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Spatiotemporal modeling and 
prediction of soil heavy metals 
based on spatiotemporal cokriging
Bei Zhang1,2 & Yong Yang1,2

Soil heavy metals exhibit significant spatiotemporal variability and are strongly correlated with other 
soil heavy metals. Thus, other heavy metals can be used to improve the accuracy of predictions when 
performing spatiotemporal predictions of soil heavy metals within a given area. In this study, we 
propose the spatiotemporal cokriging (STCK) method to enable the use of historical sampling points 
and co-variables in the spatial prediction of soil heavy metals. Moreover, experimental spatiotemporal 
(ST) semivariogram and ST cross-semivariogram computational methods, a fitting strategy to the 
ST semivariogram and ST cross-semivariogram models based on the Bilonick model, and the STCK 
interpolation algorithm are introduced; these methods are based on spatiotemporal kriging (STK) and 
cokriging (CK). The data used in this study consist of measurements of soil heavy metals from 2010 to 
2014 in Wuhan City, China. The results show that the behavior of predictions of the concentrations of 
heavy metals in soils is physically more realistic, and the prediction uncertainties are slightly smaller, 
when STCK is used with greater numbers of co-variables and neighboring points.

Soil plays a very important role in the food chain and hence is a key pathway through which humans come into 
contact with most pollutants1. This statement is especially true for heavy metals, which have also been identified 
as co-factors in many diseases2,3. Therefore, there is considerable interest in the best way to monitor soil quality 
to ensure that soil is managed sustainably4. In recent years, an increasing amount of concern has been directed 
toward the spatial distribution of soil contamination5–7. Previous studies have carried out multivariate analyses, 
analyses of various pollutant indices, and geostatistical analyses to evaluate the degree of soil pollution by heavy 
metals using sampling data collected during individual periods. Additionally, some researchers have begun to 
address the concern over the spatiotemporal (ST) variability in soil heavy metals4,8 and have performed statistical 
analyses of data collected during field surveys conducted in different years that were performed to characterize 
the spatial and temporal changes in the concentrations of heavy metals in soils. However, the sampling and anal-
ysis procedures used when the status of soil heavy metals within a given area must be continuously monitored are 
expensive and time-consuming. Therefore, spatiotemporal interpolation is necessary because it enables the use of 
previous soil sampling points to predict present-day spatial distributions with fewer soil samples.

Spatiotemporal kriging (STK) is a tool that is used to analyze and map ST phenomena using point observa-
tions910. The technique is currently used in many research problems and fields, such as the interpolation of soil 
water and salinity content11–13, climatology14, and air quality monitoring15. Most studies use only measurements 
of the variable of interest. However, after soil samples have been obtained, various heavy metals in the soil can 
be measured simultaneously. In addition, many studies indicate that correlations exist among the various heavy 
metals found in soils16–18. The use of such relationships in interpolation via cokriging (CK) may decrease predic-
tion uncertainties19.

Based on the above discussion, we believe that it is possible to combine historical sampling points and 
co-variables to perform predictions of heavy metals. Thus, we propose a spatiotemporal cokriging (STCK) 
method that is based on STK and CK. The main objective of this study is to predict the ST distribution of soil 
heavy metals within a study area using STCK. To achieve this objective, the following steps are followed. (1) 
The methods of obtaining experimental ST semivariograms and ST cross-semivariograms are explored. (2) 
Models for experimental ST semivariograms and ST cross-semivariograms are fitted. (3) An algorithm for STCK 
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interpolation is proposed. Finally, (4) the accuracy and uncertainty of STCK given different combinations of 
co-variables and different neighboring points are explored.

Materials
Study area.  The study area lies to the east of the Qingshan district (latitude 30°37′N, longitude 114°26′E) 
of Wuhan City, which is the capital of Hubei Province and the largest city in the middle reach of the Yangtze 
River in China. Since the 1950s, this district has seen considerable industrialization, and it currently contains 
133 industrial enterprises above a designated size (with annual business incomes more than 20 million RMB, or 
approximately 3.3 million U.S. dollars). Some of these industrial enterprises, such as the Wuhan Iron and Steel 
Corporation, the China First Metallurgical Construction Co., Ltd., and the Wuhan Heavy Casting and Forging 
plant, are very large and include heavy industries. The land east of this region is used to plant crops and vege-
tables, such as rice, eggplant, cabbage, cayenne pepper, and other common Chinese vegetables. The history of 
planting in this area is approximately 30 to 40 years long.

