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Plasma channel undulator excited 
by high-order laser modes
J. W. Wang1,3, C. B. Schroeder2, R. Li3, M. Zepf1,4,5 & S. G. Rykovanov1

The possibility of utilizing plasma undulators and plasma accelerators to produce compact ultraviolet 
and X-ray sources, has attracted considerable interest for a few decades. This interest has been driven 
by the great potential to decrease the threshold for accessing such sources, which are mainly provided 
by a few dedicated large-scale synchrotron or free-electron laser (FEL) facilities. However, the broad 
radiation bandwidth of such plasma devices limits the source brightness and makes it difficult for the FEL 
instability to develop. Here, using multi-dimensional particle-in-cell (PIC) simulations, we demonstrate 
that a plasma undulator generated by the beating of a mixture of high-order laser modes propagating 
inside a plasma channel, leads to a few percent radiation bandwidth. The strength of the undulator 
can reach unity, the period can be less than a millimeter, and the number of undulator periods can be 
significantly increased by a phase locking technique based on the longitudinal tapering. Polarization 
control of such an undulator can be achieved by appropriately choosing the phase of the modes. 
According to our results, in the fully beam loaded regime, the electron current in the plasma undulator 
can reach 0.3 kA level, making such an undulator a potential candidate towards a table-top FEL.

X-ray radiation sources have important applications in biology, medicine, industry and fundamental science 
because of their capability of resolving the structure and dynamics of matter on the molecular and atomic scales1–3. 
For the past twenty years, the third-generation synchrotron facilities have been the workhorse X-ray sources4. By 
the virtue of an electron beam instability called microbunching5, much brighter, shorter, and fully coherent XUV 
and X-ray pulses can be generated in the devices called free-electron lasers (FELs)5–7. The excellent FEL radiation 
properties make it possible to time-resolve molecular structural dynamics and obtain high-resolution images. 
However, synchrotron and FEL facilities are typically large, expensive, and oversubscribed for the users.

It has been demonstrated that schemes based on laser-plasma interaction are able to produce ultrashort and 
bright radiation8–16. In a typical scenario, electrons accelerated by a laser-excited wakefield17,18, oscillate either in 
the focusing fields of the wake or inside an (external) undulator, emitting bright radiation with a fundamental 
wavelength of λ λ γ= + K(1 /2)/(2 )u

2
0
2  on axis, where λu is the undulator wavelength, γ0 is the Lorentz factor of 

the electron, and K is the so-called undulator strength parameter. Compared to a conventional magnetic undula-
tor12,13, the period of a plasma-based undulator is short and can be less than a millimeter. Therefore, a laser-created 
plasma undulator together with a laser-plasma electron accelerator (LPA) make it possible to construct an eco-
nomical and compact incoherent XUV or X-ray source for university laboratories, hospitals, and even commer-
cial applications15,19. Plasma undulators can be realized by ultra-intense laser plasma interactions in the bubble 
regime8–10, a laser pulse propagating in plasma perpendicularly to the electron beam propagation direction20, a 
laser pulse interaction with a nanowire array21, or using laser pulse offset injection in a matched plasma chan-
nel22–24. However, it is still an open question whether these plasma undulators can be used as an FEL. In general, 
not all undulators are suitable for the onset of the FEL instability. For example, in magnetic undulators matching 
and field uniformity are critical. In the case of plasma undulators one of the major challenges is the large radiation 
spread caused by varying values of undulator strength K throughout the beam or by strong focusing and hence 
large electron beam divergence inside the wakefield, while for the FEL process to develop a very narrow band-
width is required8,15. Another challenge is that the phase slippage between the electrons and the wakefield limits 
the length of a plasma undulator. Furthermore, it is not generally the case in plasma undulators that the electron 
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trajectories are independent of the injection positions. We show for the first time that a solution exists for a 
plasma undulator that meets the stringent conditions required for the FEL lasing.

Here we propose a phase-locked plasma undulator created by the wakefields of a combination of high-order 
laser modes propagating in a parabolic plasma channel. We demonstrate that the undulator fields can be made 
uniform along the transverse direction by choosing appropriate intensities of the laser modes. This enables all 
the electrons to oscillate with the same strength parameter K on the order of unity for a few tens of undulator 
periods. The plasma density in the channel can be tapered to lock the phase between the electrons and the 
wakefield, which significantly increases the number of electron oscillations, i.e. the total undulator length. As 
a result, X-ray radiation with high brightness and narrow bandwidth is generated when a high-energy electron 
beam is injected into the present plasma undulator. The beam loading limit indicates that the current of the 
beam can reach approximately 0.3 kilo-Ampere for typical laser-plasma parameters. These properties imply that 
such a plasma undulator is a miniaturised electron device naturally matching the extremely compact scale of 
a plasma accelerator, similar in significance to the recent breakthrough development of plasma lenses25–27, and 
plasma accelerator staging28,29, and may have great potential in incoherent XUV and X-ray sources or future 
compact FELs.

