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A genetic screen to discover 
SUMOylated proteins in living 
mammalian cells
Maki Komiya1, Akihiro Ito2,3, Mizuki Endo1, Daisuke Hiruma1, Mitsuru Hattori1,5,  
Hisato Saitoh4, Minoru Yoshida2,3 & Takeaki Ozawa1

Post-translational modification by the Small Ubiquitin-related Modifier (SUMO) is indispensable for 
diverse biological mechanisms. Although various attempts have been made to discover novel SUMO 
substrate proteins to unveil the roles of SUMOylation, the reversibility of SUMOylation, and the 
differences in the SUMOylation level still makes it difficult to explore infrequently-SUMOylated proteins 
in mammalian cells. Here, we developed a method to screen for mammalian SUMOylated proteins 
using the reconstitution of split fluorescent protein fragments in living mammalian cells. Briefly, the 
cells harboring cDNAs of SUMOylated proteins were identified by the reconstituted fluorescence 
emission and separated by cell sorting. The method successfully identified 36 unreported SUMO2-
substrate candidates with distinct intracellular localizations and functions. Of the candidates, we found 
Atac2, a histone acetyltransferase, was SUMOylated at a lysine 408, and further modified by multiple 
SUMOs without isoform specificity. Because the present method is applicable to other SUMO isoforms 
and mammalian cell-types, it could contribute to a deeper understanding of the role of SUMOylation in 
various biological contexts.

Once certain proteins are translated from mRNAs, they are further modified by small molecules via covalent con-
jugation to modulate their functions. Of the post-translational modifiers, proteins called Small Ubiquitin-related 
Modifiers (SUMOs) diversely regulate many cellular biological events using unique reaction modes1,2. 
Mammalian cells express at least three different SUMO isoforms1–5. SUMOs are covalently attached to lysine res-
idues in the substrate proteins by sequential enzymatic reactions with E1 (an ATP-dependent SUMO-activating 
enzyme), E2 (a SUMO-conjugating enzyme), and E3 (a SUMO ligase)1,2,6. Each SUMO isoform has a different 
substrate selectivity7,8 and conjugation mode: RanGAP1, the first reported SUMO protein substrate9, was reported 
to be preferentially SUMOylated by SUMO1, which contributed to the protein’s stability10, and amyloid β peptide 
generation was reduced by polySUMO chain formation by SUMO311. The fraction of SUMOylated proteins is 
normally less than 1% under normal conditions1,12 and is strictly regulated by a balance between SUMOylation 
and deSUMOylation that is mediated by a SUMO-specific isopeptidase13. Although the SUMOylated fraction 
is small, modification by SUMO is indispensable for various biological mechanisms, including DNA repair, cell 
cycle, and signal transduction1,2,12,14–19.

Various attempts have been made to discover novel SUMOylated proteins to unveil the roles of SUMOylation 
in biological events. However, the detection of SUMOylated proteins is sometimes difficult because target pro-
teins are rarely SUMOylated and are rapidly deSUMOylated upon cell lysis by SUMO-specific proteases1. For 
example, in a previous screening method that was based on immunoprecipitation, SUMOylated proteins were 
collected from cell lysates and then analyzed using mass spectrometry (IP-MS)20,21. However, because of the dif-
ficulty in completely inhibiting de-SUMOylation during immunoprecipitation, the IP-MS method preferentially 
detected proteins that might be frequently SUMOylated and resistant to deSUMOylation. Therefore, the scope 
of the SUMOylation candidates was biased. A system based on yeast two-hybrid screening was developed to 
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detect SUMOylated proteins in living yeast to overcome the difficulties with cell lysis22. This two-hybrid screen is 
useful, but this method still has some difficulties in detecting mammalian SUMOylated proteins. First, the yeast 
SUMOylation system might be too simple to satisfactorily explore mammalian SUMOylation because yeast cells 
express only one SUMO isoform1,12,23,24; in contrast, mammalian cells have at least three SUMO isoforms, each 
with different substrate selectivity. Second, mammalian SUMOylation patterns that differ by cell type cannot 
be examined using the yeast system25,26. Third, yeast two-hybrid screening requires that the candidate proteins 
are translocated to the nucleus, which biases the selection of the substrate proteins. Because of these issues, a 
non-destructive screening method is required to identify novel mammalian SUMO substrate proteins in living 
mammalian cells.

We herein present a novel system for the screening of SUMOylated proteins. To detect SUMOylation in living 
mammalian cells, we reconstituted split fluorescent protein fragments27–30. Because the reconstitution of split flu-
orescent protein fragments is irreversible and occurs without destroying the cell, it is suitable for the detection of 
less abundant SUMOylated proteins. By combining this method with the use of fluorescence-activated cell sorting 
(FACS), which automatically collects fluorescent cells, we can collect cells that contain SUMOylated proteins in 
a high-throughput manner. Using this system, we have succeeded in identifying new mammalian SUMOylated 
protein candidates, especially those targeted by SUMO2, and have discovered that Atac2 was SUMOylated by 
SUMO2 at a lysine 408, both in vivo and in vitro.