Sample collection and analysis.  An extensive investigation of the soil within the study area was carried 
out in October 2010. In total, 124 topsoil samples were collected at depths of 0–20 cm within the study area. We 
found that the soil pollution in this area was serious. To monitor the degree of soil contamination, we collected 
topsoil samples from the study area in October from 2011 to 2014. Forty-five, 48, 55, and 48 soil samples were 
collected in 2011, 2012, 2013 and 2014, respectively. The spatial distribution of soil sampling points are shown 
in Fig. 1. At each sampling point, 5 sub-samples were collected at random and mixed to obtain a composite soil 
sample. Any foreign debris present in the soil samples was manually removed during sample collection. The 
coordinates of the sample locations were recorded with a GPS. All of the soil samples were air-dried at room tem-
perature and passed through a 100-mesh nylon sieve, which included 100 holes within an area of 1 square inch. 
The prepared soil samples were then stored in polyethylene bottles for analysis.

The concentrations of heavy metals, including copper (Cu), cadmium (Cd), lead (Pb), and zinc (Zn), were 
measured in the soil samples. Approximately 0.5 g of each prepared soil sample was digested using a mixture of 
nitric acid (HNO3) and perchloric acid (HClO4) in a Teflon beaker on a hot plate. The total concentrations of Cd, 
Cu, Cr, Pb and Zn in the digested solutions were measured using inductively coupled plasma mass spectrometry 
(ICP-MS; TMO, USA). The accuracy and precision of the measurements were tested using standard reference 
materials (GGS-3) obtained from the National Center for Standard Reference Materials of China. All of the soil 

Figure 1.  Location of the study area and the spatial distribution of soil 86 sampling points during 2010–2014 
(created 87 using ArcMap, version 10.2; http://www.esri.com/).

http://www.esri.com/
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samples were analyzed at the Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of the 
Yangtze River) at the Ministry of Chinese Agriculture.

Methods
Spatiotemporal Cokriging.  To begin, we consider two ST variables, Zu(x) and Zv(x), which we denote u 
and v, respectively; both of these variables obey the intrinsic hypothesis. To distinguish between space and time, 
let Z(x) = {Z(s, t)|s ∈ S, t ∈ T} be a variable that is defined on a geographical domain S ∈ R2 and a time interval 
T ∈ R. The aim of this study is to predict the attribute u at a spatiotemporal point (s0, t0) where u was not meas-
ured. The prediction is based on measurements of u and v at n ST points (si, ti), i = 1… n. Note that not all u and v 
are observed at the same ST points; however, some ST points where u and v can be measured are required.

Under appropriate stationarity assumptions, an estimate of the ST semivariogram may be obtained from the 
measurements by computing the experimental semivariogram ˆ h h( , )Suu Tγ ,  h h( , )Svv Tγ̂  and the 
cross-semivariogram h h( , )Suv Tγ̂ :
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where hS and hT are the S and T lags, respectively, and Nu(hS, hT), Nv(hS, hT), and Nuv(hS, hT) are the numbers of 
pairs in the ST lag for u, v and uv, respectively.

Fitting the models to the ST experimental semivariogram and cross-semivariogram has some additional 
problems over conventional semivariogram and cross-semivariogram modeling; these problems arise due to the 
distinct differences between the variations in S and T10. In this study, we use an extension of the separate-sum 
models proposed by Bilonick19, in which geometric and zonal anisotropy are applied to the problems arising from 
the differences in S and T variability. In the Bilonick model, the semivariogram is divided into three parts: an S 
part, a T part and an ST part that includes only geometric anisotropy and neglects zonal anisotropy. Assuming 
that these three parts are mutually independent, the semivariogram and cross-semivariogram are the sum of 
three components:

h h h h h( , ) ( ) ( ) ( ) (4)S Suu T uuS uuT T uuST STγ = γ + γ + γ

γ = γ + γ + γh h h h h( , ) ( ) ( ) ( ) (5)S Svv T vvS vvT T vvST ST

h h h h h( , ) ( ) ( ) ( ) (6)S Suv T uvS uvT T uvST STγ = γ + γ + γ

The ST lag hST is obtained by introducing a geometric anisotropy ratio α: h h hSST T
2 2α= + . The advantage of the 