Results
Principles of the plasma channel undulator. Laser pulse guiding for distances much larger than the 
Rayleigh length of the laser pulse are necessary in LPAs for achieving GeV level of electron energy. Typically a 
plasma channel that has a parabolic (or close to parabolic) transverse density distribution is used in LPA experi-
ments for laser guiding30. For laser power below the critical power18, laser pulses with transverse profile given by 
Hermite-Gaussian (or Laguerre-Gaussian) modes will propagate inside the channel without changing their trans-
verse shape given that their spotsize is matched to the channel radius. Plasma undulator can be generated by 
propagating a mixture of different Hermite-Gaussian laser modes in a matched plasma channel, as shown by the 
schematic in Fig. 1. An oscillatory behaviour of intensity envelope appears when the modes with the same polar-
ization co-propagate in the plasma channel, since the phase velocities for different modes are dependent on the 
mode numbers. For example, the wavelength of the oscillations of the total intensity of a mixture of two modes 
|m0, p0〉 and |m1, p1〉 is 2πZR/|(m0 + p0) − (m1 + p1)|31, where the quantum ket notation |m, p〉 indicates a Hermite-
Gaussian mode with an order number m in x direction and an order number p in y direction, and π λ=Z w /R L0

2  
is the Rayleigh length with w0 the laser spot size and λL the wavelength of the laser pulses, which is assumed to be 
the same for all the modes. It is also important to mention that to obtain the desired undulator fields one has to 
create an asymmetric initial transverse intensity distribution of the modes mixture, which is achieved by mixing 
even and odd mode numbers. The wakefield generated by the two modes will also oscillate while propagating in 
the channel, which provides an additional control of the focusing field. Consider a two-dimensional case, then the 
transverse wakefield generated by two y-polarized modes m0 and m1 can be expressed as (see Methods for the 
calculation of the wakefield)
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Figure 1. Schematic of the plasma channel undulator. As an example, three y-polarized Hermite-Gaussian 
modes, |0, 0〉, |0, 1〉, and |1, 0〉, propagate in a matched parabolic plasma channel. In both the (x, z) plane and 
the (y, z) plane, the profile of the total intensity oscillates with a wavelength proportional to the Rayleigh length 
of the pulse, and can be controlled by choosing the mode numbers. The ellipticity of the laser pulse oscillations 
can be controlled by the phase difference between the modes |0, 1〉 and |1, 0〉. The focusing fields of the induced 
plasma wakefield serve as an undulator. Electrons injected into the wakefield will experience undulator 
oscillations and emit bright radiation.
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where ζ = z − ct, π= −C k L k L( /4)exp( /4)p p
2 2 , E0 = mec2kp/e, L is the laser pulse longitudinal length, kp is the 

plasma wave number, e is the electron charge, me is the electron mass and c is the light speed in vacuum. As can 
be seen from equation (1), the transverse wakefield is separated into two parts: the betatron part which is linearly 
proportional to the transverse coordinate x, and the undulator part which is a simple cosine function of the lon-
gitudinal coordinate z. The strengths of these two parts αβ and αu are determined by both the laser modes inten-
sities and order numbers. Electrons with Lorentz factor γ0 injected in such a wakefield will experience two kinds 
of oscillations: betatron oscillations with a wave number γ= | |β βk a C w4 / 0 0

2 and undulator oscillations with a 
wave number ku = |m0 − m1|/ZR. Such a plasma wakefield structure serves as an undulator (or wiggler) and leads 
to electron oscillations and generation of synchrotron radiation. In contrast to the plasma undulator generated by 
an off-axis injected laser pulse22, in which case it is difficult to suppress the strong focusing field (large αβ), in the 
plasma undulator created by high-order modes one can eliminate the betatron part by choosing appropriate laser 
intensities am and an to satisfy αβ = 0 in equation (2). Physically, the focusing field disappears because the sum of 
the intensities of the two modes keeps constant near the axis, and thus the transverse gradient of the potential 
reduces to zero. As a result, electrons injected into such a particular wakefield will oscillate only with the undula-
tor frequency ku. This significantly enhances the undulator radiation, which is more interesting because its energy 
can be located in the soft or even hard X-ray range and its radiation bandwidth is very narrow. It is also worth 
noting that the undulator strength parameter here K = 4πCαuw0/λL, is independent of the electron transverse 
positions, unlike the typical betatron case8–10,14. This property is helpful for decreasing the undulator radiation 
bandwidth, which should be smaller than the Pierce parameter ρ for the FEL application5,8,15.

