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Beyond the Michaelis-Menten 
equation: Accurate and efficient 
estimation of enzyme kinetic 
parameters
Boseung Choi1, Grzegorz A. Rempala2 & Jae Kyoung Kim   3

Examining enzyme kinetics is critical for understanding cellular systems and for using enzymes in 
industry. The Michaelis-Menten equation has been widely used for over a century to estimate the 
enzyme kinetic parameters from reaction progress curves of substrates, which is known as the progress 
curve assay. However, this canonical approach works in limited conditions, such as when there is a 
large excess of substrate over enzyme. Even when this condition is satisfied, the identifiability of 
parameters is not always guaranteed, and often not verifiable in practice. To overcome such limitations 
of the canonical approach for the progress curve assay, here we propose a Bayesian approach based 
on an equation derived with the total quasi-steady-state approximation. In contrast to the canonical 
approach, estimates obtained with this proposed approach exhibit little bias for any combination 
of enzyme and substrate concentrations. Importantly, unlike the canonical approach, an optimal 
experiment to identify parameters with certainty can be easily designed without any prior information. 
Indeed, with this proposed design, the kinetic parameters of diverse enzymes with disparate catalytic 
efficiencies, such as chymotrypsin, fumarase, and urease, can be accurately and precisely estimated 
from a minimal amount of timecourse data. A publicly accessible computational package performing 
such accurate and efficient Bayesian inference for enzyme kinetics is provided.

Because enzymes can modulate biochemical reaction rates by selectively catalyzing specific substrates1, they 
play fundamental roles in metabolism, signal transduction, and cell regulation, and their malfunction can 
cause serious diseases2,3. Furthermore, enzymes have been used as extremely specific catalysts in diverse indus-
trial fields such as drug development, biofuel production, and food processing4. A canonical approach used to 
understand enzyme kinetics for a century has been based on the Michaelis-Menten equation (MM equation), 
which was developed by Michaelis and Menten5 and then was more rigorously derived by Briggs and Haldane6 
using the standard quasi-steady-state approximation (sQSSA)7. The equation describes the dependence of 
enzyme-catalyzed reaction rates on the concentration of substrate by using two parameters, the catalytic constant, 
kcat and the Michaelis-Menten constant, KM (see below for details). The kcat determines the maximum rate of the 
reaction at saturating substrate concentrations, Vmax = kcatET, where ET is total enzyme concentration, and the KM 
is the substrate concentration at which the reaction rate is half of Vmax.

There are two major assays to estimate kcat and KM from a measured accumulation of product over time (i.e. 
progress curve): the initial velocity assay (initial rate analysis) and the reaction progress curve assay (progress 
curve analysis)8–12. For the initial velocity assay, initial rates of the reaction are measured for a range of substrate 
concentrations. Then, by using a linear transform of these data, such as Lineweaver-Burk plots, the two param-
eters can be easily estimated without use of any computational tools8,9. Recent advances in computational tools 
have led to an alternative approach: the reaction progress curve assay. In this assay, the entire timecourse (i.e. 
progress curve) is fitted to the solution of a differential equation or integrated rate equation, and thus the data 
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is used more efficiently than in the initial velocity assay10,11,13. Albeit more technically challenging, the progress 
curve assay requires less data to estimate parameters than the initial velocity assay does.

Since both assays are based on the MM equation, they should be performed only when the MM equation is 
valid, that is, when the enzyme concentration is a much lower than the sum of the substrate concentration and 
the KM