Results
Detection of SUMOylation by SUMO2 using reconstitution of the split Venus frag-
ments. Unlike SUMO1, SUMO2/3 form polySUMO chain and have reactivity to extracellular stimuli31. 
Because of these unique SUMOylation features and its potential for future analysis, we selected SUMO2 as a first 
demonstration for the screening of SUMOylated proteins. The N-terminal fragment of Venus, a yellow fluores-
cent protein with bright fluorescence32, was fused with the N-terminus of SUMO2 by a flexible GS linker (Gly-
Gly-Gly-Gly-Ser) to make VN-SUMO2 (Fig. 1). The C-terminal Venus fragment was fused to the proteins that 
were encoded by the randomly extracted mouse cDNA library to make VC-library. If the VC-library proteins are 
modified by VN-SUMO2 in living cells, the two Venus fragments are brought close together, which results in the 
recovery of fluorescence. The fluorescent cells were screened and collected from a population of the cells using a 
cell sorter.

First, murine NIH3T3 cell lines that stably express VN-SUMO2 were generated. The well-known SUMO 
substrate protein RanGAP19,33–35 was used to confirm that the Venus fluorescence is recovered when a specific 
target is SUMOylated. Human RanGAP1 was fused with the C-terminal Venus fragment (VC-RanGAP1). A 
deletion mutant of RanGAP1 that lacks 20 amino acids flanking the K524 SUMOylation site34 was also fused to 
the Venus fragment (VC-Δ20aaRanGAP1) and was used as a negative control. The amino acid sequences that 
flank the RanGAP1 SUMOylation site are recognized by SUMO modification machinery36. A high intensity of 
fluorescence from Venus was detected at the periphery of the nucleus in cells that co-expressed VC-RanGAP1 
and VN-SUMO2 (Fig. 2A). The RanGAP1 localization was consistent with that of a previous report that indicated 
that SUMOylated RanGAP1 translocated from the cytosol to the nuclear membrane35. Therefore, the localization 
of the reconstituted Venus suggested that SUMOylation of RanGAP1 was specifically visualized in living cells.

Next, cDNA of VC-RanGAP1 or VC-Δ20aaRanGAP1 was introduced via retrovirus into the VN-SUMO2 
stable cell lines, and the fluorescence intensities of the infected cells were analyzed using a FACS (Fig. 2B). We 
calculated the percentage of the infected cells which showed higher fluorescence intensities than the maxi-
mum intensity of the control cells (Fig. 2B, a dotted gray line) to the whole cells. A 43(±3)% population of 
the VC-RanGAP1-infected cells displayed higher fluorescence intensities (Fig. 2B, Left), indicating that the 

Figure 1. The probes for detecting SUMOylation in living cells. (A) Schematic for detecting SUMOylation 
under live-cell conditions using the reconstitution of split fluorescent protein fragments. (B) Schematic 
structures of VN-SUMO2 and VC-library probes. Venus N: N-terminal fragment (amino acids 1 to 158) of 
Venus. Venus C: C-terminal fragment (amino acids 159 to 240) of Venus (VC).
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reconstituted Venus protein produced sufficient fluorescence intensity for FACS analysis. The population of 
VC-Δ20aaRanGAP1-infected cells showed almost non-fluorescence but some population distributed relatively 
to higher fluorescence intensity area compared to that of the control cells, due to the presence of false positives. 
Only 0.16(±0.03)% of the VC-Δ20aaRanGAP1-infected cells surpassed the maximum fluorescence intensity 
of the control cells (Fig. 2B, Right). This indicates that the maximum fluorescence intensity of the control cells 
was appropriate threshold to discriminate SUMOylated proteins from non-SUMOylated proteins for the subse-
quent sorting. We thus concluded that the SUMOylation of target proteins can be determined using fluorescence 
microscopy and FACS analysis to detect the reconstitution of the Venus fragments.

Identification of the SUMOylated protein candidates. Next, we applied this method to screen 
mammalian SUMOylated protein candidates (Fig. 3). The NIH3T3 cells that stably expressed VN-SUMO2 
were infected with the retrovirus that harbored cDNA libraries that were fused with the cDNA of VC proteins 
(VC-library). The infection efficiency was increased to up to 30% to introduce a single piece of VC-library DNA 
into each NIH3T3 cell. The percentage was estimated using FACS analysis with GFP-infected NIH3T3 cells under 
the same infection conditions (Supplementary Fig. 1). After VC-library-infected cells were incubated for a few 
days, some of the cells fluoresced more intensely than did the control cells (Fig. 4A). This result suggested that 
some of the VC-library proteins were modified by VN-SUMO2, which subsequently reconstituted the Venus 
protein, causing fluorescence emission. The fluorescent cells were sorted by FACS and incubated for a week to 
increase their population. Subsequently, the fluorescent cells were sorted again to increase the accuracy of the 
fluorescent cell collection. The sorting and incubation process was repeated 3–4 times. FACS analysis of the 
cell population that was finally obtained resulted in the accurate separation of the fluorescent cells (Fig. 4B). 
The individual fluorescent cells were then separately plated on a culture dish, and the single-cell clones were 
isolated. From the DNA sequence analysis of the cDNAs that were extracted from the isolated cells, we identified 
38 SUMOylated protein candidates (Table 1). Among the identified candidates, 17 proteins harbored SUMO 
consensus recognition sequences, Ψ-K-X-E/D (“Ψ”: a hydrophobic amino acid, “K”: the SUMO-modified lysine 
residue, “X”: one of any amino acids, “E”: a glutamic acid, “D”: an aspartic acid), which indicated their potential 
SUMOylation sites (Table 2 and Supplementary Table 2). Based on previous reports, the screened candidate pro-
teins are localized in various intracellular compartments: Anxa5 in the cytoplasm and the nucleus37, Drosha in the 