Bilonick model is that it has S, T and ST components that can be interpreted fairly easily in a physical sense. The 
disadvantage is that the estimation of the model parameters is challenging. Prior studies estimate the ratio α along 
with other parameters of the semivariogram10,11. In this study, if the ratio αin every semivariogram or 
cross-semivariogram is estimated, then each αvalue cannot possibly be the same. This outcome may not be in 
accordance with the physical significance, given that the spatiotemporal ratios for every variable and every pair of 
co-variables are not the same. In addition, the ratio αis a very important parameter because it determines how to 
obtain the spatiotemporal distance between two points in space and time; in particular, it determines which 
observed points in space and time are used as neighboring points when performing ST predictions. If the ratio 
αdiffers among the semivariograms or cross-semivariograms, different neighboring points will be determined in 
different variables or pairs of co-variables. Therefore, the ratio α in all of the semivariograms and 
cross-semivariograms will be considered to be a single parameter.

When models for the semivariogram and cross-semivariogram are obtained, ST cokriging can be performed. 
The aim is typically to estimate just one variable, which we may regard as the principal or target variable, at a 
spatiotemporal point x0 (s0, t0) using data that describe that variable and one or more other variables, which we 
regard as subsidiary variables. The equations used to perform cokriging in the ST domain are exactly the same as 
those used in standard S cokriging. The equations can be represented in matrix form. For simplicity, we consider 
only two variables, u and v. However, the matrices are easily extended to greater numbers of variables. Let Γuv 
denote a matrix of semivariances (including cross-semivariances, in which u # v) between sampling points in a 
neighborhood. Let there be nu places where variable u has been measured and nv places where v has been meas-
ured. The order of the matrix is nu × nv:
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x x
x x

x x

x x
x x

x x

b b

( , )
( , )

( , )

,

( , )
( , )

( , )

,

(8)

uu

uu

uu

uu n

uv

uv

uv

uv n

1 0

2 0

0

1 0

2 0

0u v

γ
γ

γ

γ
γ

γ

=























=























 

The matrix equation is then:

� �

� �

� �
� �

�

�

λ
λ

λ

λ
λ

λ

ψ
ψ

Γ Γ

Γ Γ









































×















































=





















b
b

1 0
1 0

1 0
0 1
0 1

0 1
1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0

1
0

(9)

uu uv

vu vv

u

u

n u

v

v

n v

u

v

uu

uv

1

2

1

2

u

v

The estimated value of variable u at the spatiotemporal point x0 (s0, t0) is then the linear sum:
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where λ is the vector of weights and Lagrange multipliers, and b is the right-hand side vector of the matrix equa-
tion (9).

Validation and comparison criteria.  The results obtained through the use of STCK with different com-
binations of co-variables and different numbers of neighborhood points are compared. Soil heavy metals are 
predicted at each of the sites for which measurements are available using the leave-one-out method, which succes-
sively deletes the value of each location where the prediction was utilized. This procedure yields pairs of estimated 
and observed soil heavy metal concentrations. The root mean squared error (RMSE) is then computed from the 
pairs of estimated and observed soil heavy metals. The RMSE is defined as:
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where Z(xj) is the measured value, and Ẑ x( )j  is the predicted value. Smaller RMSE values indicate greater predic-
tion accuracy.

Results and Discussion
Descriptive statistics of soil heavy metals.  Descriptive statistics of Cd, Pb, Cu and Zn in the soil sam-
ples for each year are presented in Table 1. For Cd, Cu, and Zn, the soil concentrations show steady increases from 
2010 to 2014. However, the concentrations of Pb show increases from 2010 to 2013, followed by a small decrease 
in 2014. Thus, the concentrations of soil heavy metals in the study generally increase over the investigated period.

