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Lipidomics Reveals Cerebrospinal-
Fluid Signatures of ALS
H. Blasco1,2,3, C. Veyrat-Durebex3,4, C. Bocca3,4, F. Patin1,2, P. Vourc’h1,2, J. Kouassi Nzoughet4, 
G. Lenaers4, C. R. Andres1,2, G. Simard3,4, P. Corcia1,5,6 & P. Reynier3,4

Amyotrophic lateral sclerosis (ALS), the commonest adult-onset motor neuron disorder, is 
characterized by a survival span of only 2–5 years after onset. Relevant biomarkers or specific metabolic 
signatures would provide powerful tools for the management of ALS. The main objective of this 
study was to investigate the cerebrospinal fluid (CSF) lipidomic signature of ALS patients by mass 
spectrometry to evaluate the diagnostic and predictive values of the profile. We showed that ALS 
patients (n = 40) displayed a highly significant specific CSF lipidomic signature compared to controls 
(n = 45). Phosphatidylcholine PC(36:4), higher in ALS patients (p = 0.0003) was the most discriminant 
molecule, and ceramides and glucosylceramides were also highly relevant. Analysis of targeted lipids in 
the brain cortex of ALS model mice confirmed the role of some discriminant lipids such as PC. We also 
obtained good models for predicting the variation of the ALSFRS-r score from the lipidome baseline, 
with an accuracy of 71% in an independent set of patients. Significant predictions of clinical evolution 
were found to be correlated to sphingomyelins and triglycerides with long-chain fatty acids. Our study, 
which shows extensive lipid remodelling in the CSF of ALS patients, provides a new metabolic signature 
of the disease and its evolution with good predictive performance.

Amyotrophic lateral sclerosis (ALS) is the commonest adult-onset motor neuron disease, characterized by the 
degeneration of upper and lower motor neurons in the brain and spinal cord. Several reports suggest that ALS is 
a systemic, heterogeneous disease, and various strategies have been designed for the identification of diagnostic 
and prognostic biomarkers. Indeed, relevant biomarkers would provide powerful tools for the management of 
ALS. They would also open new therapeutic avenues, which are currently restricted to the use of riluzole1. Some 
publications have reported instances of protective hyperlipidemia in ALS patients2 and increased peripheral lipid 
clearance in ALS model mice3, suggesting that alterations of the lipid metabolism may be involved in the disease.

The brain, the primarily affected organ in ALS, is considered to be quantitatively the richest organ in lipids, 
comprising cholesterol, phospholipids, sphingolipids and fatty acids (FA). The nature of the lipids and oxidized 
products from different areas of the brain may thus offer clues to neuronal degeneration, alteration in cell signal-
ling, inflammation, oxidation processes, and the remodelling of membrane structure4. The disruption of the lipid 
organization of the pre-synaptic membrane may affect the structural and physiological properties of the brain, 
together with the neuronal and synaptic functions, impacting membrane trafficking and the control of protein 
activity5. Polyunsaturated FA are involved in multiple biological pathways, including the synthesis of inflam-
matory mediators4, which have been reported to be involved in the pathophysiology of ALS6. The breakdown 
of cell membranes is a characteristic feature of neuronal degeneration in chronic neurological disorders. Thus, 
we hypothesized that specific lipid profiles may characterize the pathologic condition of ALS, and we set out to 
investigate this.

Lipidomics aims at describing and quantifying the complex range of lipid species. Although this “omics” 
approach has so far been rarely applied to cerebrospinal fluid (CSF), it offers new perspectives in the search for 
surrogate markers4,7. Thus, the investigation of lipid patterns in the CSF may be expected to reveal lipids, spe-
cifically released by damaged motor neurons or glial cells, that may help to identify relevant clinical biomarkers 
of the disease. This would further allow the exploration of certain pathologic mechanisms associated with the 
deregulation of lipid metabolism and signalling.
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Results
Patients. The clinical data of 40 ALS patients, and 45 patients with other neurological diseases serving as con-
trols, are listed in Table 1. The sex ratio (Male/Female) was 1:2.4, and the mean age of onset for the ALS patients 
was 64.67 ± 12.17 years. The site of onset was spinal in 64.1% of the patients, bulbar in 30.8%, and respiratory in 
the remaining. The median duration of the disease was 33.6 months. No patient was under hypolipemic treatment 
at the time of data collection. Multivariate analysis between baseline parameters and those recorded one year later 
showed that three parameters were associated with the duration of ALS, i.e. diagnostic delay (p < 0.001), variation 
of the ALSFRS-r (revised ALS functional rating scale) score (p < 0.02), and weight loss (p < 0.02).