Figure 2. Evaluation of the probes by using SUMOylated protein RanGAP1. (A) Fluorescence images of 
the VN-SUMO2 stable cell lines transiently expressing VC-RanGAP1 and H2B-EBFP. Scale bar: 10 μm. (B) 
Fluorescence intensities of the non-infected VN-SUMO2 stable cell lines (control cells) and the VN-SUMO2 
stable cell lines infected with VC-RanGAP1 (left) or VC-Δ20aaRanGAP1 (right) were analyzed by FACS. Each 
histogram was obtained from measurements of 5,000 cells and the measurements were repeated 5 times. Blue, 
red, and green lines indicate the average of the 5 measurements of control cells, VC-RanGAP1-infected cells, 
and VC-Δ20aaRanGAP1-infected cells, respectively. Light blue, light red, light green indicate the respective 
standard deviation. Dotted gray lines indicate the point where cell number of control cells is almost zero.
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nucleus38, and Plscr3 and Tuba1b in mitochondria and microtubules, respectively39,40. The functions of the identi-
fied candidate proteins are also diverse: Narf is an ubiquitin ligase41, Myof regulates membrane integrity to affect 
vascular endothelial growth factor signaling42, and Arpc1b and Taz are related to cell cycle progression and cell 
proliferation, respectively43,44. This diversity indicated that the present method can screen various SUMOylated 
protein candidates without bias in terms of their normal intracellular localization and function in living mam-
malian cells. Of the candidates, two proteins, Rpl37a and Lmna, have already been reported to be modified by 
SUMO2 in mammalian cells45,46, which confirms that the present method can identify SUMOylated proteins in 
living cells. Given that the method could also detect SUMO-interacting proteins, which was implied by the pres-
ence of putative SUMO-interacting motifs (SIM), such as [V/I]-X-[V/I]-[V/I] (“V”: valine, “I”: isoleucine, “X”: 
one of any amino acids)47, in some candidates (Table 2 and Supplementary Table 2), further analysis is required 

Figure 3. Schematic of screening mammalian SUMOylated proteins based on the reconstitution of split Venus 
fragments. Library DNAs are inserted into virus infection vectors with DNA of VC fragment and transfected 
into PlatE cells. The produced viruses harboring VC-library DNAs are added to NIH3T3 cells that stably 
express VN-SUMO2. The fluorescent cells harboring reconstituted Venus are sorted by FACS. The library DNA 
is extracted from each fluorescent cell. SUMOylated protein candidates are identified by an analysis of the 
extracted DNA sequences.

Figure 4. FACS isolation of the fluorescent cells. Fluorescence intensities of the non-infected VN-SUMO2 
stable cell lines (control cells) and the VN-SUMO2 stable cell lines that were infected with VC-library DNAs 
(probe-introduced cells) were analyzed by FACS. (A) Comparison of control cells with the probe-introduced 
cells before FACS sorting. The region indicated with an arrow includes the cells that have higher fluorescence 
intensities than control cells. (B) Comparison of control cells with the probe-induced cells after FACS sorting. 
The target fluorescent cells were repeatedly incubated and sorted by a FACS four times. The data show the 
fluorescence intensity of the cells after the last sorting.
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to confirm their SUMOylation. Consequently, the screening method has identified 36 proteins that have not been 
reported to be SUMOylated as SUMOylation candidates.

Confirmation of Atac2 as a novel SUMOylated protein. To ensure that the candidate proteins were 
SUMOylated by SUMO2, the proteins were immunoprecipitated, denatured, and then analyzed by Western 
blotting. Because the SUMOylation by SUMO2 occurred via covalent bond conjugation, it could be distin-
guished from non-covalent SUMO2 interactions by the presence of upshift in size. The candidate proteins and 
SUMO2 were genetically tagged with V5 and Myc epitope tags, respectively, and the plasmids were introduced 
into NIH3T3 cells. Lysates of the cells expressing the V5-tagged proteins in the presence or absence of the 
Myc-SUMO2 were immunoprecipitated with anti-V5 antibodies and subjected to Western blotting analysis. Of 
the candidate proteins, Atac2-V5 (92 kDa) showed a clear upshifted signal (Fig. 5A) at approximately 120 kDa 
in an immunoblot with an anti-V5 antibody when co-expressed with Myc-SUMO2. The Myc-SUMO2 proteins 
were detected at the same gel location (120 kDa) by immunoblotting with an anti-Myc antibody, suggesting 
the co-existence of Atac2-V5 and Myc-SUMO2. The increased size (approx. 30 kDa) was slightly larger than 
the calculated size of Myc-SUMO2 (12 kDa). In previous reports48–50, the modification of a target protein with 
SUMOs decreased the protein’s mobility in the SDS-PAGE gel. Therefore, the observed upshifted band can be 
reasonably assigned to the SUMOylated Atac2. In addition to the band at approximately 120 kDa, Myc-SUMO2 
proteins over 150 kDa were detected in a ladder-like arrangement; however, the co-existence of Atac2-V5 pro-
teins was not detected by immunoblotting with the anti-V5 antibody. It is not clear whether the Myc-SUMO2 
proteins that were over 150 kDa originated from Atac2 that was altered by either multiple SUMO proteins or other 
post-translational protein modifiers. The upshifted bands could have originated from SUMOylated proteins that 
co-precipitated with SUMOylated Atac2. We analyze the origin of the upshifted bands in a later section.