7,14 (see below for more details). Because the value of KM is usually not known a priori, to ensure the valid-
ity of the MM equation, in vitro experiments are typically performed with a much lower enzyme concentration 
than substrate concentration15. However, such conditions cannot be guaranteed in vivo, because endogenous 
enzyme concentrations are much higher than those used in a typical in vitro assay16,17. It is therefore risky to use 
the MM equation to analyze in vivo data and to predict in vivo enzyme activity by using parameters estimated 
from an in vitro assay15,18. Furthermore, even when the MM equation is valid, precise estimation is not guaran-
teed, because of the highly correlated structure and unidentifiability of the parameters19–23. That is, even though 
estimated parameters can fit the data accurately, the estimates can differ greatly from the actual values of kcat and 
KM. Because of the identifiability issue, experimental designs to infer the maximum possible information about 
the parameters have been investigated12,13,20–24. For instance, to ensure that the parameters can be identified from 
the initial velocity assay, the initial concentration of substrate needs to be increased from a low level to a higher 
level until the reaction velocity is saturated. For the saturation, generally the initial substrate concentration needs 
to be larger than 10 KM, but often such high concentrations cannot be achieved24. For the progress curve assay, 
the initial substrate concentration is recommended to be at a similar level to KM

23,25. Note that both assays require 
prior knowledge of KM, which gives rise to the conundrum that, in order to estimate KM, the approximate value 
of KM needs to be known.

To overcome such limits on the inference using the model based on the MM equation, which is referred to 
as the sQ (standard QSSA) model, here we propose an alternative approach. In our approach, we use a different 
approximate model that is derived with the total QSSA and is referred to as the tQ (total QSSA) model26–29. By 
applying the Bayesian inference based on either the sQ or the tQ model to the product progress curve, we found 
that the estimates obtained with the sQ model were considerably biased when the enzyme concentration was not 
low. On the other hand, the estimates obtained with the tQ model were not biased for any combination of enzyme 
and substrate concentrations. Thus, with the tQ model, the experimental data from various conditions can be 
pooled without any restrictions to improve the accuracy and precision of the estimation. For instance, when two 
sets of timecourse data obtained under low and high enzyme concentrations are used together, the tQ model, but 
not the sQ model, leads to accurate and precise estimation. Another advantage of our approach is that, by ana-
lyzing the scatter plots of current estimates, the next optimal experiment to ensure the parameter identifiability 
can be easily designed without requiring any prior knowledge of the kcat and KM values. The proposed optimized 
design yields accurate and precise estimation from a minimal amount of data simulated based on the kinetics of 
various enzymes: chymotrypsin, fumarase and urease, which have disparate catalytic efficiencies (kcat/KM). We 
provide a publicly accessible computational package that performs the Bayesian inference based on the tQ model, 
thus leading to accurate and efficient estimation of enzyme kinetics.

Results
Two types of models describing enzyme kinetics: The sQ and tQ models.  A fundamental enzyme 
reaction consists of a single enzyme and a single substrate, where the free enzyme (E) reversibly binds with the 
substrate (S) to form the complex (C), and the complex irreversibly dissociates into the product (P) and the free 
enzyme:

+ → +E S C E P,
k

k k

b

f cat


where the total enzyme concentration (ET ≡ C + E) and the total substrate and product concentration 
(ST ≡ S + C + P) are conserved. A popular model describing the accumulation of the product over time is based 
on the MM equation, as follows (see Supplementary Method for detailed derivation):
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where KM = (kb + kcat)/kf is the Michaelis-Menten constant and kcat is the catalytic constant. This sQ model derived 
with the standard QSSA has been widely used to estimate the kinetic parameters, KM and kcat from the progress 
curve of the product8–11,23,25. Another model describing the accumulation of the product is derived with the total 
QSSA; it was developed later than the sQ model and thus has received less attention for parameter estimation26–29:

= .
+ + − − + + − − −P k (2)cat

E K S P E K S P E S P( ) 4 ( )
2

T M T T M T T T
2



Although this tQ model is more complicated than the sQ model, it is accurate over wider ranges than the sQ 
model. Specifically, the sQ model is accurate when
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which requires a low enzyme concentration7,14. On the other hand, the tQ model is accurate when
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where K = kb/kf is the dissociation constant27–29. Importantly, this condition is generally valid and thus the tQ 
model, unlike the sQ model, is accurate even when the enzyme is in excess. See14,30 for more details.

