides and an important element of leaf senescence mechanism, may cause 
oxidative damage and therefore has been frequently used as a biomarker for lipid peroxidation31,34. During leaf 
senescence, MDA contents increase causing oxidative damage. In the present study, except at 14 days after head-
ing, the MDA content in OFA treatments was lower than that in TFA treatments, indicating that the production 
of reactive oxygen species and the subsequent injury was lower under OFA conditions. Accordingly, the activity of 
reactive oxygen scavenging enzymes was lower compared to that in TFA treatment. These results showed that the 
protection mechanism under OFA conditions aimed to decrease the synthesis of reactive oxygen species and not 
to increase its scavenging once the damage has already been done. In conclusion, topdressing with nitrogen ferti-
lizer at the jointing stage and 15–20 days after the jointing stage implemented in OFA management, increased the 
leaf chlorophyll content, delayed leaf senescence, improved the photosynthesis efficiency and thereby enhanced 
the matter production capacity, and ultimately increased the yield.

Figure 8. Yield-increasing mechanism as a consequence of postponed nitrogen application. AH: after heading; 
BH: before heading; Pn: net photosynthetic rate; DM: dry matter; TDM: total dry matter. The symbols “+”, “−”, 
“◎” represent increase, decrease, and little change, respectively.
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Our previous research also indicated that OFA treatment increases nitrogen uptake in panicle and improves 
nitrogen use efficiency11. These properties are dependent on the absorption, transportation, and remobilization of 
nitrogen. Other studies have demonstrated that SP1 is related to the transport of nitrogen-containing substrates 
and determines rice panicle size18,35,36, whereas GS1;1 plays a role in nitrogen remobilization during senescence 
and determination of grain number, grain size, and grain filling20. Hence, the upregulated SP1 and GS1;1 in 
plants after OFA not only improved the yield, but also affected the nitrogen utilization increment. Therefore, 
supplemented nitrogen determines the expression of SP1 and GS1;1, which in turn control the yield and regulate 
nitrogen utilization. There is little difference in the number of differentiated secondary branches between OFA 
and TFA treatments; the OFA treatment decreases significantly the number of degenerated secondary branches 
thus increasing the number of survived secondary branches12. Therefore, the number of differentiated secondary 
branches is a consequence of the combination of downregulated MOC1 and upregulated LAX1 at T1 and T2, 
while the significant upregulation of MOC1 at T3 may be the main reason for the decrease in degenerated second-
ary branches. The percentage of degenerated secondary branches was very high in indica hybrid rice cultivars, and 
a full understanding of the regulatory mechanisms of genes (i.e., MOC1) that could decrease the degradation of 
secondary branches will help to increase the number of spikelets and ultimately lead to higher yield.

Materials and Methods
Experimental design. The experiments were conducted in paddy fields at Wenjiang (30°43′ N and 103°52′ E),  
Sichuan, China, during the rice growing seasons in 2014–2016. The characteristics of the soil are described in 
Table 1. The cultivar Fyou498 (F32A × Shuhui498), a main popularized variety, was used as test plant. The exper-
iment in 2015 was performed using a two-factor randomized block design with two nitrogen treatments and two 
nitrogen application rate. The two nitrogen treatments were: traditional nitrogen fertilizer application (TFA; base 
and tillering fertilizer in proportions 70% and 30%, respectively; accepted by Chinese farmers), and OFA (35% 
applied at base, 15% at early tillering stage, 25% at jointing stage, and 25% at 15–20 days after jointing stage). 
Nitrogen application rate were 180 and 90 kg ha−1. A single factor and two-level (TFA and OFA with the same rate 
of 180 kg ha−1) experiment with randomized block design were conducted in 2016. Other fertilizers, 90 kg P2O5 
ha−1 and 180 kg K2O ha−1, were applied in all treatments. The transplanting density was 15 × 104 hills ha−1. The 
20-cm-high ridges were built between the plots and coated with film to prevent leaching of fertilizer and water 
into adjacent plots. The study conducted in 2014 was performed as a pot experiment, laid out in a single factor 
randomized block design, with the same nitrogen treatments (TFA and OFA). The two nitrogen applications had 
the same total nitrogen amount of 1.2 g pot−1 (equal to 180 kg ha−1 applied to the paddy with a density of 15 × 104 
hills ha−1). Other fertilizers were applied at a rate of 2.4 g P2O5 pot−1 and 1.2 g K2O pot−1 in all treatments. Each 
pot was filled with 12.0 kg paddy topsoil that was air dried and thoroughly mixed. Each treatment consisted of 22 
pots, with three replicates. The pots were placed in a greenhouse to prevent washing out of applied fertilizers by 
rain. Seedlings were sowed on 18 April and transplanted on 28–31 May at a rate of two seedlings per hill or per 
pot at the same spacing. Other rice management practices were similar to those applied to the paddy field.