Electron dynamics and radiation. The transverse electric field experienced by the electrons and the tra-
jectories of test electrons from 2D PIC simulations are presented in Fig. 2(a). In the simulation, the fundamental 
Gaussian mode (a0 = 0.14) and the first-order Hermite-Gaussian mode (a1 = 0.1) co-propagate in a matched 
plasma channel. Detailed parameters are given in the Methods. One can see that the transverse field is periodic 
with time and almost uniform in transverse coordinate x in a range of 2λL, analogous to the distribution of the 
magnetic field in a magnetic undulator32. The trajectories of the test electrons are almost the same, although they 
are injected into the undulator with different initial transverse positions, which is completely different from the 
case of electrons undergoing betatron oscillations in a plasma wakefield8–10. As a result, the on-axis radiation 
spectra of the test electrons, shown in Fig. 2(b) are almost identical. The frequency of the first harmonic of the 
on-axis radiation is located at ω γ ω ω= + ∼K2 /(1 /2) 1900u L0

2 2 , where K = 0.44 is the strength parameter and 
ωu = c/ZR is the undulator frequency, corresponding to approximately millimeter undulator period. For λL = 1 
μm, the radiation wavelength is 0.5 nm, which is in the soft x-ray range. Theoretically, higher photon energies, 
even reaching the hard X-ray region, can be achieved by co-propagating even higher order modes together with 
the fundamental Gaussian mode. The undulator strength parameter K can be increased by changing the intensi-
ties of the laser pulses. In the above discussions the injected electrons are assumed to be locked at a certain phase. 
However, such condition can not be satisfied in most cases, because the injected high-energy electrons always run 
faster than the wakefield, which is referred to as dephasing in laser wakefield acceleration18. For an electron ini-
tially injected into the phase kpζ = −5π/2, its phase will slip forward to kpζ = −2π after a dephasing length LD. For 
a highly relativistic electron υ  cz  traveling in a plasma channel, the dephasing length is given by LD = λp/
[4(1 − υp/c)], where υ ω ω ω= − −c c w1 / (4 )/( )p p L L

2 2 2 2
0
2  is approximately the phase velocity of the plasma wave, 

ωL is the laser frequency, ωp is the plasma frequency and λp is the plasma wavelength. In the simulation presented 
in Fig. 2, the on-axis plasma density is np0 = 0.001 nc and electron initial energy γ0 = 1000, leading to the dephas-
ing length LD ≈ 5000λL. Dephasing sets a limitation to the number of undulator periods and, hence, reduces the 
radiation brightness. Moreover, varying of the electron energy broadens the radiation spectrum. This could be a 
limitation should this undulator be used for a compact FEL. In order to avoid dephasing and obtain radiation 
with high brightness and narrow-band spectrum, it is necessary to lock the phase of the electrons in the wakefield. 
In this work, phase-locking by longitudinally tapering the plasma channel is used (see Methods)33. As the elec-
trons slip forward with respect to the driver laser pulses, the plasma density is increased, reducing the plasma 
wavelength and maintaining the phase of the electrons inside the plasma wave bucket.

We now investigate the dynamics of an electron beam propagating in the phase-locked plasma undulator. 
Parameters of the electron beam can be found in the Methods. The evolution of the beam is shown in Fig. 3(a). One 
can see that the beam keeps a constant radius while oscillating in the undulator with the wavelength λu. Because the 
plasma channel has been tapered to lock the phase of the beam in the wakefield, the electron beam can stably prop-
agate in the undulator for approximately 20000 λL, corresponding to the number of undulator periods Nu = 20. The 
radiation spectrum emitted by the beam is shown with the red solid line in Fig. 3(b). The spectrum bandwidth is as 
narrow as 6%, which is very close to the theoretical bandwidth γ γ γ θ+ ∆ + ∆N(1/ ) (2 / ) ( ) /16u

2
0

2
0

4 34, where 
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γ σ∆ . γ 2 35  is the FWHM electron beam energy spread, and ∆θ σ. θ 2 35  is the FWHM electron beam angular 
spread. Also minor betatron radiation located at ω = 400ωL can be seen in the spectrum, which comes from the 
electrons far from the axis where αβ ≠ 0. The radiation of an electron beam in an untapered plasma channel is also 
presented with the blue dash-dot line in Fig. 3(b). The spectrum exhibits a two-peak structure with a larger band-
width and a much lower brightness. This is because the un-phase-locked electrons oscillate in two different plasma 
wave buckets, then escape from the undulator with an angle and become lost finally. As we stated before, higher 
frequency radiation can be obtained by using higher order mode mixed with the fundamental mode. The green 
dashed line in Fig. 3(b) shows the radiation spectrum of the same electron beam in an undulator generated by 
modes m0 = 0 and m1 = 3. One can see that the central frequency of the radiation has increased to 5750 ωL, which 
is approaching the hard X-ray region. The bandwidth becomes even narrower because the electron beam experi-
ences more undulator periods during the same propagation length.