Lipid profiles. We detected approximately 200 lipids partitioned in 11 classes. Following the pre-processing 
and processing of data, the data matrix was restricted to 122 lipids. In the CSF lipidome we found glycero-
phospholipids, i.e. phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and 
monoetherphosphatidylcholin (MePC); sphingolipids, i.e. ceramide (Cer), and sphingomyelin (SM); glucosyl-
ceramide (CerG1), esterified cholesterol (ChE), sterols (ST) and triglycerides (TG). The lipid nomenclature is 
explained in Supplementary Results, and the lipids used for the statistical analyses are listed in Supplementary 
Table S1.

Compared to patients with other neurological diseases, ALS patients carry a specific lipidomic 
CSF signature. From the OPLS-DA (Orthogonal partial least-squares discriminant analysis) model created 
from the entire cohort by SIMCA®, 19 lipids appear to be responsible for the discrimination between groups 
(p-CV ANOVA = 0.005, Fig. 1A and B). The model interpreted approximately 86.8% of the total variation in 
lipids (R2X(cum)), and 59.0% of the variations in the various samples (R2Y(cum)).

The biosigner analysis provided a fitting model (accuracy at 65% in the test set), with the following perfor-
mances in the test set: mean sensitivity: 64%, specificity: 65.7%, positive predictive value (PPV): 63%, negative 
predictive value (NPV): 68.5% for the discriminant lipids: PC (Phosphatidylcholine)(36:4p) and PC(36:4e) from 
RF (Random Forest) algorithms, PC(36:4p), and SM (Sphingomyelin) (d43:2) by the PLS-DA.

Univariate analysis detected 21 lipids with a p-value < 0.1 and a fold change > 1.2 (Fig. 2), and 22 lipids were 
statistically significant after the Benjamini-Hochberg correction (Supplementary Table S1).

The Venn diagram built from univariate and multivariate analysis is illustrated on Supplementary Figure S1. 
Among the compounds of the OPLS-DA model, we found six other discriminant metabolites using the vol-
cano plot or univariate analysis after the Benjamini-Hochberg correction, i.e., PC(36:2p), PC(36:4p), PC(40:6p), 
SM(d34:0), and SM(d39:1), all five being higher in ALS patients, and TG (Triglyceride) (16:1/18:1/18:2), which 
was lower in ALS patients than in controls. It is worth noting the higher level of PC(36:4p and 36:4e) was the 
strongest discriminant factor identified by all the statistical approaches used.

Discriminant lipids common to the brain of ALS model mice and the CSF of ALS patients.  
Multivariate re-analysis using SIMCA® and focusing on lipids previously quantified in the brain of ALS model 
mice offered an excellent model for discriminating between ALS and WT mice (p-CV ANOVA = 1.39 × 10−6). 
The biosigner analysis also revealed an excellent model with lysoPC (C18:2), as well as 10 PCs and 3 SMs. 

