Article | Open | Published:

Microbial communities in the native habitats of Agaricus sinodeliciosus from Xinjiang Province revealed by amplicon sequencing

Scientific Reportsvolume 7, Article number: 15719 (2017) | Download Citation

Abstract

Agaricus sinodeliciosus is an edible species described from China and has been successfully cultivated. However, no studies have yet reported the influence factors implicated in the process of fructification. To better know abiotic and biotic factors, physiochemical characteristics and microbial communities were investigated in five different soil samples collected in the native habitats of specimens from northern Xinjiang, southern Xinjiang, and Zhejiang Province, respectively. There are major differences in texture and morphology among different specimens of A. sinodeliciosus from Xinjiang Province. A. sinodeliciosus from southern Xinjiang was the largest. Concentrations of DOC and TN and C/N ratio are not the main reason for the differences. Microbial communities were analyzed to find out mushroom growth promoting microbes (MGPM), which may lead to the differences. Functional microbes were picked out and can be divided into two categories. Microbes in the first category may belong to MGPM. There may be symbiotic relationships between microbes in the second category and A. sinodeliciosus. Certain analyses of microbial communities support the hypothesis that interactions between microbes and mushrooms would be implicated in morphological variation of the collected mushrooms. Redundancy analysis results indicate that high DOC/NH4 +-N ratio and NH4 +-N concentration can improve the yield of A. sinodeliciosus.

Introduction

The applications of mushroom-forming fungus in biotechnological potential play an important role in agriculture, ecology, and human health1. In many countries, mushrooms are important dietary food2,3,4,5, and worldwide yield of edible mushrooms can reach up to about 2.5 million tons every year1, most of which are basidiomycetes. It was reported that most of edible basidiomycetes cannot be cultivated under laboratory conditions1. However, some species of Agaricus belonging to Phylum Basidiomycete, have been successfully cultured, such as A. bisporus 6,7,8 and A. subrufescens Peck9.

In Xinjiang Province of China, there are large areas of desert with the primary vegetation types of Tamarix ramosissima, Phragmites australis, and Haloxylon ammodendron. A new species, A. sinodeliciosus, was reported by our group10, which can grow underground at high salinity and pH with a large and edible fruiting body. This mushroom is sold at high price by locals. Ruleless and excessive picking led to environmental damage and species degradation. The yield of A. sinodeliciosus is very low limiting incomes of local farmers. Fortunately, it has been successfully cultivated under laboratory conditions with low yield and long harvesting time. To improve local ecological environment and incomes of local farmers, the yield and harvesting time of A. sinodeliciosus should be improved and shortened, respectively.

Application of mushroom growth promoting microbes (MGPM) can improve the productivity and reduce the harvesting time. For A. subrufescens Peck cultivation, inoculation of Exiguobacterium sp., Microbacterium esteraromaticum, Arthrobacter sp., Pseudomonas resinovorans, or P. alcaliphila can significantly improve mushroom total fresh matter yield and shorten harvesting time11. In another study, MGPM were isolated from casing soil of A. subrufescens Peck, which can also reduce harvesting time and improve fresh yield9. P. putida was found to be the best MGPM to increase the yield of A. bisporus 6. Pseudomonas sp. P7014 can enhance mycelial growth and reduce harvesting time of Pleurotus eryngii 12. However, no studies have yet reported the best MGPM for A. sinodeliciosus cultivation.

Soil is a complex system including various microbes13, which play an important role in nutrient cycling14,15. Some studies have reported interactions between soil microbes and fungi. Microbial community in the native habitats of Ophiocordyceps sinensis was studied and 23 phyla were found16. Bacterial and archaeal community associated with different lichens were investigated, which showed that Alphaproteobacteria was dominant and bacteria may be the component of lichen symbiosis17. For cultivation, mushroom compost is necessary. During this process, raw materials are fermented by microbes to decompose organic materials into simple substance18,19,20. Actinomycetes and fungi are found to be the main cellulose decomposers20,21. In the wild, the nutrient used for the growth of A. sinodeliciosus was degrading biomass decomposed by soil microbes. It is important to understand the interactions between soil microbes and A. sinodeliciosus. However, no studies have yet reported the microbial community in the native habitats of A. sinodeliciosus.

To better understand the interactions between soil microbes and A. sinodeliciosus and find out some beneficial microbes which may improve the productivity and reduce the harvesting time of A. sinodeliciosus, microbial communities were analyzed.

Results

Physiochemical characteristics of soil samples in the native habitats of different specimens of A. sinodeliciosus

Major differences in texture and morphology among different specimens of A. sinodeliciosus were found. There are many factors linked to mushrooms development4. In this study, factors at levels of nutritional state of mushrooms and microbial compositions in the native habitats were investigated. The specimens from Xinjiang Province were about to form cap and the fruiting body cannot be obviously bigger any more. The specimens from southern Xinjiang were obviously larger than those from northern Xinjiang (Fig. 1). Physiochemical characteristics of soil samples were measured (Fig. 2). DOC and TN concentrations of soil samples from Xinjiang Province were higher than those from Zhejiang Province. Concentrations of DOC and TN and C/N ratio of the soil samples in the native habitats of specimen ZRL20152590 were the highest. However, for ZRL20152591 which was also collected from southern Xinjiang, concentrations of DOC and TN and C/N ratio were relatively lower. C/N ratio of soil samples of specimen ZRL20151244 from Zhejiang Province was higher than that of ZRL20152591. These results indicate that concentrations of DOC and TN and C/N ratio are not the main reason for the differences. It was assumed that there may be some MGPM in the native habitats of A. sinodeliciosus from southern Xinjiang, which may lead to the differences. Therefore, microbial communities in the native habitats of different specimens were analyzed.