 Next, we investigated the accuracy of the stochastic simulations performed with both models. Specifically, we 
compared the stochastic simulations using the Gillespie algorithm based on the propensity functions from either 
the original full model (described in Table S1), the sQ model (Table S2), or the tQ model (Table S3) for 9 different 
conditions31–36: ET is either lower than, similar to, or higher than KM, and ST is also either lower than, similar to, 
or higher than KM (Fig. 1). The stochastic simulations of the sQ model fail to approximate those of the original 
full model when ET is not low (i.e., ET is lower than neither ST nor KM). On the other hand, stochastic simulations 
using the tQ model are accurate for all conditions (Fig. 1), as is consistent with a recent study showing that sto-
chastic simulations with the sQ and the tQ models are accurate when their deterministic validity conditions hold 
(Eqs (3) and (4))37,38. Taken together, the tQ model is valid for a wider range of conditions than the sQ model is in 
both the deterministic and the stochastic sense.

Estimation with the tQ model is unbiased for any combination of enzyme and substrate con-
centrations.  Because the tQ model is accurate for a wider range of conditions than the sQ model is (Fig. 1), 
we hypothesized that the parameter estimation based on the tQ model is also accurate for more general condi-
tions. To investigate this hypothesis, we first generated 102 noisy progress curves of P from the stochastic simu-
lations of the original full model (Fig. S1). Then, we inferred parameters (kcat and KM) from these simulated data 
sets by applying the Bayesian inference with the likelihood functions based on either the sQ or the tQ model, 
under weakly informative gamma priors (Fig. S2) (see Methods for details). Note that throughout this study, we 
have used the simulated product progress curves (e.g. Fig. S1) because we need to know the true values of param-
eters for the accurate comparison of the estimations based on the sQ model and the tQ model.

We first focused on the estimation of the kcat under the assumption that the value of KM is known. When ET is 
low, so that both the sQ and the tQ models are accurate (Fig. 1 left), posterior samples obtained with both models 
are similar and successfully capture the true value of kcat (Fig. 2a left). The posterior samples obtained with the two 
models are similar because, when ET is low and thus  +E S KT T M, both models (Eqs 1 and 2) are approxi-
mately equivalent as follows:
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Figure 1.  Whereas the sQ model fails to approximate the original full model as ET increases, the tQ model is 
accurate regardless of ET. Stochastic simulations of the original full model (Table S1), the sQ model (Table S2), 
and the tQ model (Table S3) were performed with ST = 0.2, 2, or 80 nM, and ET = 0.2, 2, or 40 nM. Note that 
these concentrations are either lower than, similar to, or higher than KM ≈ 2 nM. Here, the lines and colored 
ranges represent a mean trajectory and fluctuation range (±2σ from the mean) of 104 stochastic simulations.
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where the first approximation comes from the Taylor expansion in terms of − + + −E S P E K S P( )/( ) 1T T T M T  
(see27–29 for details). Therefore, when E S KT T M+  and thus the sQ model is accurate, estimations with the sQ 
and the tQ models should be similar. On the other hand, when ET is high, they show clear differences (Fig. 2a 
right): the posterior samples obtained with the sQ model show large errors, while those obtained with the tQ 
model accurately capture the true value of kcat.

Similar results are also observed in the box plots of posterior means and posterior coefficient of variations 
(CVs) (Fig. S3a,b). Whereas posterior means obtained with the sQ model are biased when ET is high, those 
obtained with the tQ model are accurate for all conditions (Fig. S3a). In particular, narrow distributions of pos-
terior means indicate that the estimation of kcat with the tQ model is robust aginst the noise in the data (Fig. S1). 
Furthermore, posterior CVs are much smaller than prior CVs (Fig. S3b), indicating precise estimation of kcat with 
the tQ model.