It should be mentioned that tapering does not remove the mode slippage that appears due to different group 
velocities of the laser modes, and can become a main factor limiting the total undulator length. One can estimate 
the mode slippage length as the length it takes for two modes with numbers m0 and m1 to be separated by the 
longitudinal length L of each of the modes; hence, the mode slippage length is −L L k w m m( ) /(2 )m d L, 0

2
1 0 . For 

the parameters of our simulations, this estimate gives the mode slippage length roughly equal to 14 mm, close to 
the 20 mm slippage length obtained from the numerical simulations. One solution for increasing the mode slip-
page length and extending the overlap of the laser modes is to employ longer pulses albeit with higher intensities. 
For the applications in FELs, the required number of periods is on the order of 1/ρ (ρ ∼ .0 001), which is still 
much larger than that of the plasma undulator. A multiple-stage scheme could be considered to extend the num-
ber of periods. In Fig. 4(a) a schematic for a staged plasma undulator system is presented. The electron beam from 
the first undulator is transported to the second undulator by a discharge capillary, which acts as an active plasma 
lens25,28. An azimuthal focusing magnetic field is produced when an axial discharge current is introduced in the 
gas-filled capillary. It was reported that the field gradient could be larger than 3000 T/m25, enabling cm-scale focal 
length for GeV-level beam energies. The second undulator can be excited by the second pair of high-order laser 
modes reflected by a tape-based plasma mirror28. The trajectory of the electron beam in the two-stage plasma 
undulator obtained from PIC simulations is presented in Fig. 4(b). Each stage has 18 periods. Such a two-stage 

Figure 2. Distribution of the undulator field, test electron trajectories and their on-axis radiation spectrum. (a) 
The distribution of the transverse electric field normalized by mc2kp/e in the space (x, ct) for a fixed position 
kpζ = −5π/2. The wakefield is created by two linearly polarized modes m0 = 0 and m1 = 1, with intensities 
a0 = 0.14 and a1 = 0.1, spot radius w0 = 7λL, and duration τ = 15TL, in a plasma channel with an on-axis density 
of 0.001nc, where ω π=n m e/(4 )c e L

2 2  is the critical plasma density with ωL the laser frequency. The blue lines 
represent the trajectories of the test electrons. (b) The corresponding on-axis radiation spectra for the test 
electrons with different initial transverse positions. Only the first harmonic is considered here.
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undulator also works in a 3D geometry, as shown by the typical trajectories of one electron in a linear undulator 
(Fig. 4(c)) and in a circular undulator (Fig. 4(d)). An important point that should be mentioned here is that in 
order to preserve the phase of the electrons with respect to the radiation field, one needs to carefully design the 
distance between the two undulators. For an electron with a gamma factor of γ0, the phase shift after a length L in 
the radiation field is δϕ γ= L/(2 )0

2 . For proper phase matching δϕ should be an integral multiple of the radiation 
wavelength λ. For our case here, γ0 = 1000 and λ = 0.53 nm, the required distance is L = 1.06η mm, where η is an 
integer. In the simulation we choose L = 1.06 mm and get the on-axis radiation for an electron beam, as shown in 
Fig. 3(c). The radiation brightness in a two-stage phase-matched undulator is almost 4 times higher than in a 
single undulator. Also the bandwidth decreases from 6% to 3%. Such a multi-stage scheme provides the possibil-
ity to realize an FEL by employing many segments of plasma undulator.

Radiation polarization control. The polarization control of the X-ray is motivated by the applications 
in studying the dynamics of magnetization35 and polarization-dependent X-ray absorption spectroscopy36. For 
the present plasma undulator, the flexibility of the radiation polarization can be achieved by controlling the laser 
pulse phases. Consider three Hermite-Gaussian modes in a three dimensional geometry, |0, 0〉, |0, 1〉 and |1, 0〉, 
propagating in a matched plasma channel. The mixture of modes |0, 0〉 and |1, 0〉 makes the laser pulse oscillate 
in the x direction, while |0, 0〉 and |0, 1〉 leads to oscillations in the y direction. Different phases of these two 
orthogonal oscillations, determined by the phase difference of the two modes |0, 1〉 and |1, 0〉, and assuming that 
the amplitudes of these two modes are the same, control the polarization of the laser pulse centroid oscillation, 
and, hence, the polarization of the wakefield, electron oscillations, and radiation. Figure 5 shows the 3D PIC sim-
ulation results of the spatial distribution and polarization distribution of the radiation for the circular and linear 
polarization cases. Schematically the circular polarization case is presented in Fig. 1. When ϕ01 − ϕ10 = ±π/2, the 
far field of the radiation concentrates in a circular region with a radius less than one milliradian. Here ϕ01 and ϕ10 
indicate the phase of the mode |0, 1〉 and |1, 0〉, respectively. According to Fig. 5(b), on-axis the radiation is almost 
perfectly circularly polarized, while it becomes elliptically polarized when the angle θ between the observer and 
the z axis increases. Finally, at θ = 1/γ0, the radiation is linearly polarized.