Figure 1
Figure 1

Macrocharacters of different specimens. (A,B,C,D and E) represent ZRL20152585, ZRL20152589, ZRL20152590, ZRL20152591, and ZRL20151244, respectively. Bar = 1 cm.

Figure 2
Figure 2

DOC concentration, TN concentration, and C/N ratio in different soil samples. C/N ratio was calculated, dividing DOC by TN.

Richness and diversity of bacterial and fungal communities in different samples

Due to many failures of PCR amplifications, fungal communities of soil samples in the native habitats of specimen ZRL20152590 was not successfully investigated. A total of 4438934 paired-end reads for bacterial communities and 12190961 paired-end reads for fungal communities were produced. After filtering, 2498745 and 1983159 clean tags were obtained, respectively. These clean tags were assigned to 26140 and 5325 OTUs at a 97% similarity, respectively. However, most of rarefaction curves cannot reach saturation (Supplementary Fig. 1), which means that further sequencing is valuable to detect more species. For bacterial communities, the OTU number (Supplementary Table 1) in A06 (838) was the largest among the 45 samples. For fungal communities, the OTU number in D07 (223) was the largest among the 36 samples.

To better understand the differences among the communities, it is important to calculate the richness, evenness, and diversity22. Community richness can be demonstrated by Chao1 and ACE23. Simpson and Shannon diversity index were used to show community diversity, which demonstrate not only the species richness but the evenness of the species24,25,26. The patterns of Chao1 and ACE were very similar to the OTU numbers27. For bacterial communities, on the basis of OTU number, Chao 1 and ACE (Supplementary Table 1), soil sample A had the richest diversity, followed by soil sample D, whereas soil sample E showed the least richness. The Shannon diversity indices of soil sample A and D were higher than those of other specimens. The results of Simpson index were in contrast to those of Shannon diversity index. For fungal communities, soil samples A, D, and E had higher richness and diversity.

Comparative analysis of bacterial and fungal communities

Hierarchical cluster analysis of communities at genus level was used to demonstrate the different compositions of the microbial community structures (Fig. 3). For bacterial communities, the A-D group was separated from B, C, and E group. For fungal communities, in general, the A-D group was separated from B and E group. These results indicate that there are obvious differences in bacterial and fungal communities among the different samples. Based on considerations of differences in territory among different sampling sites, which can cause the differences in microbial community, there was a hypothesis that A-B, C-D, and E should be clustered together, respectively. Principal Coordinate Analysis (PCoA) was calculated (Fig. 4) and previous studies showed that the results from hierarchical cluster analysis were supported by PCoA24,25,28. In this study, for bacterial communities, A-B and C-D were clustered together, respectively and were well separated from E. For fungal communities, A and B were clustered and were well separated from D and E. These results were consistent with the hypothesis.

Figure 3
Figure 3

Hierarchical cluster analysis based on 16 S rRNA (a) and ITS (b) paired-end sequencing. The Y-axis is the clustering of the most abundant OTUs (97% similarity) in reads. The X-axis is the clustering of different soil samples.

Figure 4
Figure 4

Principal coordinates analysis (PCoA) based on 16 S rRNA (a) and ITS (b) paired-end sequencing. (A–E) represent the soil samples from specimens of ZRL20152585, ZRL20152589, ZRL20152590, ZRL20152591, and ZRL20151244, respectively.

Unique and shared OTUs in the same sampling sites (01, 02, and 03) of topsoil from different specimens were summarized (Fig. 5). For bacterial communities, there were three main phyla in the shared OTUs: Actinobacteria, Firmicutes, and Proteobacteria, and Firmicutes were highly enriched with relative abundance of 59.64% in the shared OTUs of A03B03C03D03E03 (origin of mushroom) (Fig. 6). Some microbes belonging to Actinobacteria, Gram-negative Proteobacteria or Gram-positive Firmicutes could promote spore germination and hyphal elongation of fungi29,30,31. For fungal communities, the main phyla were Ascomycota and Basidiomycota (Fig. 6). However, the relative abundance of Basidiomycota in the shared OTUs of A03B03D03E03 was very high. This was due to the contamination of mushroom mycelium. If this reason was taken into account, the dominant phylum was Ascomycota in the shared OTUs of A03B03D03E03. Fungal decomposers of cellulose included Ascomycota and Basidiomycota 32, which play an important role in the degradation of cellulose, the main polysaccharide in the soil, and were beneficial to mycelial growth9 improving the mushroom productivity12. These results indicate that some microbes belonging to Firmicutes or Ascomycota may have the ability to improve the yield of mushrooms.