ALS patients (n = 40) Control subjects (n = 45) p-value

Mean +/− SD or percentage Mean +/− SD or percentage

Gender (% female) 42.50 51.10 0.51

Age at sample collection 66.12 +/− 12.10 60.58 +/− 14.01 0.06

Age at onset (years) 64.67 +/− 12.17

BMI (kg/m2)

  at diagnosis 24.52 +/− 3.82 25.31 +/− 3.20 0.21

  at 12 months 25.36 +/− 3.67

  Weight loss at diagnosis (%) 4.09 +/− 7.30

  Diagnosis delay (months) 12.52 + /−9.90

Site at onset (%)

  Spinal 64.1

  Bulbar 30.8

  Respiratory 5.10

ALSFRS-r score

  at diagnosis 40.18 +/− 5.25

  at 12 months 32.78 +/− 6.63

FVC (%)

  at diagnosis 91.72 +/− 26.40

  at 12 months 80.34 +/− 22.16

  Disease duration (months) 33.62 +/− 18.40

Table 1. Characteristics of ALS patients and controls.
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Figure 1. Multivariate analysis (OPLS-DA) of CSF lipids in patients with ALS and controls (n = 85) based 
on 19 lipids (p = 0.005). (A) Score scatter plot. Blue dots: patients with ALS; green dots: controls. X-axis and 
Y-axis represent score vectors summarizing all the variables entering the analysis: t1 and to1; R2X(cum) = 86.8% 
R2Y(cum) = 59.0%, Q2(cum) = 0.402 (B) Loading scatter plot. Variables near each other are positively 
correlated; variables opposite to each other are negatively correlated. Variables closer to dots corresponding 
to “ALS” or “Controls” dots (i.e. with the largest absolute loading values) are higher in the corresponding 
populations. Lipids from the same family are represented with the same color.

Figure 2. Volcano plot (Metaboanalyst) of the CSF lipids of ALS patients and controls (n = 85), revealing 21 
lipids with a p-value < 0.1 and a fold change >1.2. Lipids from the same family are represented with the same 
color.X-axis corresponds to log2(Fold Change) and Y-axis to −log10(p-value).
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Univariate analysis showed that lysoPC (C18:2) levels were significantly higher in ALS model mice compared to 
WT mice (p = 0.00022). The compounds, common to ALS model mice and ALS patients, as detected by the two 
multivariate findings (SIMCA® and biosigner), are represented in Table 2. In particular, we identified PC(32:2), 
PC(36:2), PC(36:4), and PC(40:6), most of these at higher levels in ALS patients. We also noted some lysoPC in 
mice which share a common structure with some PCs cited above (Table 2).

Lipidomic analysis of CSF at diagnosis predicts the clinical evolution of ALS patients. The 
model predicting the evolution of the ALSFRS-r score, the Forced Vital Capacity (FVC), showed excellent per-
formances using SIMCA® (p-CV ANOVA < 0.002, R2X(cum) = 67.7%, R2Y(cum) = 83.8%, and Q2 = 64.9% from 
23 metabolites (p-CV ANOVA = 0.0005), and R2X(cum) = 47.4%, R2Y(cum) = 75.3%, and Q2 = 62% from 16 
metabolites (p-CV ANOVA = 0.002), respectively). The model predicting the variation of the BMI showed val-
ues of R2X(cum) = 52.0%, R2Y(cum) = 60.4%, and Q2 = 43.2% from 14 metabolites (p-CV ANOVA = 0.0025) 
The model predicting the duration of survival (based on median survival) is represented in Fig. 3A and B 
(R2X(cum) = 59.4%, R2Y(cum) = 51.6%, and Q2 = 41.4% for 15 metabolites (p-CV ANOVA = 0.0007).

The biosigner analysis revealed an especially robust model (accuracy at 71% in the test set) for predicting 
the variation of the ALSFRS-r score with the following performances in the test set: mean sensitivity at 62%, 
specificity at 80.3%, PPV: 79%, NPV at 70.4%. The modelling identified SM(d43:2) as the best discriminant lipid 
(Fig. 4). Although the biosigner analysis did not provide a fitting model for predicting the duration of survival, it 
highlighted two relevant metabolites: TG(16:0/16:0/18:1) and TG (18:0/16:0/18:1).

The biosigner algorithm was used for analyzing the duration of survival from the combination of lipid profile 
and clinical data. The multivariate modelling confirmed the independent relevance of both biological and clinical 
findings: we highlighted the same triglycerides (TG(16:0/16:0/18:1), TG (18:0/16:0/18:1)) as previously found, 
and we also identified diagnostic delay as a discriminating parameter.