Indexes and measurement methods. Tiller growth and decline. After rice transplanting in 2014–2016, 
the number of tillers were measured from 20 hills (all pots for pot experiment) every seven days until the full 
heading stage, before harvesting, the number of effective panicles per hill was determined from 60 hills (all pots 
for pot experiment) of each plot. Then the number of total tillers emerging, effective tillers and ineffective tillers 
were determined.

Dry matter determination. Six hills or pots with the average number of tillers (determined from sixty hills or 
pots, the same below) in each treatment were collected as samples at the heading and maturing stages in 2014–
2016. The samples were divided into leaf, stem and sheath, and panicle, exposed to 105 °C for 60 min, and then 
dried at 75 °C to constant weight. The dry matter of each part was determined.

Leaf area and net photosynthetic rate. Six hills with the average number of tillers in each treatment 
were collected as samples at the heading stage in 2015 and 2016. The length and maximum width of each green 
leaf were measured with a ruler. Leaf area was calculated by multiplying the coefficient (0.75) by the leaf length 
and maximum width. The net photosynthetic rates of the flag leaf, the second upper leaf, and the third upper leaf 
were determined using an LI-6400XT Portable Photosynthesis System (LI-COR, Inc., Lincoln, NE, USA) in 2016. 
The measuring conditions and methods are described in Wang et al.37.

Panicle morphology and composition. Fifteen hills with the average number of effective panicles in 
each treatment were collected as samples at the mature stage. The number of secondary branches (in 2014), the 
number of filled and unfilled spikelets, the length of panicles(in 2014–2016), and the diameter of the neck-panicle 

Year pH
Organic matter 
(g kg−1)

Total N  
(g kg−1)

Total P 
(g kg−1)

Total K  
(g kg−1)

Alkali-hydrolyzale N 
(mg kg−1)

Available P 
(mg kg−1)

Available K 
(mg kg−1)

2014 7.26 29.17 1.58 0.38 3.91 116.51 13.02 65.04

2015 5.80 29.58 1.28 0.50 7.75 97.64 20.27 56.52

2016 5.70 30.74 1.27 0.54 8.85 100.75 26.39 28.97

Table 1. Soil characteristics in the experiments.
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node (in 2015 and 2016) were measured for each panicle. Fresh segments of primary stems eared consistently 
were cut about 1 cm below the panicle base node. After fixation and desilication, the stems were made into par-
affin slice with safranine and fast green staining to observe the number of vascular bundles under a microscope 
and photographed (in 2015 and 2016).

Gene expression in panicle and physiological indices in leaf. Fresh samples for gene expression were 
collected from 15 hills per plot at three panicle initiation stages (in 2016), the first bract primordium differentia-
tion stage (T1), the primary branch primordium differentiation stage (T2), and the secondary branch and spikelet 
primordium differentiation stage (T3). Ten flag leaves from each plot were collected from heading to mature 
stage and used to determine physiological indices (in 2015), including the content of chlorophyll, malondialde-
hyde (MDA), soluble sugars, and proteins, and the activity of catalase (CAT), peroxidase (POD), and superoxide 
dismutase (SOD). All samples were treated with liquid nitrogen immediately after collection and then stored at 
−80 °C until use. RNA extraction and quantitative RT-PCR were conducted as described previously38. The prim-
ers for quantitative RT-PCR analysis of LAX PANICLE1 (LAX1), MONOCULM1 (MOC1), Short Panicle1 (SP1), 
and Glutamine Synthetase1;1 (GS1;1) expression were presented in the Table 2. The physiological indices were 
measured by microdetermination using the kits (Suzhou Comin Biotechnology Co., Ltd., Shuzhou, Jiangshu, 
China) for each index following the manufacturer’s protocol.

Ethical approval and data availability statement. These field studies did not involve any endangered 
or protected species; no specific permits were required for the described field studies, and the landowner (Rice 
Super-high-yield Production Model Base) permitted these field studies to be carried out. The methods were car-
ried out in accordance with the relevant guidelines and regulations, and all data in this paper would be available 
after publication.
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