The normality of Cd, Pb, Cu and Zn at all of the sampling points is tested using the Kolmogorov-Smirnov 
(K-S) method. The K-S test is a nonparametric test of the equality of continuous, one-dimensional probability 
distributions that can be used to compare a sample with a reference probability distribution (in this case, a normal 
distribution). This test examines whether two independent distributions are similar or different by generating 
cumulative probability distributions for the two distributions. The maximum distance or maximum difference is 
then entered into the K-S probability function to calculate the probability value. Lower probability values (<0.05) 
means that it is less likely that the two distributions are similar. Conversely, the higher or closer to 1 the value is, 
the more similar the two distributions are. The results show that the K-S values are 0.001, 0.000, 0.000, and 0.211 
for Cd, Pb, Cu and Zn, respectively. Therefore, the Cd, Pb and Cu data were transformed using base 2 logarithms 
to achieve normal distributions.
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Correlation coefficient analysis.  The correlation coefficients were used to determine the relationships 
among different heavy metals in the soil samples and then to determine the co-variables for each heavy metal 
while performing the ST interpolation. The Pearson correlation coefficient is a statistical measure of the linear 
correlation between two variables. This metric takes values between +1 and −1, where 1 indicates total positive 
linear correlation, 0 indicates no linear correlation, and −1 indicates total negative linear correlation. In this 
study, Pearson correlation coefficients of the heavy metals in the soil samples are summarized in Table 2. Table 2 
shows significantly positive correlations among the four heavy metals. Therefore, the three other types of heavy 
metals can be treated as co-variables when ST interpolation of one heavy metal is performed using STCK.

The ST semivariogram.  Figure 2(a–d) shows the experimental semivariograms and fitting models for 
LogCu, LogCd, LogPb, and Zn. The semivariance displays similar behavior in the space and time directions. In 
the S direction, the semivariance increases continuously with increasing distance to 5000 to 6000 m and then 
decreases to approximately 8000 m. All of the semivariograms in the T direction show continuous and slow 
increases in semivariance for lags of 0 to 4 years. Figure 2(e–j) shows the experimental cross-semivariogram and 
fitting models for LogCd × LogCu, LogCd × LogPb, LogCd × Zn, LogCu × LogPb, LogCu× Zn, and LogPb × Zn. 
For LogCd × LogCu (Fig. 2e), LogCd × Zn (Fig. 2g), LogCu × LogPb (Fig. 2h), and LogCu × Zn (Fig. 2i), the 
cross-semivariance increases continuously with increasing distance to 5000 to 6000 m and is then steady in the 
S direction. For LogCd × LogPb (Fig. 2f) and LogPb × Zn (Fig. 2j), in the S direction, the cross-semivariance 
increases with increasing distance to approximately 2000 m and is then steady. In the T direction, all of the 
cross-semivariograms display continuous and slow increases for lags of 0 to 4 years.

Model fitting for ST semivariograms and cross-semivariograms.  In this case, 4 semivariogram 
models and 6 cross-semivariogram models are fitted. The types of models are selected based on the figures show-
ing the experimental ST semivariogram and the different logarithmic ST semivariograms. The T parts of all of 
the semivariograms and cross-semivariograms are modeled using a linear model. The S and ST parts for all of 
the semivariograms and cross-semivariograms, except LogCu × LogPb and LogCu × Zn, are modeled using a 
spherical model. The S and ST parts of LogCu × LogPb are modeled with a Gaussian model. The S and ST parts of 
LogCu × Zn are modeled with an exponential model. A nugget model is used to represent the nugget value of the 