Lipid 
groups ALS patients

ALS model 
mice Examples of common structures

LysoPC
C16:0, C17:0, 
C18:2, C20:3, 
C20:4, C18:1

PC

C30:0, C32:2p 
and e, C35:4, 
C36:2p, C36:4p, 
C37:5,C40:4, 
C40:6p and e, 
MePC(37:1)

C32:0, C32:1, 
C32:2p, C34:1, 
C34:2, C36:1, 
C36:2e, C36:4p, 
C36:5, C38:0, 
C38:4, C38:5, 
C38:6, C40:6e

SM
C34:2, C34:0, 
C36:0, C39:1, 
C36:1, C43:2

C16:0, C18:0, 
C18:1, C24:1

Table 2. Common lipids between multivariate analysis (SIMCA® and biosigner analysis) performed on ALS 
patients and mice models of ALS. Lipids in bold: identified in patients and mice, and in italic: structures found 
in lipids common to patients and mice.
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After the Benjamini-Hochberg correction, we found a significant association between the higher levels of 
SM(d43:2) and a lesser decline of the ALSFRS-r score (p = 0.0026).

The Venn diagram (Fig. 4) constructed according to the multivariate models to predict the different param-
eters of ALS progression highlighted two major lipids: SM(d36:0) and SM(d43:2). Among the lipids highlighted 
by the Venn diagram in Fig. 4, and also identified by the volcano plot, we observed higher levels of PC(40:6p) and 
MePC(37:2), together with lower levels of TG(16:0/16:0/18:1) and TG(18:0/16:0/18:1), associated with better sur-
vival; lower levels of SM(d40:2), SM(d39:1), PC(37:3p) and PC(32:1p), associated with a lesser decline of the BMI; 
higher levels of SM(d43:2), associated with a lesser decline of the ALSFRS-r score; and higher levels of SM(d36:0), 
associated with a lesser decline of FVC.

Discussion
To our knowledge, this is the first lipidomic study of the CSF of patients with ALS undertaken to identify the 
profile of lipids likely to help in diagnosing the disease or in predicting its evolution, as well as in exploring the 
underlying pathologic mechanisms. One of the strengths of our study lies in the combination of several statistical 
approaches and a validation of models in test sets. We obtained significant models for discriminating between 
ALS patients and controls and for predicting the variation of the ALSFRS-r score.

The best discriminant lipids distinguishing ALS patients from controls. The best discriminant 
lipids distinguishing ALS patients from controls were PC(36:4p), PC(36:4e), and SM(d43:2), with higher levels 
in cases of ALS, as revealed by the biosigner analysis, and SM(d34:0), also with higher levels in cases of ALS, as 
revealed by both the univariate and the multivariate analyses. Among other discriminant lipids, detected by at 
least two methods of analysis, we found TG (16:1/18:1/18:2), with lower levels in cases of ALS. According to 
univariate analysis alone, other PCs were significantly higher in ALS (Supplementary Figure S1). Certain discri-
minant lipids were also found in the brain of mice, i.e. PC(36:2), PC(36:4), PC(40:6), with higher levels in the ALS 
groups than in controls (Table 2). This result confirms the quality of our lipidomic approach to the CSF of ALS 
patients, as well as the pathophysiological relevance of the lipids identified.

Figure 3. Multivariate analysis (OPLS-DA) of CSF lipids from patients with ALS (n = 40) revealed 16 lipids 
involved in survival. (A) Score scatter plot. Blue dots: ALS patients with survival > median; green dots: ALS 
patients with survival < median. X-axis and Y-axis represent score vectors summarizing all the variables 
entering the analysis: t1 and to1 (B) Loading scatter plot. Variables near each other are positively correlated; 
variables opposite to each other are negatively correlated. Variables closer to dots corresponding to “higher 
survival” or “lower survival” (i.e. with the largest absolute loading values) are higher in the corresponding 
populations. Lipids from the same family are represented with the same color.
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The lipids offering the best prognostic capacity for ALS were those highlighted by the biosigner analysis, i.e. 
SM(d43:2), TG (16:0/16:0/18:1) and TG(18:0/16:0/18:1), with higher levels of sphingomyelins (SM) and lower 
levels of TG associated with a better evolution of the disease.