When ϕ01 − ϕ10 = 0 or π, the radiation is linearly polarized, as shown in Fig. 5(d). The spatial distribution also 
demonstrates a linear structure in Fig. 5(c). In general, fine tunability of the distribution of the radiation intensity 
and polarization can be obtained by controlling the phases between the modes.

Figure 3. Trajectory and radiation spectrum of the electron beam propagating through the plasma 
undulator(s). (a) The trajectory of the beam in the plasma undulator. The electron density of the beam has 
been normalized. The parameters of the laser pulses and plasma are the same as in Fig. 2 except that the plasma 
density has been tapered to lock the phase of the electrons inside the plasma wakefield. (b) The on-axis radiation 
spectra of the electron beam with taper (red solid line) and without taper (blue dash-dot line) using modes m0 = 
0 and m1 = 1. The green dashed line corresponds to the case of the modes m0 = 0 and m1 = 3 with taper. (c) The 
on-axis radiation spectra from a single undulator (red line) and two phase-matched undulators (magenta line).
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Beam loading limit and radiation brightness. A high current electron beam is beneficial for the FEL 
process15,32. For the plasma undulator, one needs to consider the beam loading limit since the electron beam 
will generate its own wakefield when propagating in the plasma37,38. This undesirable wakefield will affect the 
wakefield generated by the laser pulses, and can even destroy the undulator if it is strong enough. The beam-driven 
wakefield is zero at the head of the bunch and increases toward the tail. To avoid the breakdown of the undulator, 
the amplitude of the wakefield generated by the bunch should be smaller than that generated by the laser pulses 
at the bunch tail. For an electron bunch with Heaviside step-function profiles in radial and axial directions, the 
beam loading density limit, i.e., when the beam-driven wake amplitude equals the amplitude of the laser-driven 
transverse wakefield, can be written as (see Methods)

=
−

n Ca
k w r k L K k r I k r

n4
(1 cos ) ( ) ( )

,
(4)

bl
u

p b p b p b p b
p2

0 1 1
0

where I1 and K1 are the first-order modified Bessel function of the first and second kind, np0 is the on-axis plasma 
density, rb is the transverse radius of the bunch and Lb is the longitudinal length of the bunch. As an example, in a 
plasma undulator created by a fundamental Gaussian mode and a first-order Hermite-Gaussian mode with a1 = 
0.1, a0 = a2 1, C = 0.38, λL = 1 μm, w0 = 7 μm, rb = 0.5 μm, Lb = 1 μm, np0 = 0.001nc, the limit of the electron 

Figure 4. Staging of two plasma undulators using a plasma lens. (a) Scheme of two-stage undulator system. 
The electron beam from the first undulator is transported to the second undulator by a plasma lens. The 
second plasma undulator is created by the second pair of high-order laser modes which are injected via a 
plasma-mirror tape. The distance of the two undulators is carefully designed to preserve the optical phase of 
the electrons. (b) The trajectory of an electron beam in the two-stage plasma undulator. Each undulator has 18 
periods. (c) A typical trajectory of an electron in a 3D two-stage linear undulator. (d) A typical trajectory of an 
electron in a 3D two-stage circular undulator.
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density nbl is 16np0. Figure 6(a) plots different radiation spectra for different bunch densities. When the bunch 
density approaches the density limit, the undulator radiation becomes weaker as the undulator is suppressed. To 
keep a high performance of the plasma undulator, the applicable electron bunch density can be chosen as around 
1% of nbl, as shown in Fig. 6(a). Theoretically, by the choice of the undulator parameters and electron bunch shap-
ing, the current can approach kA limit. For instance, with the same parameters stated above but higher laser 
intensities of a1 = 1.0 and a0 = 2 , the 1% of the beam loading limit nbl reaches 0.008nc, which corresponds to an 
electron number of 0.6 × 107 and a current of 0.3 kA.