Heavy metal Year Min Max Mean SD CV Skewness Kurtosis

Cd

2010 1.78 6.22 3.58 0.80 0.22 0.764 0.216

2011 2.29 6.31 3.68 0.87 0.24 0.822 0.517

2012 1.98 5.95 3.87 0.85 0.22 0.540 0.555

2013 2.81 6.91 4.05 0.90 0.22 1.006 0.677

2014 2.67 6.36 4.02 0.83 0.21 1.119 0.815

Pb

2010 10.91 113.98 27.51 20.24 0.74 2.719 7.362

2011 11.26 106.63 31.44 24.49 0.78 2.148 3.668

2012 13.66 125.97 33.01 29.03 0.88 2.328 4.310

2013 13.11 110.77 35.32 30.89 0.87 1.66 1.028

2014 12.95 122.63 34.02 31.05 0.91 2.227 3.439

Cu

2010 16.78 98.61 35.46 15.51 0.44 2.111 5.57

2011 18.87 81.87 38.31 13.35 0.35 1.034 1.428

2012 22 94.74 39.78 13.42 0.34 1.677 4.806

2013 18.87 91.77 40.27 15.60 0.39 1.361 1.949

2014 20.97 103.52 42.91 20.94 0.49 1.754 2.675

Zn

2010 48.05 191.04 84.79 22.54 0.27 0.198 0.203

2011 50.45 148.61 88.46 21.86 0.25 0.144 0.205

2012 53.8 200.59 90.50 26.52 0.29 0.120 0.263

2013 60.39 154.28 93.69 22.24 0.24 0.115 0.199

2014 57.66 166.75 94.60 23.33 0.25 0.121 0.175

Table 1.  Descriptive statistics of the heavy metals in the soils during each year (mg/kg).

Heavy metal LogCd LogPb LogCu Zn

LogCd 1

LogPb 0.358** 1

LogCu 0.755** 0.244** 1

Zn 0.593** 0.32** 0.451** 1

Table 2.  Pearson’s correlation matrix for the heavy metals in the soil samples. **Correlation is significant at the 
0.01 level (2-tailed).
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semivariogram and the cross-semivariograms; hence, the form of the total ST semivariance for LogCu, LogCd, 
LogPb, and Zn and the form of the ST cross-semivariance for LogCd × LogCu, LogCd × LogPb, LogCd × Zn, and 
LogPb × Zn are defined as:

Figure 2.  Experimental ST semivariograms and fitting models for LogCd (a), LogCu(b), LogPb(c), and Zn(d) 
and experimental ST cross-semivariograms and fitting models for LogCd × LogCu (e), LogCd × LogPb (f), 
LogCd × Zn (g), LogCu × LogPb (h), LogCu × Zn (i), and LogPb × Zn (j).
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Here, C0 represents the nugget value of the model; CT represents the slope of T; CS and CST represents the sill 
for S and ST; aS and aST represent the range parameters of S and ST; and

α= +h h h (16)SST T
2 2

Furthermore, the ratio α should be identical in all of the models. The value of CT is easily calculated using the 
experimental data. Fitting these 10 models to the experimental data is difficult because 51 parameters must be 
estimated. We thus use a genetic algorithm to simultaneously estimate these parameters by minimizing a fitness 
function:
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where the weight factor wi is the quotient of the number of pairs in the lag h hN( , )S Ti i
 and the square root of the 

semivariance γ̂ h h( , )S Ti i
10. The method of fitting models using a genetic algorithm was introduced and is 

described in detail in Yang et al.20. The parameter values resulting from the model fitting procedure are shown in 
Table 3.

ST interpolation and accuracy evaluation.  Based on the methods introduced in section 3.1 and the 
models of the ST semivariograms and the ST cross-semivariograms (Table 3), STCK is performed for Cd, Cu, Pb 
and Zn. For example, in the most complex case, Cd is predicted, and all of the other heavy metals, including Cu, 
Pb, and Zn, are employed as co-variables. The matrix equation (9) is thus extended as follows:

To determine the influence created by the number of neighboring points, we predict the unmeasured 
ST points using the 4 to 20 nearest ST sampling points around the predicted ST site. The ST distance is 
determined using formula (16). Because α = 2085 and the spatial distances between the sampling points 
visited in 2014 are between 400 and 1500 m, manyistorical sampling points are incorporated into the group 
with the nearest ST sampling points. Consequently, the results of STCK are simultaneously influenced by 
the historical pollution situation and the correlation factors. We also examine the behavior of the STCK 
prediction using a different combination of co-variables. For example, considering LogCd, the variations in 
the prediction variance obtained using different numbers of neighboring points and different combinations 
of co-variables are shown in Fig. 3.