The involvement of the cholesterol metabolism in ALS, which has been largely reported in pathophysiologic 
studies of the disease8, including a recent publication describing the modification of non-esterified cholesterol 
in the CSF of ALS patients9, was not found in our work. However, our analytical method only detected esterified 
cholesterol, whereas the non-esterified form that is predominant in the brain10, was not measured in our study.

The important role of ceramides and glucosylceramides in ALS signatures. Our analysis revealed 
that some sphingolipids, including SM and glucosylceramides (CerG1), were discriminant between ALS patients 
and controls.

The biosigner algorithm identified SM(d43:2) as one of the three discriminating metabolites in the models for 
predicting the diagnosis and evolution of ALS, stressing the crucial role of the glycosphingolipid pathway in the 
pathogenesis of the disease. Overall, our results revealing higher levels of SM and CerG1 in the CSF of ALS patients 
are consistent with those of another study that reported higher levels of ceramides and glucosylceramides in the 
spinal cord of ALS patients with an associated increase of gluco-cerebrosidase activity11. Importantly, the authors 
suggested that the higher level of glucosylceramide observed was not related to its synthesis but to the decreased 
expression of the palmitoyltransferase long-chain subunit 2 in ALS motor neurons12. It should be noted that cer-
amides have been associated not only with apoptosis in response to cytotoxic humoral factors13, but also with a 
self-reparative process after injury14, and with the synthesis of neurotrophic gangliosides15. It has also been suggested 
that the accumulation of ceramide-derived agents may be protective by reducing ceramide synthesis and increasing 
the entry of ceramides into the CerG1 pathway, thus limiting the direct toxic effect on motor neurons11. Higher 
GlcCer and downstream glycosphingolipid levels have been also reported in the muscle of ALS model mice as well as 
in other mice after muscle injury, and GlcCer, Cer and gangliosides were also increased in spinal cord of ALS model 
mice16. These authors also observed the associated upregulation of glucosylceramide synthase in the muscle of ALS 
model mice and in the CSF of ALS patients. A recent study reports the analysis of some lipids in the CSF of 14 ALS 
patients (recruited in our ALS center but different from the patients included in this present study) confirming the 
increased levels of GlcCer and GM1a compared to controls, as in our present study17.

Extensive remodeling of phosphatidylcholines and plasmalogens in ALS. Glycerophospholipids 
account for more than 50% of the lipid content of membranes, and 45% of the total dry weight of the brain18. The 
discrimination between ALS patients and controls, as well as that between ALS model mice and controls, high-
lights the essential involvement of phosphatidylcholines, especially of PC(36:4) at higher levels in cases of ALS 
(Table 2). The models predicting the evolution of ALS also revealed the involvement of 7 PCs as shown in Fig. 3. 
Importantly, PC(32:1p), which is positively associated with ALS and the deleterious progression of the disease, 
may therefore play a key role in the disease.