Classification SUMOylated protein candidates

Reported as SUMOylated Rpl37a, Lmna

Not reported as SUMOylated
Rps9, Rpl32, Eif3e, Gsn, Stx12, Bgn, Drosha, Uqcrh, Plxnb2, Rpl18a, Atac2, Ermp1, Mrpl4, 
Tmsb4x, Rpsa, Lgals3, Pcolce, Tuba1b, Pbrm1, Myof, Dynlrb1, Fam63b, Taz, Rps3a, Myl9, Rpl6, 
Narf, Arpc1b, Psmb4, Polr1d, Rpl10, Fth1, Anxa5, Plscr3, Wisp2, Cops7a

Table 1. The SUMOylated protein candidates identified by cDNA analysis of the fluorescent cells sorted by 
FACS.

Type of the included sequences SUMOylated protein candidates

SUMO consensus recognition site Lmna, Rps9, Drosha, Uqcrh, Plxnb2, Rpl18a, Atac2, Ermp1, Rpsa, Tuba1b, Pbrm1, Myof, Fam63b, 
Rps3a, Narf, Psmb4, Anxa5

SUMO-interacting motif (SIM) Lmna, Eif3e, Gsn, Stx12, Bgn, Drosha, Plxnb2, Atac2, Ermp1, Mrpl4, Rpsa, Lgals3, Pcolce, Tuba1b, 
Pbrm1, Myof, Dynlrb1, Fam63b, Rpl6, Narf, Arpc1b, Rpl10, Anxa5, Cops7a

Table 2. Classification of the identified SUMOylated protein candidates according to the presence of SUMO 
consensus recognition site or SUMO-interacting motif (SIM).

Figure 5. Identification of novel SUMOylated protein Atac2 and its SUMOylation site. (A) Atac2 is modified 
by SUMO2. NIH3T3 cells transfected with the indicated plasmids were subjected to immunoprecipitation 
with anti-V5 antibodies. The immunoprecipitated proteins were blotted with the indicated antibodies. IP: 
immunoprecipitation. IB: immunoblotting. The arrowheads show the expected sizes of the indicated proteins. 
(B) SUMO2 binds to K408 in Atac2. NIH3T3 cells expressing the indicated proteins were subjected to 
immunoprecipitation followed by Western blotting analysis.
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Next, the SUMOsp algorithm51, which searches for SUMO recognition sites based on the consensus sequence 
Ψ-K-X-E/D, was used to predict SUMOylations site in Atac2. The algorithm identified three lysine residues, K305, 
K408, and K749, as possible SUMOylation sites in Atac2. Cells that expressed wild-type Atac2 or Atac2 mutants 
(K305A, K408A, or K749A) were subjected to the same immunoprecipitation analysis as before (Fig. 5B). Bands 
with SUMOylated proteins were detected for wild-type Atac2 and the K305A and K749A mutants. In contrast, no 
Myc-SUMO2 bands larger than 120 kDa were found for the K408A mutant, indicating that the SUMOylation of 
the K408A mutant did not occur. To exclude the possibility that the loss of positive surface charge by the K408A 
mutation hampered the SUMOylation of Atac2, a K408R mutant whose net surface charge was the same as that 
of the wild-type protein was also generated and examined. No SUMOylation was observed for the K408R mutant 
(Supplementary Fig. 2). From these results, we concluded that K408 of Atac2 is a SUMOylation site that is tar-
geted by SUMO2.

Next, NIH3T3 cells that expressed Venus-fused wild-type or K408A Atac2 were observed under a confocal 
fluorescence microscope to determine the localization of SUMOylated Atac2 (Fig. 6A). Venus-Atac2 showed 
preferential localization in the nucleus, which was consistent with the previous report52. The Venus-K408A Atac2 
mutant localized identically, indicating that SUMOylation of Atac2 does not alter its localization. Subsequently, 
the location of SUMOylated Atac2 was visualized using the split Venus reconstitution method. In the cells that 
expressed both VN-SUMO2 and VC-Atac2, fluorescence of the reconstituted Venus protein was observed in the 
nucleus (Fig. 6B), indicating that the SUMOylation did not perturb the Atac2 localization. In summary, Atac2 was 
SUMOylated by SUMO2, and the SUMOylation of Atac2 did not alter its localization.

Modification of Atac2 by a single SUMO2 in vitro. SUMOylation of Atac2 was further analyzed in 
vitro. The wild-type or K408R Atac2, each of which was fused with an N-terminal FLAG epitope tag, was puri-
fied from mammalian HEK293T cells. Recombinant N-terminally GST-tagged E1 (Mus musculus Aos1/Uba2), 
His-tagged E2 (Xenopus Ubc9), and His-tagged human SUMO2 were purified from E. coli. E3 was not used 
because previous reports stated that in vitro SUMOylation proceeds without E353,54. The purified FLAG-tagged 
Atac2 proteins (wild type and K408R) were mixed independently in the presence or absence of each of the follow-
ing materials: ATP, E1, E2, and SUMO2. The mixed solutions were subjected to Western blotting analysis (Fig. 7). 

Figure 6. Subcellular localization of the SUMOylated Atac2. Fluorescence images were obtained from NIH3T3 
cells expressing either Venus-fused wild-type or mutant K408A Atac2 co-expressed with H2B-EBFP (A) and 
from VN-SUMO2 stable cell lines co-expressing VC-Atac2 and H2B-EBFP (B). Scale bar: 10 μm.
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The upshifted SUMOylation band was detected only in the mixture that contained all the materials (ATP, E1, 
E2, and SUMO2) that are required for SUMOylation. On the other hand, no shifted bands were observed when 
FLAG-K408R Atac2 proteins were used in place of wild-type Atac2. These results demonstrated that Atac2 was 
monoSUMOylated in vitro at a lysine408.