Next, KM was estimated under the assumption that the value of kcat is known (Fig. 2b). Posterior samples of the 
KM obtained with the sQ model again show errors that grow with increasing ET. Note that the estimates of the KM 
are biased upward, which implies that using the posterior estimates of KM to validate the MM equation 
( K EM T) can be misleading. On the other hand, the estimates of KM obtained with the tQ model are little biased 
for all conditions. However, unlike the narrow posterior distributions of kcat (Fig. 2a), those of KM obtained with 
the tQ model become wider; so precision decreases as ET or ST increases (Fig. 2b). These patterns are also observed 
in the box plots of posterior means and posterior CVs (Fig. S3c,d). The identifiability problem arises because, 
when E KT M  or S KT M  and thus E S KT T M+ , the KM is negligible in the tQ model (Eq. 2), as follows:

≈ .
+ + − − + + − − − + − − + − − −

(6)
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2
( ) 4 ( )

2
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Specifically, when KM is too low, the value of KM has little effect on the dynamics of the tQ model and thus the KM 
is structurally unidentifiable. Taken together, the estimations of KM with both the sQ and the tQ models are not 
satisfactory, although for different reasons: estimations with the sQ model can be biased and those with the tQ 
model can be structurally unidentifiable (Fig. 2b). Similar patterns were also observed when a more informative 
prior was given (Fig. S4). In particular, even with the informative prior, estimates obtained with the sQ model still 
show considerable error as ET increases.

Simultaneous estimation of kcat and KM suffers from the lack of identifiability.  Next, we consid-
ered simultaneous estimation of two parameters, kcat and KM, which is the typical goal of enzyme kinetics. For the 
same gamma priors used in the single-parameter estimation (Fig. 2), the distributions of posterior samples 
obtained with both models became wider overall (Fig. 3). To find the reason for such imprecise estimation, we 
analysed the scatter plots of posterior kcat and KM samples (Fig. 4). When S KT M  (Fig. 4a–c), the posterior 
samples of kcat and KM obtained with the sQ model exhibited a strong correlation, because the dynamics of the sQ 
model depend only on the ratio kcat/KM, as seen in the following approximation:

−
+ −
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Figure 2.  The estimation of a single parameter (kcat or KM) with either the sQ or the tQ model. For each 
condition (ST = 0.2, 2, or 80 nM, and ET = 0.2, 2, or 40 nM), 105 posterior samples of either kcat (a) or KM (b) were 
obtained by applying the Bayesian inference to 102 noisy data sets (Fig. S1) (see Methods for details). When 
the kcat is sampled, the KM is fixed at its true value (a) and vice versa (b). Here, green triangles indicate the true 
values of the parameters. Whereas the estimates of kcat and KM obtained with the sQ model are biased as ET 
increases, those obtained with the tQ model have negligible bias regardless of conditions (See Fig. S3 for box 
plots of estimates). As ET or ST increases, the posterior variance of KM increases when the tQ model is used.
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where K S S PM T T≥ −  is used. On the other hand, when S KT M  (Fig. 4g–i), the scatter plot of the sQ 
model becomes horizontal, indicating the structure unidentifiability of the KM. Indeed, the value of KM has nearly 
no effect on the dynamics of the sQ model, as seen in the following approximation:

k E S P
K S P

k E( ) ,cat
T T

M T
cat T

−
+ −

≈

where KM + ST ≈ ST is used as S KT M. Such lack of parameter identifiability when S KT M or S KT M  is 
consistent with previous studies, which recommend using ST ≈ KM for more precise estimation22,23. However, even 

Figure 3.  Simultaneous estimation of two parameters (kcat and KM) with either the sQ or the tQ model. From 
the same 102 data sets (Fig. S1) used in the single-parameter estimation (Fig. 2), 105 posterior samples of the kcat 
(a) and the KM (b) were obtained together. Although the same prior is given, the posterior distributions become 
wider than the single-parameter estimation (Fig. 2). Here, green triangles indicate the true values of kcat or KM.