Figure 4. Venn diagram constructed for the lipids highlighted by multivariate analysis (OPLS-DA using 
SIMCA®) to discriminate between ALS patients according to the modification of ALSFRS-r score, FVC, BMI 
over one year, and survival. The lipid marked with an asterisk (*), i.e. SM(d43:2), was also highlighted by the 
biosigner analysis, the results of which are shown at the bottom of the figure. The volcano plot shows the lipids 
with significantly higher levels in cases of ALS, i.e. PC(40:6p) and MePC(Monoetherphosphatidylcholine)
(37:2), associated with better survival; SM(d43:2), associated with a lesser decline of the ALSFRS-r score; and 
SM(d36:0), associated a lesser decline of the FVC. The volcano plot also shows the lipids with significantly 
lower levels in cases of ALS, i.e. TG(16:0/16:0/18:1) and TG(18:0/16:0/18:1), associated with better survival; and 
SM(d40:2), SM(d39:1), PC(37:3p) and PC(32:1p), associated with a lesser decline of the BMI.
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A greater concentration of PCs, especially that of PC(16:0/20:4) (i.e. PC(36:4)), may induce a higher met-
abolic activity of phospholipase A2 (PLA2), resulting in an increased production of lipid mediators, such as 
eicosanoids that promote inflammation and are generally considered to play a role in the pathophysiology of 
ALS19. Similarly, the release of arachidonic acid (C20:4) and the subsequent generation and accumulation of 
prostaglandins and lipid peroxides may lead to neurodegenerative processes as observed in Alzheimer’s disease20. 
The identification of the fatty acid chain 22:6 in the discriminant PCs of this model may correspond to the doco-
sahexaenoic acid (DHA) involved in the maintenance of neuronal membranes, signal transduction, neuronal 
differentiation, neurogenesis, protection against synaptic loss, or spinal cord injury21. Whereas some authors 
have reported an association between the loss of motor neurons in the spinal cord in ALS model mice and the 
reduction in PC (diacyl-16:0/22:6)22, others have highlighted the significant increase of DHA in the frontal cortex 
of ALS patients23.

Plasmalogens (PCs designated as “e”) that represent 22% of the PL in the brain24 were highlighted in our 
study. Plasmalogens, which terminate lipid oxidation and protect ROS-vulnerable myelin, are considered to act as 
endogenous antioxidants25,26. In the context of ALS, plasmalogens may prevent the oxidation of polyunsaturated 
fatty acids or other lipids.

Triglycerides with long-chain fatty acids are linked to survival in ALS. Our model discriminating ALS 
patients from controls highlighted triglycerides (TG): TG(16:1/18:1/18:2), which tend to be decreased in ALS. This 
observation is consistent with the higher clearance of peripheral triglycerides reported in ALS3, and the reduced 
triglyceride levels in post mortem human spinal cord tissue from ALS patients27. Two TGs were also identified by bio-
signer analysis predicting disease evolution, with lower levels in patients with a better prognosis. These findings may 
be related to the role of long-chain FAs in the formation of cytotoxic aggregates of ALS-linked SOD128. The analysis 
of the structures common to the discriminating lipids observed in ALS patients and ALS model mice revealed 
lysoPCs containing the FAs: C16:0, C18:0, C18:1 (Table 2), as is consistent with the involvement of long-chain FAs.

Materials and Methods
Patients. CSF samples were obtained using the same procedure from 40 patients with sporadic ALS at the 
time of diagnosis and from 45 gender- and age-matched controls. The control group included 45 subjects with the 
following diagnoses: peripheral neuropathy (n = 12) such as chronic inflammatory demyelinating polyradiculo-
neuropathy (CIDP) (n = 5), cerebellar ataxia (n = 2), spastic gait paraplegia (n = 3), severe headache (n = 3), mul-
tiple sclerosis (n = 3), myasthenia (n = 2), radiculitis (n = 2), walking difficulty (n = 2), the post-polio syndrome 
(n = 1), myoclonus (n = 1), normal pressure hydrocephalus (n = 1), stroke (n = 1), Parkinson’s disease (n = 1), 
post-radiotherapy lower motor neuron deficiency (n = 1), facial paralysis (n = 1), syringomyelus (n = 1), myo-
pathy (n = 2), the stiff leg syndrome (n = 1), the CANOMAD syndrome (chronic ataxic neuropathy, ophthalmo-
plegia, monoclonal IgM protein, cold agglutinins and disialosyl antibodies) (n = 1), multifocal motor neuropathy 
(MMN) with conduction block (n = 2), paresthesia (n = 1), and progressive supranuclear palsy (n = 1).