Modification of Atac2 by multiple SUMO2 or SUMO1 proteins. IP followed by Western blotting 
analysis was performed on the Venus-fused Atac2 (119 kDa) to compare its molecular weight with that of the 
Atac2 protein lacking the Venus fusion; in this manner, we hoped to clarify the origin of the strongly detected 
Myc-SUMO2 band that appeared at approximately 150 kDa in living cells (discussed above). In the case of 
Venus-Atac2 expression, the monoSUMOylated band (120 kDa) that was detected when the Atac2 protein was 
not fused with Venus was upshifted to 150 kDa, which was expected when the size of Venus (27 kDa) is consid-
ered (Fig. 8A). Similarly, the unknown 150 kDa Myc-SUMO2 band was upshifted to 180 kDa. Additionally, the 
upshifts were also observed in the experiments using Atac2 fused with the C-terminal Venus fragment, where the 
upshift corresponded to the size of the fused fragment (10 kDa) (Supplementary Fig. 3). From the further exper-
iment using double-V5-tagged Atac2, where the existence of Atac2 around 150 kDa was detected with anti-V5 
antibodies (Supplementary Fig. 4), the reason why single-V5-tagged Atac2 could not be blotted with anti-V5 
antibodies around 150 kDa would be due to the quality of the antibodies. Taken together, these results indicated 
that the Myc-SUMO2 band at 150 kDa originated from SUMOylated Atac2.

Next, IP and Western blotting analysis were performed with Venus-tagged SUMO2 (Venus-Myc-SUMO2) 
(Fig. 8B) to determine whether the higher molecular weight band (150 kDa) was a form of Atac2 that had been 
SUMOylated more than once. The result revealed that the higher band of approximately 150 kDa was upshifted to 
approximately 250 kDa in the Venus-Myc-SUMO2 expressing cells; this upshift (100 kDa) was greater than that 
expected for the putative monoSUMOylation (50 kDa). These results indicated that Atac2 could be modified by 
two or more SUMO2 proteins.

The selectivity of SUMO proteins in the Atac2 SUMOylation process was also investigated. NIH3T3 cells 
that contained V5-tagged Atac2 and either Myc-SUMO1 or Venus-Myc-SUMO1 proteins were subjected to IP 
and Western blotting analysis (Fig. 8C). The Myc-SUMO1-modified Atac2 was detected at 120 kDa and almost 
150 kDa. When Venus-tagged Myc-SUMO1 was used, SUMOylated Atac2 was detected at 150 kDa and almost 
250 kDa. The detected SUMOylation patterns were the same as those of the experiments with Myc-SUMO2 and 
Venus-Myc-SUMO2 (shown in Fig. 8B), suggesting that Atac2 was also SUMOylated by several SUMO1 mole-
cules. Based on these data, we concluded that Atac2 was modified by multiple SUMO proteins without a prefer-
ence for a SUMO subtype.

Discussion
In this work, we developed a method to screen for mammalian SUMOylated proteins that is based on reconsti-
tuting split fluorescent protein fragments. The method identified 36 unreported SUMOylation candidates with 
diverse functions and localizations. Of the candidate proteins, we confirmed that Atac2 was SUMOylated by 
SUMO2 at K408. Furthermore, Western blotting analysis revealed that Atac2 was modified by more than two 
SUMOs without specificity for a particular SUMO paralog.

The present method was based on irreversible fluorescent protein reconstitution, which would be beneficial in 
a SUMOylation screening. Conventional IP-MS-based screening methods have been implicated in comprehen-
sive screening of SUMOylated proteins20,21 and further identifying of SUMOylation sites in various contexts55–58, 
which yielded profound insights into the biological role of SUMOylation. The IP-MS-based methods relied on 
the analysis of the enzymatically-digested peptides, requiring cell lysis before sample preparation. Because the 
deSUMOylation by SUMO proteases occurred not only in living cells but potentially after cell lysis, possibility 
of detecting SUMOylation could be reduced in IP-MS-based screening approaches. In contrast, the fluorescent 
signal generated by split fluorescent protein reconstitution maintains upon deSUMOylation, because of irrevers-
ible reaction of the reconstitution. Therefore, the present method has a potential in detecting rarely SUMOylated 