Figure 4.  The scatter plots of posterior samples obtained with the two-parameter estimation (Fig. 3). The 
scatter plots imply two types of structure unidentifiability: strong correlation between kcat and KM, and 
unidentifiability of KM, which is represented as a horizontal plot. Positively correlated scatter plots of the tQ 
model are changed to horizontal ones when the sampled KM is much lower than ST + ET (dashed gray lines). 
Here, green triangles represent the true values of parameters.
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when ST ≈ KM, estimates are still imprecise (Fig. 3a and b middle). Furthermore, as ET increases, the estimates 
obtained with the sQ model are biased (Fig. 3) like in the single-parameter estimation (Fig. 2). Based on this 
analysis it appears that the simultaneous estimation of kcat and KM with the sQ model is challenging because of 
both identifiability and bias problems.

When E KT M or S KT M , the KM has a negligible effect on the dynamics of the tQ model (Eq. 6), and thus 
only kcat was identifiable in the single-parameter estimation (Fig. 2a and b right or bottom). Similarly, when both 
kcat and KM are inferred simultaneously with the tQ model, estimation of only kcat is accurate and precise  
(Fig. 3a and b right or bottom), as is shown by the horizontal scatter plots along the true value of kcat (Fig. 4c,f,g–i). 
In other cases (when neither E KT M  nor S KT M ), posterior variance of both parameters dramatically 
increases compared to the single-parameter estimation (Figs 2 and 3 left and top). Such imprecise estimation 
stems from two sources, according to the scatter plots (Fig. 4a,b,d,e). When kcat and KM decrease together, the 
behavior of the tQ model changes little as the SQ model (Eq. 5), which leads to the strong correlation between 
posterior samples of kcat and KM. As the estimates of KM keep decreasing together with those of kcat, so that they 
become much less than ET + ST (dashed vertical line of Fig. 4), the tQ model no longer depends on the value of 
KM, as shown in Eq. 6, and thus the scatter plots become horizontal.

Combined data from different experiments allow accurate and precise estimation with the tQ 
model.  As shown above, the estimation of both kcat and KM using a single progress curve suffers from con-
siderable bias and lack of identifiability (Figs 3 and 4), which is consistent with previous studies reporting that a 
progress curve obtained from a single experiment is not enough to identify both parameters simultaneously19. 
Thus, here, we investigate whether using multiple timecourse data sets obtained under different experimental 
conditions can improve the estimation.

In typical in vitro assays, progress curves are measured with either a fixed ST and varied ET or a fixed ET and 
varied ST

8–11,39. We first consider the case when progress curves are measured with a fixed ST and a varied ET. 
Specifically, progress curves from both low and high ET are used to estimate parameters for a fixed ST at different 
levels (Fig. S1 top and bottom). In this case, posterior samples obtained with the sQ model show considerable 
errors as the data from high ET is used (Figs 5a and S5). On the other hand, the posterior samples obtained with 
the tQ model accurately capture the true values of both kcat and KM with low variance (Figs 5a and S5). Such 

Figure 5.  When data obtained under low ET and high ET are used together, the accuracy and precision of 
estimaties obtained with the tQ model, but not with the sQ model, are enhanced. (a) Posterior samples are 
inferred using data sets from ET = 0.2 nM (Fig. S1 top) and ET = 40 nM (Fig. S1 bottom) together for either 
ST = 0.2, 2, or 80 nM. The posterior variance of the tQ model dramatically decreases to the level of the single-
parameter estimation (Fig. 2). However, the estimates of the sQ model show considerable bias. Here, green 
triangles represent the true values of kcat or KM. (b) The scatter plots of the posterior samples. Here green 
triangles, blue circles, and red squares represent true values, posterior means of the sQ model, and those of the 
tQ model, respectively.
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improvement stems from the fact that data obtained under the low and high ET provide different types of infor-
mation for parameter estimation. Specifically, from the high ET data, although the KM is not identifiable, the kcat 
can be accurately estimated with the tQ model (Fig. 4c,f,i). Such accurate estimation of kcat from the high ET data 
can prevent the correlation between the kcat and the KM when they are estimated from the low ET data (Fig. 4a,d). 
Indeed, the narrow scatter plots of the tQ model (Fig. 5b left and middle) are the intersection of two scatter plots, 
a horizontal one obtained with the high ET data (Fig. 4c,f) and a nonhorizontal one obtained with the low ET 
data (Fig. 4a,d). However, when ST is high, the scatter plot from the low ET also becomes horizontal (Fig. 4c), and 
thus the synergistic effect of using combined data decreases (Fig. 5a,b right). Taken together, the tQ model can 
accurately estimate both parameters from the combination of low ET and high ET data when ST is not much larger 
than KM. Note that such low ST is preferred for in vitro experiments24,39–41 and is the case for most physiological 
conditions24.