The ALS patients satisfied the criteria of a ‘definite’ or ‘probable’ diagnosis defined by the El Escorial work-
shop29. All the participants in this current study gave their informed consent for the use of their CSF for research 
on biomarkers. The local Ethics Committee of the Centre for Human Research approved the study and the con-
sent process (2016–060). All experiments were performed in accordance with the relevant guidelines and regula-
tions. Information on diagnosis, gender, current age, site of onset, diagnostic delay, and age at onset, was obtained 
for each patient. We also collected the parameters of disease progression, such as the revised ALS functional 
rating scale (ALSFRS-r), the forced vital capacity (FVC), and the body mass index (BMI), at the time of diagnosis 
and again one year later. Moreover, the duration of ALS was defined as the time between the appearance of the 
first symptoms of the disease and death.

Lipidomics profile. After the extraction of lipids, lipidomics profiles were performed by high-resolution 
mass spectrometry (HRMS). LipidSearch™ and TraceFinder™ version 3.3 software (Thermo Fisher Scientific) 
were used for the characterization of lipid species.

Briefly, CSF samples were thawed, centrifuged at 3000 g for 5 minutes, aliquoted and conserved at −80 °C 
prior to the analytical procedure. Lipids were extracted following the method previously reported. Lipid extrac-
tion was based on two consecutive treatments with chloroform-methanol (1 mL, v-v: 10-1 then 2-1) on 100 µL of 
CSF samples mixed with ammonium bicarbonate (170 µL, 155 µM), and 10 µL of an internal standards solution 
(14:0-16:1-14:0 D5 TG, 16:0 PC-d62, 16:0-d31 Ceramide, 16:0-d31 SM, 16:0-d31-18:1 PE, 16:0-d31-18:1 PI at 
10 µg/mL in methanol). The organic phase was collected, evaporated to dryness, and reconstituted with 250 µL of 
a solution of acetonitrile/isopropanol/water (65/35/5); 10 µL of this preparation were injected for mass spectrom-
etry analysis. Details concerning the mass spectrometry and the validation of the analytical method are given in 
Supplementary Methods.

Methodology of data analyses. Univariate and multivariate analyses (using training and test sets) were 
used to compare the lipidomic profiles of ALS patients with those of controls and to assess different models for 
predicting disease progression within the ALS group. The four parameters used as markers of disease progression 
were the modification of the ALSFRS-r score, the BMI, the FVC over a one-year period, and the duration of sur-
vival. Venn diagrams were drawn (Venny, version 2.1) to reveal the lipids most significantly associated with the 
clinical status or the criteria of disease progression in ALS patients.

Statistical analysis. Supervised multivariate analysis. Lipidomic data were analyzed using a multivariate 
approach with SIMCA® version 13.0 (Umetrics, Umeå, Sweden). Orthogonal partial least-squares discriminant 
analysis (OPLS-DA) or PLS-DA was performed according the type of variables considered. OPLS-DA evaluated 
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variations in peaks areas between groups: variation in the measured data was partitioned into 2 blocks by the pro-
gram, one containing variations that correlated with the class identifier and the other containing variations that 
were orthogonal to the first block and thus did not contribute to discrimination between groups. The OPLS-DA 
or PLS-DA models were cross-validated by withholding one-seventh of the samples in seven simulations (each 
sample being omitted once) to avoid over-fitting. VIP values represent the importance of this variable for the 
OPLS-DA or PLS-DA models, and the loadings characterize the relation between the Y and X variables (lipids). 
We generated a loading plot that summarizes the most important variables in the separation (p(corr)[1] < 0 indi-
cates the variables associated with one group, and p(corr)[1] > 0 indicates the variables associated with the second 
group). The quality of the models was described by the cumulative modeled variation in the X matrix R2X(cum), 
the cumulative modeled variation in the Y matrix R2Y(cum), and the cross validated predictive ability Q2(cum) 
values. Models were rejected if there was a complete overlap of Q2 distributions (Q2(cum) < 0) or low classification 
rates (Q2(cum) < 0.05 and eigenvalues > 2). We considered a model robust if Q2 > 40% and R2 > 50%, but these 
cut-off values need to be confirmed under biological conditions. CV-ANOVA (ANalysis Of Variance) used for 
testing cross-validated predictive residuals, is also a diagnostic tool for assessing the reliability of the models. The 
set of multiple models resulting from the cross validation was used to calculate jack-knife uncertainty measures. 
We fixed the maximum number of iterations at 200 to ensure convergence of the OPLS algorithm.