Figure 7. Single SUMO2 modification of Atac2 in vitro. Recombinant FLAG-fused Atac2 proteins, including 
the wild-type (WT) and the K408R (KR), were incubated in the presence or absence of each of the following 
components, as indicated: ATP, GST-tag purified E1, His-tag purified E2, and His-tag purified SUMO2. 
Reaction products were analyzed by Western blot with anti-FLAG antibodies.
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Figure 8. Further analyses of Atac2 SUMOylation. (A) Change in Atac2 size to examine the origin of the 
unknown Myc-SUMO2 proteins that were detected at approximately 150 kDa. NIH3T3 cells transfected with 
the indicated plasmids were immunoprecipitated with the indicated antibodies. The obtained samples were 
immunoblotted with the indicated antibodies. (B) Evaluation of further modification of monoSUMOylated 
Atac2 by Myc-SUMO2 molecules by changing SUMO2 size. NIH3T3 cells were transfected with Atac2-V5 in 
the presence of Myc-tagged SUMO2 or Venus-fused Myc-SUMO2 and subjected to immunoprecipitation with 
anti-V5 antibodies. The immunoprecipitated proteins were resolved by SDS-PAGE and analyzed by Western 
blotting with the indicated antibodies. (C) Analysis of SUMO1 modification of Atac2. NIH3T3 cells were 
transfected with Atac2-V5 in the presence of Myc-tagged SUMO1 or Venus-fused Myc-SUMO1 and subjected 
to immunoprecipitation with anti-V5 antibodies. The immunoprecipitated proteins were subjected to Western 
blotting with the indicated antibodies.
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proteins. In addition, the present methods based on single cell analysis enabled detection of the SUMOylation sig-
nal from proteins individually, which would not be affected by signals generated by other strongly SUMOylated 
proteins. Under physiological condition, SUMO proteins are conjugated to substrate proteins with different modi-
fication level upon protein species. Therefore, the detectable scope of SUMOylated proteins was potentially biased 
by those factors in conventional IP-MS-based approaches because frequently-SUMOylated proteins are prefer-
entially immunoprecipitated. In the present method, on the other hand, both library proteins and SUMO were 
conjugated with split fluorescent protein fragments and exogenously expressed, whose signals were respectively 
detected by FACS sorting. Therefore, SUMOylation-rate bias could be mitigated in the present SUMOylation 
screening method. It would be greatly helpful in detecting SUMOylation of proteins at infrequent SUMOylation 
rate. Of the 38 proteins detected by the present method, 24 proteins, including Atac2, were detected by the previ-
ous MS analysis59, supporting the reliability of the present methods as SUMOylation screening. In contrast, the 
rest 14 proteins have been not yet identified by the MS-based screening, indicating that the scope of detectable 
targets by the present split fluorescent protein reconstitution approach was partially different from that by previ-
ous MS-based approaches. Though detectable targets were limited at the present stage, it could be improved by 
enlarging the cDNA libraries used for the analysis. Collectively, the present system based on fluorescence protein 
reconstitution has unique features in the detection of SUMOylation, which could be complementally exploited 
for exploring wide ranges of SUMOylated proteins.

Another advantage is that the scope of candidate proteins that can be examined is not restricted by the pro-
teins’ localization. The previous screening method, which was based on the yeast two-hybrid method22, required 
that the target proteins be recruited into the nucleus, where transcription of the reporter gene was triggered 
upon modification by SUMOs. Therefore, SUMOylation in other intracellular compartments, such as ER or Golgi 
apparatus, cannot be examined with this method. In contrast, the developed screening method can assess the 
SUMOylation of any intracellular proteins because the reconstitution of split fluorescent protein fragments can 
occur anywhere in the target cell. In the present study, DNA sequence analysis revealed that the method detected 
Anxa5 in the cytoplasm and nucleus37, Drosha in the nucleus38, Plscr3 in mitochondria39, and Tuba1b in micro-
tubules40. These results demonstrate that proteins localized in diverse cellular compartments can be targeted for 
SUMOylation assessment by the present method.

Recently, a method to screen for yeast SUMOylation based on split fluorescent protein reconstitution has 
been reported60. The method using yeast cells was inadequate for inspecting mammalian SUMOylation 
because it did not reflect the complexities of the mammalian SUMOylation system: SUMO-isoform specificity 
and cell-type-dependent SUMOylation patterns. In contrast, the present method is potentially able to explore 
isoform-specific SUMOylation by changing SUMO isoforms. Also, it can be applied to explore SUMOylation 
in other cell types including human-derived cell lines with appropriate retrovirus infection to the human cells. 
Moreover, the present screening method would be easily applicable to exploring SUMOylation that is induced by 
such factors as UV irradiation or heat shock31. Hence, the present method is appropriate for detecting mamma-
lian SUMOylation under different cellular conditions.

Though the present method enabled in principle to detect SUMOylation by the fluorescent protein recon-
stitution, some important SUMOylated proteins would not be detected due to the issues in the cDNA library 
preparation. Firstly, linker length between the proteins and the Venus fragments in the library plasmids would not 
be appropriate for some proteins because the relative location between the amino acid termini and SUMOylation 
sites differ in the SUMOylated proteins. In the present study, a short GS linker (Gly-Gly-Gly-Gly-Ser) was only 
used for insertion between the proteins and the Venus fragments. It would be plausible that some SUMOylated 
proteins failed to induce Venus reconstitution because distance between the Venus fragments was too far to be 
brought into close proximity with the present short linker length. Secondly, due to the present cDNA library 
preparation protocol, some library sequences were partially inserted into the plasmids, which may lose their 
SUMOylation sites. In the present protocol, the library cDNAs were transferred to the plasmids containing Venus 
fragment by restriction enzyme digestion. Therefore, partial DNA sequences harboring the restriction sites were 
inserted into the plasmids. The fact that E1/E2/E3 enzymes were not detected in the screening might be due to 
such issues raised above. To solve these issues, further improvements will be needed for the cDNA library prepa-
ration protocol, preparation of GS-linkers with various length, and cDNAs encoding full-length proteins fused 
with Venus fragments.

In addition, sorting accuracy is crucial for identifying the SUMOylated proteins. In this study, we used a 
conventional FACS machine, which required enrichment process to decrease false-positive rates. As a result, we 
obtained sibling clones limiting a variety of candidate fluorescent cells. However, the latest FACS machine with 
superior sorting accuracy will overcome this issue, which would decrease the number of the repetition of cell 
incubation and cell sorting. Also, total time required for the sorting process will be significantly improved if a 
new cell sorter is available.