From the simulation, one can obtain the peak energy radiated per unit solid angle per unit frequency interval 
d2I/dωdΩ = 10−29 J/Hz for one electron. Then the brightness of the radiation emitted by the electron beam in the 
simulation can be estimated as 1019 photons/(s mrad2 mm2 0.1%BW), while the electron bunch density here is 
0.01 np0 (see Methods for the calculation of the electron radiation). When the bunch density increases to 0.16np0 
(1% of nbl), the radiation brightness increases to 7 × 1019 photons/(s mrad2 mm2 0.1% BW). The dependence of 
the brightness on the laser intensity is presented in Fig. 6(b), where the bunch density is chosen as 1% of nbl. With 
laser pulses with amplitudes a1 = 1 and a0 = 2 , the peak brightness of the undulator radiation is about 1022 
photons/(s mrad2 mm2 0.1% BW).

Discussion
It is interesting to compare the main parameters of a permanent magnetic undulator, a plasma undulator and an RF 
undulator (see Table 1). Plasma undulator has a notably shorter period (about 1 mm or even less by using higher 
modes) as compared to the other two, whose period is typically more than 10 mm. The undulator strength param-
eter K of the plasma undulator can be tuned in a broad range by changing the laser normalized intensity a0 of the 
laser pulse. The main disadvantage of a plasma undulator is the number of periods per segment which is around 
20, while the number is on the order of 100 for a magnetic or an RF undulator. Thus a multi-stage scheme (Fig. 4) is 
very important for the FEL instability to develop. It should be mentioned that when we calculate the shortest wave-
length of the radiation from a plasma undulator, we use the highest energy of electrons from an LPA at present30.

It is also very interesting to calculate the FEL parameters for the plasma undulator. The ideal 1D power gain 
length can be calculated by Lg0 = λu/(4π ρ3 ), where ρ λ γ= . × − −A n1 78 10 [cm] [cm ]/u u e

5 2/3 2/3 1/3 3
0 is the Pierce 

parameter, Au = K[J0(χ) − J1(χ)]/ 2  with χ = K2/(4 + 2K2), K is the strength parameter and J0, J1 are the Bessel 
functions of the first kind. Using the parameters in the simulation, λu = 0.97 mm, γ0 = 1000, K = 0.44, ne = 0.001 
× 1021 cm−3, we get ρ = 1.7 × 10−3 and Lg0 = 27 mm ≈ 27λu, which is less than the length of 2 segments of the 
present plasma undulator. It should be noted that many effects such as electron beam energy spread and emit-
tance, space charge, finite bunch length and radiation diffraction will increase the gain length up to Lg ≈ 2Lg0

32. 
The power of the radiation P ∝ exp(z/Lg) becomes saturated after a saturation length Ls ≈ 20Lg. Therefore, the 
length of the present plasma undulator required to reach saturation is roughly Ls ≈ 1 m, corresponding to Ns ≈ 
1000 undulator periods or 50 plasma undulator segments. We can then estimate the peak brightness of FEL radi-
ation after a saturation length as 1022 × exp((Ls − Lu)/Lg) ≈ 1030 photons/(s mrad2 mm2 0.1% BW), where Lu is the 
length of one undulator.

Figure 5. Distributions of the radiation intensity and polarization. The spatial distribution (a) and polarization 
distribution (b) of circularly polarized radiation generated when the phase difference between the modes |0,1〉 
and |1,0〉 is π/2. (c) and (d) are the spatial distribution and polarization distribution, respectively, for the linearly 
polarized radiation, generated when the phase difference between the two modes is 0. In figures (a) and (c), the 
unit of the polar angle θ is milliradian, while the unit of the azimuthal angle φ is degree. In figures (b) and (d) 
the color-coded image represents the normalized energy-angular spectrum, while the contour lines represent 
the radiation ellipticity, with ellipticity equal to 1 corresponding to circular polarization and 0 corresponding to 
linear polarization.
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The stability of a plasma undulator system is an important issue which should be considered in practical appli-
cations. Since a plasma undulator is essentially a wakefield generated by lasers, the stability of a plasma undulator 
is hence strongly dependent on the laser and plasma stability. The period of the plasma undulator is determined 
by the laser spot size while the strength parameter K is mainly determined by the laser power and plasma den-
sity. Note that the fluctuation of K caused by the plasma density error is much smaller than that caused by the 
laser error when the laser duration is around the optimized value, which can be deduced from the expression of 
C parameter in equation (1). Thus the fluctuation of the radiation fundamental wavelength can be expressed as

δλ
λ

δ δ
=











+



 +






w
w

K
K

P
P

2 2
1 /2

,
(5)