According to these parameters, we optimized the model by excluding variables so as to obtain the most rele-
vant model from the minimal number of variables. Thus, we retained the most discriminant lipids based on the 
VIP with the loading values scaled as correlation coefficients (pcorr).

Building a predictive model by combined machine-learning approaches. We used the biosigner algorithm in R30 to 
assess a new strategy for discovering significant molecular signatures. Biosigner analysis, operating on the same 
principles as SIMCA®, is complementary and more robust since it is largely more restrictive. This data-mining 
algorithm is independently wrapped around different machine-learning approaches, i.e. PLS-DA, random forest 
(RF), and support vector machines (SVM). This biosigner strategy aims at finding the smallest pattern that pro-
vides a significant model after the combination of sampling (bootstrap), ranking of the VIP, and the evaluation of 
performance after permutation within the test set and the half-interval search. The final training of the model is 
based on all samples from the dataset and the selected features. First, the dataset is split into training and testing 
datasets (by boot-strapping and controlling class proportions). Then, a model is built on the training set, and 
the performance of prediction is evaluated on the test set. The features are thus rank-based according to their 
contribution to the model. A feature is considered relevant if the random permutation of the intensities of the 
other features in the test subsets does not significantly alter the accuracy. Finally, the dataset is restricted to the 
selected features and the steps detailed above are repeated until the stability of the selected features is obtained. 
The algorithm returns the tier of each feature for the different classifiers: (1) Tier S corresponds to the lipids 
that are significant in all steps of the selection; (2) Tier A is significant in all but the last selection; and (3) Tier E 
regroups all previous rounds of selection.

Importantly, this robust strategy includes bootstraps generating multiple training and test sets, thus providing 
an independent validation. We have modified the parameters of the biosigner algorithm to modulate the size of 
the training and test sets, the number of bootstraps, and to determine the predictive performance of the models 
on the independent test set as follows: mean sensitivity, specificity, positive predictive value (PPV), and negative 
predictive value (NPV). Thus, the performance of the models was determined on test sets independent of the 
cohorts used to create the models.

We used this algorithm to predict the clinical status and criteria of disease progression in ALS. To predict sur-
vival, we used the biosigner algorithm on the combination of clinical variables statistically significant after survival 
analysis and the lipid profile. We used the JMP statistical software, version 7.0.2 (SAS Institute, Cary, NC, USA) 
to perform survival analysis with the clinical data.

Univariate analysis. The univariate analysis of lipid levels was based on fold-change values and the threshold of 
significance with the volcano plot and the non-parametric Wilcoxon test using Metaboanalyst, version 2.1. We 
also used the Benjamini-Hochberg correction to highlight the most discriminant lipids after the non-parametric 
test.

Comparison of the findings in ALS patients and ALS model mice. Metabolomic profiles of the 
cerebral cortex of SOD1 G93A (mSOD1) transgenic mice (n = 11) and wild-type (WT) littermates (n = 17) 
were recently analyzed by our team using a targeted quantitative metabolomics approach31. We have now 
re-analyzed the raw data of the lipids reported in this work using the same statistical analysis as performed on 
human samples.

Conclusion
Our lipidomics study, the first of its kind to our knowledge, comparing the lipid profiles of ALS patients to those 
of controls with various other neurological diseases, revealed specific CSF signatures of ALS, indicative of the 
extensive remodeling of the lipidome in the disease. The statistical power of our modeling approach revealed the 
most significant CSF lipids discriminating between ALS patients and controls. These results were consistent with 
those obtained in the brain cortex of ALS model mice. Some of the discriminant lipids proved to be good predic-
tors of the decline of ALSFRS-r. The precise mechanisms underlying the remodeling of the lipidome remain to 
be elucidated. However, our findings suggest that further work ALS lipid exploration should focus on three main 
discriminant classes of lipids, i.e. phosphatidycholines, glycosphingolipids, and long-chain FAs.
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