Next, we consider the case when progress curves are measured with a fixed ET and a varied ST. Specifically, 
the combination of two progress curves from low and high ST is used to infer parameters for a fixed ET at differ-
ent levels (Fig. S1 left and right). When ET is low, and thus the sQ and the tQ models behave similarly (Eq. 5), 
posterior samples obtained with both models accurately capture the true values of kcat and KM (Figs 6a left and 
S6). Again, the narrow scatter plot (Fig. 6b left) is obtained as the intersection of a nonhorizontal scatter plot of 
low ST (Fig. 4a) and a horizontal scatter plot of high ST (Fig. 4g). However, as ET increases, and thus the sQ model 
becomes less accurate, those obtained with the sQ model are biased, as expected (Figs 6a right and S6). Whereas 
such biases are not observed in those obtained with the tQ model, the precision of KM estimates decreases as ET 
increases, as in the single-parameter estimation (Fig. 2 and Eq. 6).

Optimal design of experiments for accurate and efficient estimation with the tQ model.  When 
a progress curve obtained from a single experiment is used, the posterior scatter plots of the tQ model can be 
categorized as a correlated type (Fig. 4a,b,d,e) and a horizontal type (Fig. 4c,f,g–i). The intersections of these two 
different types of scatter plots tend to be narrowly distributed near the true value (Figs 5b and 6b). Thus, combin-
ing two such data sets allows accurate estimation of both kcat and KM (Figs 5a and 6a). Specifically, a progress 
curve measured under E KT M  and S KT M (Fig. 4a,b,d,e) and one measured under E KT M or S KT M  
(Fig. 4c,f,g–i) provide different types of information for parameter estimation; so using both data sets leads to 

Figure 6.  Estimation using the data obtained under low ST and high ST together. (a) Posterior samples are 
inferred using data sets from ST = 0.2 nM (Fig. S1 left) and ST = 80 nM (Fig. S1 right) together for either ET = 0.2, 
2, or 40 nM. When ET is low, both the sQ and the tQ models allow accurate and precise estimation. As ET 
increases, the estimates obtained with the sQ model become inaccurate, and the estimates of KM obtained with 
the tQ model become less precise, similar to the single-parameter estimation (Fig. 2). Here, green triangles 
represent the true values of kcat or KM. (b) The scatter plots of the posterior samples. Here green triangles, blue 
circles, and red squares represent true values, posterior means of the sQ model, and those of the tQ model, 
respectively.
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successful estimation. However, it is hard to compare the values of ST, ET, and KM in practice, because the value of 
KM is usually unknown a priori. This problem can be easily resolved by using the scatter plot. That is, if the poste-
rior scatter plot obtained from the first experiment is horizontal, then both ET and ST should be decreased for the 
next experiment, so that the nonhorizontal scatter plot can be obtained (Fig. 7a). On the other hand, if the scatter 
plot from the first experiment shows a strong correlation between KM and kcat, then either ST or ET should be 
increased in the next experiment (Fig. 7b). Basically, without any prior information of the value of KM and kcat, the 
shape of the scatter plots of the current estimates determines the next optimal experimental design, which ensures 
accurate and precise estimation. However, this approach cannot be used with the sQ model, because estimation 
with the sQ model can be biased, depending on the relationship between ET or ST and KM, which is unknown a 
priori. That is, unlike the tQ model, precise estimation does not always guarantee accurate estimation with the sQ 
model, as seen above (e.g. Fig. 5a right).