0

0

2 2

2

2

Figure 6. Beam loading effect and brightness scaling. (a) The on-axis radiation spectra for different bunch 
densities: nb0 = 0.01 np0 (red solid line), nb0 = 0.1 np0 (blue dashed line), nb0 = 0.2 np0 (black dotted line), nb0 = 
1 np0 (green dash-dot line). (b) The dependence of radiation peak brightness on laser intensity. In the calculation 
the electron bunch density has been chosen as 1% of the beam loading limit nbl.
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where w0 is the radius of the laser spot and P is the laser power. For a standalone undulator, its parameters are 
quite stable because δw0 ≈ 0 and δP ≈ 0 when laser propagating in the underdense plasma. However, for a 
multiple-stage scheme, the matching between separate undulators becomes important. Technologically, each laser 
pulse driving an undulator should be generated by beam splitters from a single laser pulse, thus ensuring stability. 
For the FEL instability to develop, the fundamental wavelength has to be tuned with an accuracy given by δλ/λ ≤ 
ρ. Thus stable and precise control of beam splitter mirrors and focus mirrors is important for the FEL instability 
to occur, while shot-to-shot laser fluctuations are less critical as they only change the final radiation wavelength.

In conclusion, we have demonstrated a plasma undulator excited by high-order laser modes in a matched 
plasma channel, in which high-quality electron beams can make undulator oscillations with a few tens of cycles 
and emit bright X-ray radiation with a narrow bandwith. The advantages of the plasma undulator rely on match-
ing the intensity relationship between the modes to suppress the betatron oscillation, and tapering the density of 
the plasma channel to lock the phase of the electron beam in the undulator. The polarization of the radiation can 
be controlled by changing the phase difference of the modes. The beam loading limit indicates that the tolerated 
beam charge can lead to currents as high as 0.3 kA, theoretically approaching the kA level. Such a plasma undula-
tor, together with a laser-plasma accelerator, may open the way to realize an extremely compact FEL.

Methods
Calculation of the wakefield by two modes. The Hermite-Gaussian laser beams are guided in a matched 
plasma channel with a parabolic transverse profile as

= + ∆n r n n r
w

( ) ,
(6)

p p c0

2

0
2

where r is the transverse coordinate, np0 is the on-axis electron density, π∆ = −n r w( )c e 0
2 1 is the critical channel 

depth, re = e2/mec2 is the classical electron radius18. In 2D, a guided Hermite-Gaussian mode can be expressed as31
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where Hm is the Hermite polynomial of order m and θ = − + +z k k m w( /2 )[ 2(2 1)/ ]m L p
2

0
2  is the phase, kL is the 

laser wave number and kp is the plasma wave number. From the phase θm one can see that different modes propa-
gate with different phase velocities. The phase speed for a specific mode m is + + +v c k m w k/ 1 [ 2(2 1)/ ]/2ph p L

2
0
2 2. 

Consider two modes with the same linear polarization (y direction) and the same frequency, the total normalized 
intensity reads

= = | | + | | + | || |
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One can see that the total intensity oscillates with a wavelength of 2πZR/|m0 − m1|. The wakefield generated by the 
two modes will also oscillate while propagating in the matched channel. Assuming two modes with mode numbers 
m0 (even) and m1 (odd) and with the same Gaussian profiles in all dimensions (i.e., ζ∝ − −I L r wexp[ /(2 )]exp ( / )2 2 2

0
2 ) 

and <⊥ ⊥
⁎a a 1, the laser-excited, normalized wake potential is18

φ ζ ζ= − ⊥ ⊥
⁎x z Ca a k( , , ) sin( ), (9)p

and

φ= −∇
��
E E k/ / , (10)p0

yielding equation (1). Note that the second and higher order terms are omitted here, which implies that the area 
of interest is close to the axis ( x w2

0
2).

Parameter
Magnet 
undulator*

Plasma 
undulator

RF 
undulator†

Number of periods 50 ∼ 200 20 ∼ 30 ∼100

Period length 20 ∼ 80 mm ∼1 mm ∼14 mm

Strength parameter 0.7 ∼ 3.0 0.3 ∼ 3.0 0.2 ∼ 0.7

Wavelength range of 
potential use‡

0.05 ∼ 
100 nm

0.008 ∼ 
100 nm

0.05 ∼ 
100 nm

Bandwidth of on-axis 
radiation ∼1% ∼5% ∼1%

Table 1. Comparison between a magnet undulator, a plasma undulator and an RF undulator. *The parameters 
of a magnet undulator come from FLASH and European XFEL42. †The parameters of an RF undulator come 
from S. Tantawi’s work43. ‡The radiation wavelength strongly depends on the beam energy.
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Particle-in-cell simulations. The simulations have been performed on JURECA39 at Jülich Supercomputing 
Centre using 2D/3D PIC code LAPINE40. Two y-polarized laser modes, the fundamental Gaussian mode and the 
first-order Hermite-Gaussian mode, propagate into a plasma channel from the left boundary. The normalized peak 
intensities are a0 = 0.85 × 10−9 μI W l( /cm ) ( m)L L