We identified Atac2 as a novel SUMOylated protein that was modified at a lysine 408, by SUMO2. Western 
blotting analysis also revealed that Atac2 underwent further SUMOylation by multiple SUMO1 or SUMO2 pro-
teins. Other SUMOylation sites might be present in Atac2 because SUMO1 does not form poly-SUMO chains61. 
The fact that K408A or K408R mutations dramatically reduced Atac2 SUMOylation suggests that K408 is a 
key residue in this process. The SUMOylation at K408 that we identified suggests that it may have an effect on 
Atac2 function. Atac2 is a component of a histone acetyltransferase complex, “ATAC”, which plays an essential 
role in mammalian development62,63. Atac2 itself has weak histone acetyltransferase activity and is indispensa-
ble for the integrity of the ATAC complex63. Fluorescence microscope observation revealed that SUMOylated 
Atac2 localized in the nucleus, suggesting a relation of SUMOylation to intranuclear activities of Atac2. Further 
analysis is required to clarify the influence of SUMOylation on the functions of Atac2, including gene expres-
sion that is regulated by histone acetyltransferase activity and interaction with other components in the ATAC 
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complex. The elucidation of the consequences of Atac2 SUMOylation will provide a new clue to help understand 
SUMOylation-regulated nuclear events.

In conclusion, we developed a method to screen mammalian SUMOylated proteins based on reconstituting 
split fluorescent protein fragments and FACS sorting. The present method successfully detected SUMOylated pro-
tein candidates with distinct intracellular locations and functions in living mammalian cells. Of the candidates, 
we found that Atac2, a histone acetyltransferase, was SUMOylated by SUMO2 at a lysine 408. Reconstituting 
split fluorescent protein fragments enabled the non-destructive detection of SUMOylation under live-cell con-
ditions without any limitation to protein localization. The cells harboring SUMOylated library proteins were 
discriminated by the fluorescence emission from their reconstituted fluorescent proteins and separated from 
non-fluorescent cells by cell sorting. The utilization of mammalian cells is fitting for detecting mammalian 
SUMOylation because it reflects the complex mammalian SUMOylation processes. In addition, the present 
method can be applied to other SUMO isoforms and different mammalian cell-types with a range of stimulants. 
Because of such methodological advantages, the developed method could contribute to a deeper understanding 
of the role of SUMOylation in diverse biological contexts, which in turn gives us new insights into the significance 
of post-translational modifications.

Materials and Methods
Plasmid construction. The cDNAs of SUMO1 and SUMO2 were amplified from human genomic 
DNA that was extracted from HeLa cells. The RanGAP1 cDNA was amplified from a RanGAP1 cDNA clone 
(Kazusa DNA Res. Inst., Japan). The cDNA of Atac2 was amplified from a Mus musculus brain cDNA mix-
ture (Genostaff) using nested PCR. The cDNAs of N-terminal (amino acids 1–158) or C-terminal (amino 
acids 159–240) fragments of Venus were amplified from full-length cDNA. Epitope tags (V5, Myc, and FLAG) 
were generated using overlapping primers in the PCR reaction. Additional point mutations for Atac2 (K305A, 
K408A, K749A, K408R) were introduced by pairs of mutagenic complementary single-stranded DNA oli-
gomers. The deletion mutant of RanGAP1 (∆20aaRanGAP1) was generated by amplifying N-terminal (amino 
acids 1–514) and C-terminal (amino acids 535–587) fragments via PCR. The PCR products were subcloned 
into the pcDNA4/V5 His ver. B vector (Invitrogen) for general experiments, the pMX vector64 for retrovirus 
infection, or the pTriEx-3 vector (Novagen) for in vitro assays. Plasmids encoding His-SUMO2, GST-E1 and 
His-E2 were generated as previously described65,66. For the preparation of plasmids encoding VC-library pro-
teins, plasmids of a cDNA library (pAP3neo cDNA Library Mouse 10T-half, 5.3 M, RIKEN BRC DNA BANK) 
were digested with restriction enzymes EcoRI and NotI and transferred into the EcoRI and NotI sites in the 
pMX vector. The cDNA of the C-terminal Venus fragment (amino acids 159–240) was cloned into the BamHI 
and EcoRI sites in the vector. Considering the frame shift, the fragment was amplified with three linkers of 
different length, ggcggaggcgga, ggcggaggcggag, and ggcggaggcggagg, by PCR. All primers used in this study are 
listed in Supplementary Table 1.

Cell cultures and transfection. NIH3T3 and HEK293T cells were cultured in DMEM supplemented with 
10% fetal bovine serum (FBS), 100 unit/mL penicillin, and 100 μg/mL streptomycin at 37 °C under 5% CO2. 
After the medium was changed to DMEM supplemented with 10% fetal bovine serum (FBS) and L-glutamine, 
NIH3T3 cells were transfected by using Lipofectamine 2000 Reagent (Invitrogen). Transfection of HEK293T cells 
was performed using PEI MAX (Polysciences, Inc.). The cells were lysed and subjected to subsequent analyses 
24 hours after the transfection. To generate stable cell lines, we selected transfected NIH3T3 cells with a medium 
containing 500 μg/mL zeocin (Invitrogen).

Retrovirus production and infection. PlatE cells were transfected with the plasmids for retrovirus pro-
duction and cultured at 37 °C under 5% CO2 for 8 hours. After incubation for 24 to 48 hours, the medium that 
included the virus that harbored the plasmid DNAs was collected and stocked at −30 °C. Eight μg/mL polybrene 
was added to the medium culturing NIH3T3 cells 10 minutes before being infection with the medium stock that 
contained retrovirus. The infected NIH3T3 cells were incubated for one more day and subjected to subsequent 
FACS analysis.