Figure 5
Figure 5

Overlap of the different bacterial (ac) and fungal (df) communities. (1–3) represent the topsoil samples from different specimens

Figure 6
Figure 6

Taxonomic identities of the shared OTUs in Fig. 5 at phylum level. (ac) represent bacterial compositions of (1–3), respectively. (df) represent fungal compositions of (1–3), respectively.

Microbial compositions

To identify the phylogenetic diversity of microbial communities in different soil samples, qualified tags were assigned to phyla, classes, and genera. The phylum level identification of bacterial and fugal communities is illustrated in Supplementary Fig. 2. In total, 28 and 4 identified phyla were observed, respectively. For bacterial communities, a major difference in phylum level identification of bacterial communities between samples ABCD and E was the relative abundance of Chloroflexi, which played an important role in carbon cycling33. This difference may be attributed to regional divergence and differences in DOC concentration. It was found that the relative abundance of Bacteroidetes in samples C and D was higher than that in samples A, B, and E, especially in sample C. There was a hypothesis that bacteria in Bacteroidetes belonged to MGPM. To prove this hypothesis, community compositions at genus level should be detailedly summarized. Some isolates belonging to Actinobacteria, Gram-negative Proteobacteria or Gram-positive Firmicutes were MGPM29,30,31. Proteobacteria, Firmicutes, and Actinobacteria were highly enriched in all samples. The total relative abundance of these three phyla ranged from 19.2% (B02) to 97.2% (B04), only four samples of which were under 50%. These results indicate that the presence of these microbes may be beneficial for the growth of mushrooms. For fungal communities, if contamination of mushroom mycelium was taken into account, the dominant phylum was Ascomycota. However, Zygomycota was highly enriched in some samples D and E, and Chytridiomycota was only detected in D01 and D03.

The taxonomic breakdown at class level is shown in Supplementary Fig. 3. 58 bacterial classes and 11 fungal classes were detected. For bacterial communities, an obvious difference was that Acidobacteria and Actinobacteria were highly enriched in different soil samples of B, respectively. The relative abundances of Alphaproteobacteria and Acidimicrobiia in samples A, C, and E were much higher than those in sample B. Flavobacteriia was detected in samples C and D with high relative abundance. The relative abundance of Anaerolineae in sample D was much higher than that in other samples. Gemmatimonadetes was hardly detected in sample E. For fungal communities, the obvious difference was that the relative abundances of Dothideomycetes and Sordariomycetes in samples A, B, C, and D were higher than those in sample E. On the contrary, Tremellomycetes was detected in sample E with high relative abundance.

To prove the hypothesis, community compositions at genus level were detailedly summarized (Fig. 7). In total, 219 bacterial genera and 82 fungal genera were detected. There were great differences between ABCD and E. A lot of clean tags in each sample were not classified at genus level, especially in samples D and E.

Figure 7
Figure 7

Taxonomic classification of 16 S rRNA (a) and ITS (b) paired-end sequencing at genus level. Genera making up less than 0.1% of total reads in all communities were classified as “others”.

Discussions

Community evenness was found to play an important role in resisting environmental stress26, which can be demonstrated by Shannon diversity index. Soil samples from Xinjiang Province were characterized by high salinity and pH. However, for bacterial and fungal communities, the Shannon diversity indices of soil sample E from Zhejiang Province were higher than those of soil sample B and C. Soil in Zhejiang Province was characterized by low salinity and pH. The relatively lower pH may lead to the higher values of Shannon diversity indices of soil sample E.

To find out functional microbes which were beneficial for the growth of A. sinodeliciosus, some special microbes were picked out. These special microbes can be divided into two categories. The first category is microbes highly enriched in the topsoil of sample C or D and hardly detected in other samples (Supplementary Table 2). The second category is microbes only detected in the soil of B, C, and D, and not detected in the soil of A and E (Supplementary Table 3). It was assumed that some microbes in the first category belong to MGPM, which have the ability to improve the productivity and reduce the harvesting time6,9,11,12. The microbes can be divided into five kinds. The first one was petroleum degraders. Alcanivorax was detected in sample C with high relative abundance (Fig. 7), which was considered as obligate hydrocarbonoclastic bacteria and took an important role in biological removal of petroleum hydrocarbons from petroleum-contaminated marine environments34,35,36. Altererythrobacter was an important petroleum-aromatic degrader in marine environments37, which was also detected in sample C. These two genera were also detected in other samples from Xinjiang Province and not detected in sample E. Based on these results, there was an assumption that long long ago, the desert of Xinjiang Province may be a lake with high salinity and pH, which was polluted by petroleum.