We test whether the proposed approach with the tQ model can accurately estimate kcat and KM for cataly-
sis of the N-acetylglycine ethyl ester, fumarate, and urea by the enzymes the chymotrypsin, urease, and fuma-
rase, respectively (Fig. 7c). These three enzymes were chosen because they have disparate catalytic efficiencies 
(kcat/KM)1: 0.12, 4 · 105, and 1.6 · 108 s−1 M−1, respectively. For each enzyme, 102 noisy timecourse data sets were gen-
erated using stochastic simulations based on known enzyme kinetic parameters1. When progress curves obtained 
with low ET and low ST are used, as expected, nonhorizontal scatter plots of posterior samples were obtained 
for all three enzymes (Fig. 7c). This indicates that either ET or ST should be increased in the next experiment to 
obtain a horizontal scatter plot. Indeed, when a progress curve with a 100-fold increase of ET was used, hori-
zontal scatter plots were obtained for all enzymes (Fig. 7c). Therefore, when these two progress curves are used 
together, both kcat and KM can be accurately estimated (Fig. 7c red dots). These results support that such two-step 
optimized experimental design (Fig. 7a,b) to get two different types of scatter plots allows accurate and effi-
cient estimation of enzyme kinetics with the tQ model. The computational package performing such estimation  
is provided (see Method for the details). 

Discussion
The standard approach for estimating enzyme kinetic parameters even today continues to be based on the 
100-year old MM equation (Eq. 1)5,6. However, when enzyme concentration is high, this approach can lead to 
biased estimation (Fig. 2). Even when enzyme concentration is relatively low, it may not be possible to iden-
tify kinetic parameters (Figs 3 and 4). To overcome the limitations of the canonical approach, we proposed an 

Figure 7.  The optimal experimental design for accurate and precise estimation with the tQ model. (a) When 
the scatter plot of posterior samples from the first experiment is horizontal, ET and ST need to be decreased 
to obtain the nonhorizontal scatter plot in the next experiment. Then, using the combination of the two 
experiments leads to accurate and precise estimation (red scatter plots). (b) When the scatter plot from the 
first experiment is nonhorizontal, ET or ST need to be increased in the next experiment to obtain a horizontal 
scatter plot. (c) Inference with a single progress curve from the low ET (0.1 KM) and the high ET (10 KM) leads to 
nonhorizontal and horizontal scatter plots, respectively, for chymotrypsin, urease, and fumarase (gray scatter 
plots). When both data sets were used together, accurate estimates were obtained for all enzymes (red scatter 
plots). Here, low ST (0.1 KM) is used. Here, green triangles represent the true values of the parameters.
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estimation method based on an alternative to the MM equation: the tQ model (Eq. 2), which is derived with 
the total QSSA26–29. Because the estimation procedure with the tQ model is not biased regardless of enzyme or 
substrate concentrations (Fig. 2), more accurate and precise estimations can be made when pooled data from 
different experimental conditions are used, unlike the canonical approach (Figs 5 and 6). It appears thus that the 
tQ model is especially appropriate for creating a consistent Bayesian inferential framework, which becomes more 
accurate as more data is used.

The canonical enzyme kinetic assay based on the MM equation generally requires a large excess of substrate 
over enzyme42. However, such conditions impose experimental limitations and cannot be always guaranteed and 
verified15. For instance, it is hard to generate a high concentration of barely soluble substrate24, and a low con-
centration of substrate is required for sensitive kinetic analysis, e.g., in the case of QD-FRET-based probes39–41. 
Importantly, to analyze in vivo enzyme kinetics, where enzyme concentration is often high16–18, our approach, but 
not the canonical approach, can be used. For example, one needs to estimate the kinetic parameters underlying 
drug metabolism by CYP enzymes in the liver in order to predict the effects of drugs, as is essential for drug 
development43. Because of dosing requirements for potent drugs, the amount of CYP enzyme can greatly exceed 
the drug amount in the liver44,45. Another large area where our estimation method can be applied is in the devel-
opment of nanobiosensors, which measure in vivo activity of a specific enzyme for precise diagnostics, because 
such enzymes are often in large excess over biosensors46,47.