2  = 0.14 for the fundamental Gaussian mode and a1 = 0.1 for the 
first-order Hermite-Gaussian mode, respectively. The spot radius w0 = 7λL, duration FWHM (full width at half max-
imum) τ = 15 TL, laser wavelength λL = 1 μm and laser period TL = 3.33 fs are the same for the both. The transverse 
profile of the plasma channel is designed according to equation (6), in order to guide the laser pulses. The plasma 
density along the propagation axis is np0 = 0.001nc, where ω π λ μ= = . ×n m e m/(4 ) 1 1 10 ( m)/cc e L L

2 2 21 3 is the criti-
cal density. Test electrons with γ0 = 1000 are injected into the plasma channel at a longitudinal position with phase 
kpζ = −5/2 π. For the electron beam, the transverse density distribution is σ= −n x n x( ) exp( /2 )b b x0

2 2  with σx = 0.5 
μm and nb0 = 0.01 np0, and the density distribution in the momentum space is σ= −n p m c n p m c( / ) exp[ ( / ) /2 ]b x e b x e px0

2 2  
with σpx = 0.05, corresponding to normalized emittance εn = 0.025 μm. The rms energy spread of the electron beam 
is σγ/γ0 = 1% with γ0 = 1000. The density distribution of the electron beam in longitudinal direction is uniform with 
a length of Lb = 1 μm. In the 2D simulations, a moving window consisting of 600(x) × 1800(z) grids with 9 electrons 
and 9 protons per cell is used to follow the long-distance propagation. The resolutions are dx = 0.1 λL and dz = 
0.05 λL. In the 3D simulations, the laser pulse mixture propagates only 2700 laser periods because of the limitation 
due the computing time. The size of the simulation box is 30λL(x) × 30λL(y) × 90λL(z) corresponding to grids 150(x) 
× 150(y) × 900(z), with 8 macro-particles per cell for the background plasma and 64 macro-particles per cell for the 
injected electrons.

In the plasma channel, to maintain a constant phase in the transverse field the plasma density has been tapered 
as33
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where ψ0 = kpζ(z = 0, t = 0) is the initial phase.

Calculation of the wakefield by an electron beam. According to the theory of beam-driven plasma 
wakefield37,38, the transverse field excited by an electron beam with a number density nb(r, ζ) = nb0ψ(r)f(ζ) can 
be expressed as

∫ ∫ζ π ζ ψ ζ ζ ζ= ′ ′ ′∂ ′ ′ ′ −
ζ

⊥

∞

′ < >W r ek n d r dr r I k r K k r f k( , ) 4 ( ) ( ) ( ) ( )sin ( ), (12)p b r p p p0
0 0

1 1

where I1 and K1 are the first-order modified Bessel function of the first and second kind, ψ(r) and f(ζ) are the density 
profiles in radial and axial directions, respectively, r < = min(r, r') and r > = max(r, r'). For a electron bunch with 
Heaviside step-function profiles in both radial and axial directions, ψ ζ ζ ζ= − = − +r r r f L( ) ( ), ( ) ( ) ( )b b   , 
rb is the radius of the electron bunch and Lb is the longitudinal length of the electron bunch, the radial wakefield in 
the body of the bunch (r ≤ rb, −Lb ≤ ζ ≤ 0) can be written as

ζ ζ= − .⊥W r E k r n
n

k I k r K k r( , ) (1 cos ) ( ) ( )
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b

p
p p p b0

0

0
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Let the amplitude of W⊥ equal to the amplitude of the transverse wakefield in equation (1), one can obtain the 
beam loading limit in equation (4).

Calculation of the electron radiation. The radiation is calculated using the trajectories from PIC simula-
tions. We computed the radiation spectra in the far field by41
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The radiation spectra of the electron beam is calculated by incoherent adding all the spectra of the 1100 
macro-particles. The estimation of the radiation peak brightness [in unit of photons/(s mrad2 mm2 0.1% BW)] is 
as follows. We first multiply the term d2Nph/dω dΩ of one electron by the total electron number πn r Lb b b

2  in the 
bunch, then we divide it by the bunch duration Lb/c and the sectional area πrb

2, and then multiply it by 0.1% BW 
and 10−6 due to conversion from square radians to squared milliradians.

Data availability. The data that support the findings of this study are available from the corresponding 
authors upon request.
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