The second one was microbes associated with nitrogen metabolism. Achromobacter highly enriched in sample C03 can grow anaerobically with KNO3 38. Parapedobacter, only detected in sample C and highly enriched in sample C03, can reduce nitrate into nitrite39. Filomicrobium, also only detected in sample C, was reported to be isolated from oil-polluted saline soil and positive for nitrate reduction activity40. The finding of Filomicrobium was consistent with the assumption. Halomonas can convert nitrate into nitrogen at high salinity and pH28,41,42,43, which was detected in samples A, C, and D, and highly enriched in sample C01. Thiobacillus was only detected in sample D, which was able to reduce nitrate and nitrite44. The finding of these microbes indicates that there is nitrate in the soil of Xinjiang, and data of ion chromatograph shows that nitrate concentration was very high in the soil, especially in the topsoil of sample C (Supplementary Table 4). Paired-end sequencing detected not only denitrifying bacteria but also ammonia-oxidizing bacteria and nitrite-oxidizing bacteria. Nitrosococcus detected in sample D was reported to be able to utilize ammonia as energy source and reducing power for growth with nitrite as end product45. Nitrolancea detected in sample D can use nitrite or formate as energy source and CO2 as carbon source46. The finding of these microbes indicates that nitrogen cycle existed in soil from sample D.

The third one was microbes associated with sulfur metabolism. Thiobacillus only detected in sample D was reported to be able to oxidize sulfide into elemental sulfur and convert nitrate into nitrogen simultaneously47,48. Sulfide was the product of sulfate reduction41,42,49. Desulfobacca also only detected in sample D was acetate-degrading sulfate reducer50. Although data of ion chromatograph shows that sulfate concentration was also very high in the soil of Xinjiang Province, bacteria associated with sulfur metabolism was not detected in other samples. It was found that sulfate concentration in the topsoil of sample D was the highest (Supplementary Table 4), which may lead to this difference. In samples A, B, and C, there may be some rare microbes associated with sulfur metabolism, which were not detected under the current sequencing depth.

The fourth one was cellulose decomposers. It was reported that Owenweeksia producing oxidase, catalase, and alkaline phosphatase under high salinity conditions cannot use cellulose51, which were mainly detected in samples C and D. Iamia is positive for oxidase and catalase and can reduce nitrate into N2 52, which was highly enriched in sample C and hardly detected in other samples. Constrictibacter and Algoriphagus, highly enriched in sample C, can produce acid and alkaline phosphatase, esterase (C4), esterase lipase (C8), and β-glucosidase53,54, which plays an important role in cellulose degradation. Aspergillus can produce endo-glucanase and β-glucosidase55, which was detected in the topsoil of A, B, and D, and was highly enriched in sample D. Cellulose is the main polysaccharide in the soil32. Cellulose decomposers play an important role in the degradation of cellulose, which was beneficial to mycelial growth9 improving mushroom productivity12. It was reported that in the acidic topsoil, cellulolytic bacteria included Betaproteobacteria, Bacteroidetes, and Acidobacteria, and fungal decomposers included Ascomycota and Basidiomycota, which were represented by Trichosporon and Cryptococcus 32. Topsoil of Xinjiang and Zhejiang Province was alkaline and acidic, respectively. The bacterial decomposer Constrictibacter found in the topsoil of Xinjiang Province belongs to Alphaproteobacteria 53 and Algoriphagus belongs to Bacteroidetes 54, respectively. The fungal decomposers found belong to Ascomycota 56, which can be used as evidence of result that some microbes belonging to Ascomycota may have the ability to improve the yield of mushrooms (Fig. 6). The finding of this study provided some evidence for the hypothesis that bacteria in Bacteroidetes belong to MGPM, which was in agreement with the literature32. However, Alphaproteobacteria was not detected in the literature, which was mainly due to the difference in pH value between the literature and our study. The composition of decomposers in the topsoil of Zhejiang Province was in agreement with the literature.

The fifth one was hormones producers which can secrete bioactive growth regulators57. Promicromonospora can produce gibberellins promoting plant growth and development57. In this study, Promicromonospora highly enriched in sample C03 was detected in samples A, B, C, and D and not detected in sample E. This result indicates that Promicromonospora may produce hormones promoting mushrooms growth, which was related to the fact that mushrooms from Xinjiang Province were much larger than those from Zhejiang Province and mushrooms from southern Xinjiang was larger than those from northern Xinjiang.

There must be some microbes in the first category belonging to MGPM. It was reported that for A. bisporus cultivation, P. putida was found to be the best MGPM6. 1-octen-3-ol produced by conidia of Penicillium paneum can inhibit the germination process58, which can be consumed by P. putida. Therefore the yield of mushroom was increased6. However, the species of MGPM and the promoting mechanism for A. sinodeliciosus were still unknown, which need further studies.

The microbes in the second category can be regarded as typical microbes of A. sinodeliciosus and there may be symbiotic relationships between the typical microbes and A. sinodeliciosus. It was reported that land plants and soil fungi of the phylum Glomeromycota can form arbuscular mycorrhizal (AM) symbiosis59. Bacteria was reported to be component of the lichen symbiosis17. Whether the symbiotic relationships existed or not still need further studies. Microbial community analyses indicate that interactions between functional microbes and mushrooms have something to do with the differences in texture and morphology among different specimens.

