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Protein-Ligand Blind Docking Using 
QuickVina-W With Inter-Process 
Spatio-Temporal Integration
Nafisa M. Hassan1, Amr A. Alhossary  2, Yuguang Mu1 & Chee-Keong Kwoh  2

“Virtual Screening” is a common step of in silico drug design, where researchers screen a large library 
of small molecules (ligands) for interesting hits, in a process known as “Docking”. However, docking 
is a computationally intensive and time-consuming process, usually restricted to small size binding 
sites (pockets) and small number of interacting residues. When the target site is not known (blind 
docking), researchers split the docking box into multiple boxes, or repeat the search several times using 
different seeds, and then merge the results manually. Otherwise, the search time becomes impractically 
long. In this research, we studied the relation between the search progression and Average Sum of 
Proximity relative Frequencies (ASoF) of searching threads, which is closely related to the search speed 
and accuracy. A new inter-process spatio-temporal integration method is employed in Quick Vina 2, 
resulting in a new docking tool, QuickVina-W, a suitable tool for “blind docking”, (not limited in search 
space size or number of residues). QuickVina-W is faster than Quick Vina 2, yet better than AutoDock 
Vina. It should allow researchers to screen huge ligand libraries virtually, in practically short time and 
with high accuracy without the need to define a target pocket beforehand.

In the in silico drug discovery domain, “Virtual Screening” is defined as “automatically evaluating very large 
libraries of compounds using computer programs”1. It is entitled to produce and screen drug candidates more 
effectively than the physical assessment of thousands of diverse compounds a day, using high-throughput screen-
ing robotics, and thus increasing the rate of drug discovery while reducing the need for expensive laboratory 
work. Molecular docking is the core of virtual screening. It aims at prediction of the modes and affinities of 
non-covalent binding between a pair of molecules. Oftentimes, the molecules consist of a macromolecule (the 
receptor) and a small molecule (the ligand). The multidimensional search space of the ligand includes the degrees 
of freedom of its translation, rotation, and torsions of flexible bonds that may exist within it. Some packages con-
sider flexibility in the receptor as well2–4.

A successful docking application needs to have two pillars: 1) a method to explore the ligand-receptor con-
formation space for plausible poses [the search algorithm], and 2) a method to relatively order those plausible 
poses [the scoring function]. In a recent study, Wang et al. performed a comprehensive evaluation of ten famous 
currently available docking programs, including five commercial and five academic programs. Wang et al. stud-
ied their accuracies of binding pose prediction (sampling power) and their binding affinity estimation (scoring 
power) and concluded that AutoDock Vina4 has the highest scoring power among them5.

AutoDock Vina (referred to as Vina hereinafter) utilizes a powerful hybrid scoring function (empiri-
cal + knowledge-based) and employs an evolutionary search, for the minimum-energy docking conformations 
(solutions). In evolutionary search, a solution is iteratively optimized until a considerably accepted solution is 
found. If we think of every “possible solution” as a “point in the search space”, the search process in Vina is 
performed as iterations of 1) global optimization in the form of modified Monte Carlo6, performed on initial 
seeds (pseudorandom points), followed by 2) local optimization with BFGS method7. The modified Monte Carlo 
search is to perform a cycle of what we call an “essential” local optimization first before testing the proposed point 
according to the Metropolis acceptance criteria. Please refer to the supplementary material for illustration on the 
search process. The dimensions of the search space in Vina family include three translations and three rotations 
of the ligand (applied at its root), as well as the torsion angles of all active (rotatable) bonds within it or within the 
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receptor. That is to say, the number of degrees of freedom (N) in Vina is 6 + number of rotatable bonds. Quick 
Vina (referred to as ‘QVina 1’ hereinafter)8 was developed to speed up Vina using heuristic to save local optimi-
zation by trying the potentially significant points only. A “potentially significant point” is a point that is expected 
to undergo optimization through a new pathway not explored by other points before. The technique is to check 
any provisional point against the search thread history of visited points and accept only the points where there is 
at least one (near) history point such that for each design variable pair (provisional point – history point variable 
pair), the partial derivatives of the scoring function with respect to the variable at both points either have opposite 
signs or one of them is zero. This means that accepted points are assured to be in a new unexplored energy well. 
QVina 1 uses less search time than the original Vina does, however it was designed to run on impractically big 
number of CPUs to overcome the high rate of false negatives. QuickVina 2 (referred to as ‘QVina 2′ hereinafter)9  
restored the lost accuracy of QVina 1 (compared to Vina) by using a more robust test that considers the 
first-order-consistency-check. Please refer to the methodology and supplementary methodology sections of our 
previous work9 for more details and illustrations. Vina, QuickVina 1 and 2, depend on multiprocessing to achieve 
fast search, where several threads traverse the search space simultaneously.

Blind Docking refers to docking a ligand to the whole surface of a protein without any prior knowledge of 
the target pocket. Blind docking involves several trials/runs and several energy calculations before a favorable 
protein-ligand complex pose is found. However, the number of trials and energy evaluations necessary for a blind 
docking job is unknown. In their paper, Hetenyi, and Van Der Spoel recommended a number of trials to exceed 
100 times, and at least 10 million energy evaluations per trial in case of flexible ligands10.

When it comes to Blind Docking, most -if not all- of the famous (non-exhaustive) docking tools are quite 
limited. That is because the stochastic nature of search for a fixed number of steps makes it unlikely to sample the 
whole energy landscape surface thoroughly enough to find all the important poses. Researchers usually mitigate 
this issue by either reducing the search complexity (by splitting the docking box into multiple boxes11,12 or sacri-
ficing the flexibility of some parts of the ligand13), or repeating the search several times using different seeds14, and 
in both cases, they later merge the results together manually.