FACS analysis and sorting. VN-SUMO2 stable cell lines that were infected with a retrovirus harboring 
the VC-library DNAs were trypsinized and suspended in PBS after they were washed a few times with PBS. 
Non-infected cells were also subjected to the same procedure as a control for FACS analysis. The fluorescence 
intensity that was emitted from 5,000 cells was analyzed by FACS (Epics Altra, BECKMAN COULTER) following 
the standard procedure with an excitation wavelength of 488 nm and a measurement wavelength of 525 (±15) 
nm. The target fluorescent cells were sorted by FACS. The region for sorting was identified by a fluorescence 
intensity that was higher than the autofluorescence intensity of the control cells. The sorted cells were collected in 
a 1.5 mL tube. After the supernatant was removed, the cells were plated in a 6-well dish and incubated.

Identification of candidate SUMOylated proteins. The sorted cells were plated on a 10 cm dish with a low 
cell density. After the cells were incubated for a few weeks, we isolated separately formed single-cell clones by pick-
ing them up with a pipette. The DNA of each incubated single-cell clone was extracted by a Wizard Genomic DNA 
Purification Kit (Promega). The VC-library sequences of each clone’s extracted DNA were amplified by nested PCR 
using the following primers: 5′-CAAAGTAGACGGCATCGCAGC-3′ and 5′-TTATGTATTTTTCCATGCCTTC-3′ 
(primary PCR); 5′-TTTAAGCTTGCTAGCGCCATGAAGAACGGCATCAAGGCC-3′ and 5′-TTATCG 
TCGACCACTGTGCTGGCGGCCGC-3′ (secondary PCR). Each PCR product was subjected to the agarose gel elec-
trophoresis. The amplified cDNAs were purified from the individual detected bands by FastGene Gel/PCR Extraction 
kit (GeneTics). In case that multiple bands were detected, individual cDNAs were collected from the separated 
bands and purified in the same manner. All the purified cDNAs were directly sequenced with the following primer: 
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5′-TGGTCCTGCTGGAGTTCGTG-3′. The sequencing data were analyzed for homologies to nucleotide sequences 
in the GenBank database using a BLAST search. The SUMOylation sites were predicted by searching for the putative 
SUMO consensus sequence using the SUMOsp algorithm51. The SIM sequences were analyzed by the SIM algorithm67.

Immunoprecipitation and Western blotting. The immunoprecipitation method was performed as pre-
viously reported68. Anti-V5 antibody (Invitrogen) and NP-40 lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM 
NaCl, and 1% NP-40) supplemented with 20 mM N-ethylmaleimide (freshly dissolved) and complete protease 
inhibitor (Roche) were used for the immunoprecipitation. The immunoprecipitated proteins were separated by 
SDS-PAGE and transferred to a nitrocellulose membrane (AmershamTM HybondTM-ECL, GE Healthcare). The 
membranes were blocked with 1% skim milk (BD) in TBS-T buffer (50 mM Tris-HCl, pH 8, 150 mM NaCl, and 
0.05% Tween-20). The primary antibodies that were used were mouse monoclonal anti-V5 antibody (Invitrogen), 
diluted 1:5000 to 1:10000; rabbit polyclonal anti-Myc antibody (MBL), diluted 1:1000; and mouse monoclo-
nal anti-FLAG antibody (Sigma), diluted 1:1000. The primary antibodies were visualized using the appropri-
ate secondary antibodies, anti-mouse IgG or anti-rabbit IgG, labeled with horseradish peroxidase (Invitrogen). 
The immunoblot bands were detected using SuperSignal West Femto Maximum Sensitivity Substrate (Thermo 
Scientific), with LAS-1000 Plus image analyzers (Fuji Photo Film Co. Ltd.) or LAS 4000 mini (GE Healthcare).

Recombinant Atac2 proteins and in vitro SUMOylation assay. Recombinant FLAG-Atac2 and 
FLAG-K408R that were expressed in HEK293T cells were purified by batch absorption using Anti-FLAG M2 
Agarose Affinity Gel (Sigma) according to the manufacturer’s instructions. The bound recombinant proteins were 
eluted from the column by competition with 100 μg/mL FLAG peptide (Sigma) in TBS buffer (10 mM Tris-HCl 
and 150 mM NaCl, pH 7.4). The fractions containing FLAG fusion proteins were concentrated using Vivaspin 
20-50 K (GE Healthcare), and the buffer was exchanged with the SUMOylation assay buffer (50 mM Tris-HCl, 
pH 7.6, 6 mM MgCl2, and 1 mM DTT). The recombinant His-SUMO2, GST-E1, and His-E2 were purified as 
previously described65,69. In total, 2.5 μg of FLAG-Atac2 or FLAG-K408R was reacted with or without each of the 
following components for 2 hours at 30 °C: 2 mM ATP (Sigma), 1.0 μg of His-SUMO2, 0.75 μg of GST-E1, and 
0.05 μg of His-E2. The mixtures were subsequently analyzed by Western blotting.

Confocal fluorescence microscopic analysis. The cells were plated on glass plates and incubated at 37 °C 
under 5% CO2 for 24 hours. Transfection was performed, and the cells were further incubated for 24 hours. The 
medium was exchanged with the observation buffer (DMEM modified with high glucose, L-Glutamine, HEPES, 
and no phenol red, supplemented with 10% FBS) before imaging. The cells were observed using an IX81-FV-1000 
confocal microscope (OLYMPUS Co. Ltd.) with a UPlanSApo 100×/1.40 oil objective. EBFP and Venus were 
excited at 405 and 515 nm, respectively. Images were analyzed using ImageJ software.
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