RDA biplots (Fig. 8) were drawn to reveal the relationships between microbial community compositions of samples or microbial groups and environmental variables. Different environmental variables made great influences. It was found that high C/N ratio, DOC concentration, NO3 -N concentration, and TN concentration were related to the bacterial communities living in samples C01, C02, and C03. High nutrient concentrations were also related to the bacterial community compositions in the intertidal wetland60. However, the bacterial community compositions of samples D01, D02, and D03 also collected from the southern Xinjiang were not related to those high nutrient concentrations, which were related to the high sulfate concentration. This may be due to the high sulfate concentration in the topsoil of sample D, which turned to be main influence factor among the different environmental variables and this may be able to explain the relationship between high NO3 -N concentration and the bacterial community compositions of samples C01, C02, and C03, too. Relative abundances of Iamia, Aequorivita, and Pelagibacterium belonging to the functional microbes were associated with high nutrient concentrations, and Algoriphagus and Parapedobacter were associated with high sulfate concentration. High concentrations of sulfate, NO3 -N, DOC, TIC, and TN were related to the fungal communities living in samples D01, D02, and D03. AM fungal community compositions were also related to soil NO3 -N content61. Relative abundance of Alternaria was associated with high concentrations of sulfate, NO3 -N, DOC, TIC, and TN, which were negatively correlated with relative abundances of Acremonium and Mortierella. It was interesting that relative abundance of Agaricus was associated with high C/N ratio and NH4 +-N concentration, which was inconsistent with the previous results that concentrations of DOC and TN and C/N ratio are not the main reason for the differences in texture and morphology among different specimens. This was due to the fact that for RDA analysis, Agaricus was in the form of mycelium not fruiting body. High C/N ratio and NH4 +-N concentration can enhance the mycelial growth of Agaricus. According to the determination of NO3 -N and NH4 +-N (Supplementary Table 4), TN mainly existed in the form of NO3 -N, which was negatively correlated with relative abundances of Agaricus. Reducing NO3 -N concentration in soil can improve the C/N ratio and thereby enhance the mycelial growth of Agaricus. The ratios of DOC to NH4 +-N in the topsoil of A. sinodeliciosus were much higher than these in the topsoil of A. padanus and A. planipileus, especially in the topsoil of specimen C. This result indicates that high DOC/NH4 +-N ratio and NH4 +-N concentration can improve the yield of A. sinodeliciosus. RDA analysis can be guidance for the cultivation of A. sinodeliciosus.

Figure 8
Figure 8

RDA biplots. (a) Relationships between bacterial community compositions of samples or bacterial groups and environmental variables; (b) Relationships between fungal community compositions of samples or fungal groups and environmental variables.

Methods

Study site and sampling

Five different mushroom specimens were collected from northern Xinjiang (ZRL20152585 and ZRL20152589), southern Xinjiang (ZRL20152590 and ZRL20152591), and Zhejiang Province (ZRL20151244) of China, respectively. As shown in Supplementary Fig. 4, soil samples of different horizontal (0, 10 cm, and 20 cm) and vertical (0–5 cm, 5–10 cm, and 10–15 cm) directions were symmetrically collected from the native habitats of different specimens. In total, 27 soil samples were collected from native habitats of each specimens and a total of 135 soil samples were obtained, which were stored at −20 °C in a car refrigerator. To identify mushroom species, DNA was extracted form specimen, and PCR reactions and sequencing were performed using primers ITS1F and ITS4B. Phylogeny of five specimens based on ITS sequences was shown in Supplementary Fig. 5. Specimen ZRL20152585 was clustered with A. padanus, and specimens ZRL20152589, ZRL20152590, and ZRL20152591 were clustered with A. sinodeliciosus. Specimen ZRL20151244 was clustered with A. planipileus. To find out MGPM and typical microbes for A. sinodeliciosus, it is necessary to investigate the microbial communities between A. sinodeliciosus and other species. In this study, soil samples in the native habitats of specimens ZRL20152585 and ZRL20151244 were used as territorial and interspecific control, ZRL20152589 as territorial and intraspecific control. After being transported to laboratory, soil samples were kept at −80 °C before DNA extraction.


Analytical methods

Concentrations of sulfate and NO3 -N were quantified according to previous studies41,42,49. Dissolved organic carbon (DOC) and total soluble nitrogen (TN) were measured using a TOC/TNb analyzer (Elementar vario TOC, Elementar Co., Germany)62. C/N ratio was calculated, dividing DOC by TN. NH4 +-N was measured by indo phenol blue method63,64.


DNA extraction

Before DNA extraction, soil samples were treated using a 2 mm sieve to remove stone, plant roots, and tissues16. Total DNA was extracted from 0.25 g (wet weight) of soil sample using a PowerSoil DNA kit (MoBio Laboratories, CA, USA) following the protocol of manufacturer28,41. At the same time, DNA extraction of 135 soil samples was separately performed, and DNA solution from symmetric locations of each specimen was pooled. Finally, for each specimen, 9 DNA solution was obtained (Supplementary Table 5), which was used for sequencing.