Based on Fig. 3, we conclude that the use of greater numbers of co-variables and neighboring points 
results in reductions in the variance of predictions. The RMSE cross-validation criterion for Cd in 2014 is 
provided in Fig. 4. The results of comparing the RMSE are generally consistent with the results obtained 
for prediction variance. The use of additional co-variables results in reduced RMSE values. However, the 
use of more neighboring points does not always produce reduced RMSE values. In addition, as shown in 

Model C0 CT CS aS CST asT α

LogCu 0.17 0.009 0.175 5375 0.22 5734

2085

LogCd 0.033 0.0035 0.103 5843 0.12 4718

LogPb 0.54 0.032 0.34 5023 0.46 4218

Zn 503 12.12 296 7445 756 4101

LogCd × LogCu 0.131 0.006 0.237 4242 0.031 4812

LogCd × LogPb 0.05 0.0082 0.119 3660 0.187 2159

LogCd × Zn 0.31 0.12 4.375 4060 12.07 4259

LogCu × LogPb 0.097 0.011 0.212 2898 0.202 5847

LogCu × Zn 2.03 0.263 16.48 3203 9.22 6265

LogPb × Zn 4.53 0.32 5.97 5722 2.75 2511

Table 3.  Parameters of the Bilonick models.
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Fig. 4, the average RMSE of LogCd + LogCu < the average RMSE of LogCd + Zn < the average RMSE of 
LogCd + LogPb, indicating that the use of co-variables with relatively high correlation coefficients with the 
major variable results in greater prediction accuracies than the use of co-variables with relatively low corre-
lation coefficients with the major variable.

Figure 5 shows the results of STCK interpolation using three co-variables and 20 neighboring sampling points 
from 2010 to 2014. The variables, including Cd, Pb, and Cu, are back-transformed to their original scales. Our 
results reveal a general tendency for elevated concentrations of Cd, Cu and Zn to spread from the southwestern 
part of the study area to the entire area over time, whereas Pb contamination tends to be concentrated mostly in 
the northern and western parts. Thus, the ST distributions of heavy metals reveal trends in their ST evolution that 
can assist in identifying sources of pollution and the directions in which the heavy metals diffuse. For example, 
based on Fig. 5, we conclude that the sources of the Cd, Cu and Zn pollution are located within the southwestern 

Figure 3.  Average variance obtained using kriging with different numbers of neighboring points and different 
combinations of co-variables.

Figure 4.  RMSE as a function of different numbers of neighboring points and different combinations of co-
variables.

Figure 5.  ST distribution of soil heavy metals within the study area (created using ArcMap, version 10.2; http://
www.esri.com/).

http://www.esri.com/
http://www.esri.com/
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portion of the study area, i.e., the heavy industrial area of Wuhan City. In addition, the sources of Pb pollution are 
located within the northern and western parts of the study area.

Conclusions
In this paper, we present a procedure for carrying out ST predictions of heavy metals based on the STCK method. 
Soil heavy metals, including Cd, Cu, Pb and Zn, measured in the Qingshan district of Wuhan City in China from 
2010 to 2014 are employed as experimental data. The Bilonick model is used to fit ST auto- and cross-variograms, 
and a genetic algorithm is used to estimate the relevant parameters. The logical ST auto- and cross-variogram 
models shown in Fig. 2 indicate that the Bilonick model adequately describes the ST variability.

The results of STCK show that the use of additional co-variables improves the ST prediction accuracy; 
the average RMSE decreases as more co-variables are employed. In addition, the use of co-variables with 
relatively high correlation coefficients with the major variable results in greater prediction accuracies than 
the use of co-variables with relatively low correlation coefficients with the major variable. Thus, the use of 
additional co-variables with relatively high correlation coefficients with the major variable significantly 
improves the prediction accuracy. In addition, the number of neighboring points affects the prediction 
accuracy significantly. The use of additional neighboring points results in reduced prediction variance and 
higher general prediction accuracy.

The results of ST predictions of heavy metals can illustrate trends in ST evolution and can help environmental 
scientists to infer the locations of pollution sources and the directions in which the heavy metals are diffusing. 
Suitable environmental governance measures must be proposed.
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