KinTek Explorer has been widely used to estimate enzyme kinetic parameters from the progress curves48–50. 
This software provides the confidence contours, which reveal the relationships between the estimated parameters. 
This approach recommends using multiple data sets to narrow down the confidence contours and thus improve 
precision of estimates and resolve the unidentifiability issue. Our finding (Fig. 7a,b) can provide the specific type 
of data sets required for the identifiability of kcat and KM, so that the KinTek Explore could perform parameter 
estimation more efficiently for the Michales-Menten type of enzyme reactions.

Since the initial velocity estimation with the MM equation is not accurate when enzyme concentration is high 
(Fig. 1), the standard initial velocity based on the MM equation would also be inaccurate15. On the other hand, 
the tQ model accurately captures the initial velocity for all conditions, and thus the modified initial velocity assay 
based on the tQ model is likely to be accurate over a wider range of conditions. To simplify such estimation proce-
dures, an interesting future study could derive an analogous Lineweaver-Burk plot or the Hanes-Woolf plot8,9,15,42 
for the tQ model.

Even with relatively large noise in the data (Fig. S1), our proposed method leads to accurate estimation (Figs 5, 
6 and 7), indicating its robustness against experimental noise and some minor inaccuracy of the tQ model in 
certain ranges of parameter observed in14,30. Furthermore, if there are departures from simple non-inhibitory 
enzyme kinetics (e.g. inhibition of enzyme by product)51,52, our method can be easily adjusted by modifying the 
tQ model (see53,54 for the tQ model for other enzyme kinetics). Our work can also be used to improve the estima-
tion of the kinetics underlying diverse biological functions, such as gene regulation55,56, cellular rhythms57–59, quo-
rum sensing60,61, signal cascade62,63 and membrane transport64,65, where the MM equation has been widely used.

Methods
Simulated Data.  To obtain timecourse data (Fig. S1) for Bayesian inference, stochastic simulations of the 
original full model (Table S1) were performed with the Gillespie algorithm66. E(0) = ET, S(0) = ST, C(0) = 0, and 
P(0) = 0 are used as initial conditions following the typical in vitro enzyme kinetics protocol.

Description of the Bayesian inference approach.  The Bayesian inference approach is used to estimate 
the catalytic constant kcat and the Michaelis-Menten constant KM, based on the hazard function, with respective 
rates described in Eq. 1 for the sQ model and in Eq. 2 for the tQ model (Fig. S2). The likelihood functions are 
constructed based on an approximation to the underlying Markov model66 as follows.
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where Pi is the scaled number of product molecules observed at time point ti over [0, T] = [t0, tm] and ni = Pi − Pi−1 
is an observed increment of Pi. With these likelihood functions, the usual independent gamma priors67 are 
assigned to kcat and KM in order to get their posterior distributions with the help of the Markov Chain Monte 
Carlo (MCMC) method. Weakly informative gamma priors are used for both kcat and KM: their prior means are 
the same as their true values, and their prior variance is 10 times larger than the prior mean, which covers orders 
of magnitude (e.g. Fig. 2). The estimation of a single parameter, i.e., either kcat or KM is done conditionally on the 
other parameter. For estimating the two parameters simultaneously, the Gibbs sampler method is used. In order 
to draw the sample for KM, we also use the Metropolis-Hastings algorithm within the Gibbs sampler step. See 
Supplementary material for further details.
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Computational code.  The R package that performs the Bayesian inference based on the tQ model is available  
on the CRAN repository (https://cran.r-project.org/web/packages/EKMCMC).
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