Amplicon sequencing

To determine the diversity and structure of microbial communities, the protocol as previously described was used65. PCR amplifications were performed with different primers. For bacterial communities, the primers were 338 F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806 R (5′-GGACTACHVGGGTWTCTAAT-3′)66. For fungal communities, the primers were ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2 (5′-GCTGCGTTCTTCATCGATGC-3′)67. The primer contains an error-correcting barcode unique to each sample. To minimize the impact of potential early round PCR errors, twenty independent PCR products of each sample were quantified using a Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA) and then mixed accordingly to achieve equal concentration in the final mixture, which was used to construct PCR amplicon libraries. Sequencing was performed on an Illumina HiSeq platform. Raw sequencing data obtained from this study were deposited to the NCBI Sequence Read Archive database with accession no. SRP093673.


Data analysis

FLASH was used to merge pairs of reads from the original DNA fragments to produce raw tags68. To obtain clean tags, raw tags were filtered strictly according to previous study69. First, QIIME (Quantitative Insights Into Microbial Ecology)70 quality filters was used to filter raw tags. Then operational taxonomic units (OTUs) were picked using UPARSE pipeline71. Sequences were assigned to OTUs at 97% similarities. Alpha diversity and beta diversity were calculated. Venn diagrams were used to describe the similarity and difference among the same sampling sites of topsoil from different specimens. Hierarchical cluster analysis was performed using gplots package of R24, and distance algorithm and clustering method were “euclidean” and “complete”, respectively. For PCoA of bacterial and fungal community, distance algorithm was “binary jaccard”. In order to reveal the relationships between microbial community compositions of samples or microbial groups and environmental variables, redundancy analysis (RDA) was performed using CANOCO72.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Ohm, R. A. et al. Genome sequence of the model mushroom Schizophyllum commune. Nature biotechnology 28, 957–963 (2010).

  2. 2.

    Gbolagade, J., Ajayi, A., Oku, I. & Wankasi, D. Nutritive value of common wild edible mushrooms from southern Nigeria. Global Journal of Biotechnology and Biochemistry 1, 16–21 (2006).

  3. 3.

    Kothe, E. Mating-type genes for basidiomycete strain improvement in mushroom farming. Applied microbiology and biotechnology 56, 602–612 (2001).

  4. 4.

    Kües, U. & Liu, Y. Fruiting body production in basidiomycetes. Applied microbiology and biotechnology 54, 141–152 (2000).

  5. 5.

    Thawthong, A. et al. Discovering and domesticating wild tropical cultivatable mushrooms. (2014).

  6. 6.

    Zarenejad, F., Yakhchali, B. & Rasooli, I. Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production. World Journal of Microbiology and Biotechnology 28, 99–104 (2012).

  7. 7.

    Patyshakuliyeva, A. et al. Uncovering the abilities of Agaricus bisporus to degrade plant biomass throughout its life cycle. Environmental microbiology 17, 3098–3109 (2015).

  8. 8.

    Morin, E. et al. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proceedings of the National Academy of Sciences 109, 17501–17506 (2012).

  9. 9.

    Young, L.-S., Chu, J.-N., Hameed, A. & Young, C.-C. Cultivable mushroom growth-promoting bacteria and their impact on Agaricus blazei productivity. Pesquisa Agropecuária Brasileira 48, 636–644 (2013).

  10. 10.

    Wang, Z.-R. et al. Edible species of Agaricus (Agaricaceae) from Xinjiang Province (Western China). Phytotaxa 202, 185–197 (2015).

  11. 11.

    Young, L.-S., Chu, J.-N. & Young, C.-C. Beneficial bacterial strains on Agaricus blazei cultivation. Pesquisa Agropecuária Brasileira 47, 815–821 (2012).

  12. 12.

    Kim, M. K. et al. Effect of Pseudomonas sp. P7014 on the growth of edible mushroom Pleurotus eryngii in bottle culture for commercial production. Bioresource technology 99, 3306–3308 (2008).

  13. 13.

    Bardgett, R., Hopkins, D. & Usher, M. Biological diversity and function in soils. (Cambridge University Press, 2005).

  14. 14.

    Nannipieri, P. et al. Microbial diversity and soil functions. European journal of soil science 54, 655–670 (2003).

  15. 15.

    Reynolds, H. L., Packer, A., Bever, J. D. & Clay, K. Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84, 2281–2291 (2003).

  16. 16.

    Yang, R.-H. et al. Bacterial diversity in native habitats of the medicinal fungus Ophiocordyceps sinensis on Tibetan Plateau as determined using Illumina sequencing data. FEMS microbiology letters 362, fnu044 (2015).

  17. 17.

    Bates, S. T., Cropsey, G. W., Caporaso, J. G., Knight, R. & Fierer, N. Bacterial communities associated with the lichen symbiosis. Applied and environmental microbiology 77, 1309–1314 (2011).

  18. 18.

    Mehta, C., Palni, U., Franke-Whittle, I. & Sharma, A. Compost: its role, mechanism and impact on reducing soil-borne plant diseases. Waste management 34, 607–622 (2014).

  19. 19.

    Ryckeboer, J. et al. A survey of bacteria and fungi occurring during composting and self-heating processes. Annals of Microbiology 53, 349–410 (2003).

  20. 20.

    Zhang, X. et al. Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production. Bioresource technology 170, 183–195 (2014).

  21. 21.

    Wang, C. et al. New insights into the structure and dynamics of actinomycetal community during manure composting. Applied microbiology and biotechnology 98, 3327–3337 (2014).

  22. 22.

    Gihring, T. M., Green, S. J. & Schadt, C. W. Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environmental microbiology 14, 285–290 (2012).

  23. 23.

    Chao, A. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of statistics, 265–270 (1984).

  24. 24.

    Lu, L., Xing, D. & Ren, N. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. Water research 46, 2425–2434 (2012).

  25. 25.

    Luo, J. et al. Microbial community structures in a closed raw water distribution system biofilm as revealed by 454-pyrosequencing analysis and the effect of microbial biofilm communities on raw water quality. Bioresource technology 148, 189–195 (2013).

  26. 26.

    Wittebolle, L. et al. Initial community evenness favours functionality under selective stress. Nature 458, 623–626 (2009).

  27. 27.

    Zhang, T., Shao, M.-F. & Ye, L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. The ISME journal 6, 1137–1147 (2012).

  28. 28.

    Zhou, J., Zhou, X., Li, Y. & Xing, J. Bacterial communities in haloalkaliphilic sulfate-reducing bioreactors under different electron donors revealed by 16S rRNA MiSeq sequencing. Journal of hazardous materials 295, 176–184 (2015).

  29. 29.

    Xavier, L. J. & Germida, J. J. Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil biology and biochemistry 35, 471–478 (2003).

  30. 30.

    Aspray, T., Jones, E. E., Davies, M., Shipman, M. & Bending, G. D. Increased hyphal branching and growth of ectomycorrhizal fungus Lactarius rufus by the helper bacterium Paenibacillus sp. Mycorrhiza 23, 403–410 (2013).

  31. 31.

    Carpenter-Boggs, L., Loynachan, T. & Stahl, P. Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil biology and biochemistry 27, 1445–1451 (1995).

  32. 32.

    Štursová, M., Žifčáková, L., Leigh, M. B., Burgess, R. & Baldrian, P. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiology Ecology 80, 735–746 (2012).

  33. 33.

    Hug, L. A. et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1, 22 (2013).

  34. 34.

    Schneiker, S. et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nature biotechnology 24, 997–1004 (2006).

  35. 35.

    Head, I. M., Jones, D. M. & Röling, W. F. Marine microorganisms make a meal of oil. Nature Reviews Microbiology 4, 173–182 (2006).

  36. 36.

    Luan, X. et al. Genome sequence of the petroleum hydrocarbon-degrading bacterium Alcanivorax sp. strain 97CO-5. Genome announcements 2, e01277–01214 (2014).

  37. 37.

    Teramoto, M., Suzuki, M., Hatmanti, A. & Harayama, S. The potential of Cycloclasticus and Altererythrobacter strains for use in bioremediation of petroleum-aromatic-contaminated tropical marine environments. Journal of bioscience and bioengineering 110, 48–52 (2010).

  38. 38.

    Vandamme, P. et al. Achromobacter animicus sp. nov., Achromobacter mucicolens sp. nov., Achromobacter pulmonis sp. nov. and Achromobacter spiritinus sp. nov., from human clinical samples. Systematic and applied microbiology 36, 1–10 (2013).

  39. 39.

    Kumar, R. et al. Parapedobacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. International journal of systematic and evolutionary microbiology 65, 129–134 (2015).

  40. 40.

    Wu, X.-L., Yu, S.-L., Gu, J., Zhao, G.-F. & Chi, C.-Q. Filomicrobium insigne sp. nov., isolated from an oil-polluted saline soil. International journal of systematic and evolutionary microbiology 59, 300–305 (2009).

  41. 41.

    Zhou, J.-M. et al. Performance of a haloalkaliphilic bioreactor under different NO3 /SO4 2− ratios. Bioresource technology 153, 216–222 (2014).

  42. 42.

    Zhou, J.-M. et al. Performance of a haloalkaliphilic bioreactor and bacterial community shifts under different COD/SO4 2− ratios and hydraulic retention times. Journal of hazardous materials 274, 53–62 (2014).

  43. 43.

    Peyton, B. M., Mormile, M. R. & Petersen, J. N. Nitrate reduction with Halomonas campisalis: kinetics of denitrification at pH 9 and 12.5% NaCl. Water research 35, 4237–4242 (2001).

  44. 44.

    Pous, N., Koch, C., Colprim, J., Puig, S. & Harnisch, F. Extracellular electron transfer of biocathodes: Revealing the potentials for nitrate and nitrite reduction of denitrifying microbiomes dominated by Thiobacillus sp. Electrochemistry Communications 49, 93–97 (2014).

  45. 45.

    Wang, L., Lim, C. K., Dang, H., Hanson, T. E. & Klotz, M. G. D1FHS, the type strain of the ammonia-oxidizing bacterium Nitrosococcus wardiae spec. nov.: enrichment, isolation, phylogenetic, and growth physiological characterization. Frontiers in microbiology 7 (2016).

  46. 46.

    Sorokin, D. Y. et al. Nitrolancea hollandica gen. nov., sp. nov., a chemolithoautotrophic nitrite-oxidizing bacterium isolated from a bioreactor belonging to the phylum Chloroflexi. International journal of systematic and evolutionary microbiology 64, 1859–1865 (2014).

  47. 47.

    Huang, C. et al. Microbial community structure and function in response to the shift of sulfide/nitrate loading ratio during the denitrifying sulfide removal process. Bioresource technology 197, 227–234 (2015).

  48. 48.

    Wang, A.-J., Du, D.-Z., Ren, N.-Q. & Van Groenestijn, J. W. An innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrificans. Journal of Environmental Science and Health 40, 1939–1949 (2005).

  49. 49.

    Zhou, J. & Xing, J. Effect of electron donors on the performance of haloalkaliphilic sulfate-reducing bioreactors for flue gas treatment and microbial degradation patterns related to sulfate reduction of different electron donors. Biochemical Engineering Journal 96, 14–22 (2015).

  50. 50.

    Göker, M. et al. Complete genome sequence of the acetate-degrading sulfate reducer Desulfobacca acetoxidans type strain (ASRB2 T). Standards in genomic sciences 4, 393–401 (2011).

  51. 51.

    Lau, K. W. et al. Owenweeksia hongkongensis gen. nov., sp. nov., a novel marine bacterium of the phylum ‘Bacteroidetes’. International journal of systematic and evolutionary microbiology 55, 1051–1057 (2005).

  52. 52.

    Kurahashi, M., Fukunaga, Y., Sakiyama, Y., Harayama, S. & Yokota, A. Iamia majanohamensis gen. nov., sp. nov., an actinobacterium isolated from sea cucumber Holothuria edulis, and proposal of Iamiaceae fam. nov. International journal of systematic and evolutionary microbiology 59, 869–873 (2009).

  53. 53.

    Yamada, K. et al. Constrictibacter antarcticus gen. nov., sp. nov., a cryptoendolithic micro-organism from Antarctic white rock. International journal of systematic and evolutionary microbiology 61, 1973–1980 (2011).

  54. 54.

    Alegado, R. A. et al. Algoriphagus machipongonensis sp. nov., co-isolated with a colonial choanoflagellate. International journal of systematic and evolutionary microbiology 63, 163–168 (2013).

  55. 55.

    Kim, H. et al. Production of cellulases by Aspergillus sp. GDX02 in a solid-state fermentation using oil palm empty fruit bunch in Developments in sustainable chemical and bioprocess technology (ed. Pogaku R. et al.) 51–57(Springer, 2013).

  56. 56.

    Geiser, D. M. Sexual structures in Aspergillus: morphology, importance and genomics. Medical mycology 47, S21–S26 (2009).

  57. 57.

    Kang, S.-M. et al. Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. Journal of Microbiology 50, 902–909 (2012).

  58. 58.

    Chitarra, G. S., Abee, T., Rombouts, F. M. & Dijksterhuis, J. 1-Octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability, respiration, intracellular pH, and changes the protein composition. FEMS Microbiology Ecology 54, 67–75 (2005).

  59. 59.

    Fellbaum, C. R. et al. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences 109, 2666–2671 (2012).

  60. 60.

    Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Applied and environmental microbiology 78, 8264–8271 (2012).

  61. 61.

    Zheng, Y. et al. Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow. FEMS Microbiology Ecology 89, 594–605 (2014).

  62. 62.

    Zhao, C. et al. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe. Scientific reports 6 (2016).

  63. 63.

    Batool, S. et al. Effect of azo dye on ammonium oxidation process and ammonia-oxidizing bacteria (AOB) in soil. RSC Advances 5, 34812–34820 (2015).

  64. 64.

    Man, L. & Zucong, C. Effects of chlorothalonil and carbendazim on nitrification and denitrification in soils. Journal of Environmental Sciences 21, 458–467 (2009).

  65. 65.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences 108, 4516–4522 (2011).

  66. 66.

    Dennis, K. L. et al. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Cancer research 73, 5905–5913 (2013).

  67. 67.

    Mukherjee, P. K. et al. Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog 10, e1003996 (2014).

  68. 68.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

  69. 69.

    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature methods 10, 57–59 (2013).

  70. 70.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature methods 7, 335–336 (2010).

  71. 71.

    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature methods 10, 996–998 (2013).

  72. 72.

    Lindström, E. S., Kamst-Van Agterveld, M. P. & Zwart, G. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Applied and environmental microbiology 71, 8201–8206 (2005).

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (No. 31360014 and 31470152).

Author information

Affiliations

  1. State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P.R. China

    • Jiemin Zhou
    •  & Ruilin Zhao
  2. College of Forestry, Southwest Forestry University, Kunming, 650224, Yunnan Provinve, P.R. China

    • Xuming Bai
  3. College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100408, P.R. China

    • Ruilin Zhao

Authors

  1. Search for Jiemin Zhou in:

  2. Search for Xuming Bai in:

  3. Search for Ruilin Zhao in:

Contributions

J.Z. and R.Z. designed the experiments. J.Z. and X.B. performed the experiments and analyzed the data. J.Z. wrote the paper.

Competing Interests

The authors declare that they have no competing interests.

Corresponding author

Correspondence to Ruilin Zhao.

Electronic supplementary material

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41598-017-16082-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.