In this work, we show that enabling inter-process communication would enhance both the accuracy and 
the speed of the decision-making process, and that such enhancement is directly proportional to the amount 
of the accumulated common wisdom, among all the threads. Based on that, we introduced a new docking tool, 
QuickVina-W (referred to as QVina-W herein after), that is suitable for blind docking, eliminating the need to 
run the docking tool several times or to split the docking box and then to merge the search results.

Methods and Materials
Theory. The philosophy behind QuickVina8,9 is to optimize local searches (the most time-consuming search 
step) only to potentially significant points, by means of keeping track of the visited points in the search history 
and examining every new potential point against up to P history points before it is accepted and allowed to 
undergo local optimization. This was perfect for relatively small search spaces. However, it is quite limited for 
large-sized search space, because the search threads are diluted over the huge search volume, and hence inefficient 
sampling takes place.

The core of enabling wide docking box search is substituting the first few checks against a thread history with 
checks on a high-quality collection of common history points. That is to say, the normal (P) checks in QVina is 
split into two steps: The first step, Global step (G), is to check a small number P1 (≪P) of high quality points from 
all available threads history. The second step, Individual step (I), is the normal QVina 2 check against thread’s 
individual history points P2 (=P − P1). This way,

•	 Having history from other threads allows us to make use of other threads experience and make decisions in 
already explored energy landscape areas, while having history from an individual same thread allows us to 
make decisions in virgin areas.

•	 For a significant point, starting with P1 check decreases the number of checks needed before accepting the 
point (increased decision-making speed).

•	 For an insignificant potential point on the other hand, having the number of high quality checks, P1 kept to 
a considerably small value, leaving large enough number of history points to check in P2 before rejecting a 
point, ensures confidence that this rejection is not due to a false negative (no compromise in accuracy). Going 
through a full set of P checks then rejecting a potential insignificant point is faster than sending it to a set of 
unnecessary iterations of local optimization, the most time-consuming step of the search (increased search 
speed).

•	 The more the time passes, the more the high-quality points accumulate in the global history, the faster (and 
the more accurate) the decision is taken in the G stage. This will end up with each thread being either thor-
oughly exploring unexplored areas or just traversing explored areas.

•	 The increased speed allowed us to scan more points in the same time interval, increasing the overall search 
accuracy of the tool.

In Fig. 1, we show the flow chart of the three tools (Vina, QVina 2, and QVina-W). Please refer to the supple-
mentary file for their pseudocode.

To illustrate the theory; consider a search space with (n) number of exploring threads, the relative frequency 
(Fr) of the head of thread i to pass in proximity to any point of the history of thread j at time t ≠ 0 is
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where d(xi, xj) is the Euclidian distance between points xi and xj, and R is a predetermined cutoff. The sum of 
proximity relative Frequencies (SoF) of thread i head to pass near to the history of any other thread j at time t
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is a real number ∈ [0, n]. It is important to note that SoF can exceed 1.0 (because a thread may pass near to more 
than one other thread simultaneously). This is particularly common in two cases: 1) near local minima [in pock-
ets], where several threads tend to converge, and 2) progressively towards the end of the search, as all the threads 
tend to cover the entire search space extensively. The Average SoF (ASoF) at any time t is
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We expect that tracking ASoF over t ∈ [0, T] would show a progressing trend.
Next, consider the theoretical 2D search space shown in Fig. 2 with three threads exploring it (A, B, and C) 

and a local minimum in the lower right corner. At t = 1, none of the threads are near to the history of any other 
threads yet, so the ASoF1 = 0. When t = 2, A2 was close to the history of C1 so A2 gets score 1 and the ASoF2 would 

Figure 1. Flow chart of the search algorithm. Flow chart of the search algorithm in Vina, QVina 2, and 
QVina-W respectively from left to right.

Figure 2. Illustration of progression of threads proximity in 2D. (A–C) represent the searching threads while 
0, 1, 2, 3, and 4 refer to the time point at which the thread is. The dark area at the lower right corner represents a 
local minimum.
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equal (1/2 + 0 + 0)/3 = 0.167. When t = 3, A3 passed by the history of B2, and B3 passed by C1, so AsoF3 = (1/3 + 
1/3 + 0)/3 = 0.222. When t = 4, A4 was already descending in the well, near to B2 again (from the other side), and 
got a score of 1; B4 was near to both A1 and C0, thus got a score of 2; while C4 was close to B0, getting another score 
of 1. Therefore, ASoF4 = (1/4 + 2/4 + 1/4)/3 = 0.333. Consequently, the progress of the ASoF would be (0, 0.167, 
0.222, 0.333), which increases with time. Our hypothesis is that the increase in ASoF is associated with increased 
speed and accuracy of the decision making, as we will elaborate using an example later.

High-quality history points. An essential question here is which points we should keep from the history of 
all threads. We decided to use the output of last iteration of local optimization (also known as end points or stop 
points). Typically, these points had undergone up to 300 cycles of essential local optimization then up to other 300 
cycles of local optimization (refer to Fig. 1 and supplementary data). Therefore, each of these points is the lowest 
along the direction of gradient of up to 600 other points. Being the lowest implies being the nearest to the local 
minima (if any) in this area.

Data. We tested our theory on the core set of PDBbind 2015, which includes representative 195 protein-ligand 
complexes15–17. We used MGLTools18,19 to prepare the ligands through command line, by converting all ligands 
and receptor files into PDBQT, and enabled all rotatable bonds (backbone phi and psi, amide, and guanidinium). 
To avoid any possibility of bias, the ligands were then randomized using vina “–randomize_only” parameter, to 
generate random starting respective poses different from the experimental ligands. Moreover, for every com-
plex, we used the same stochastic search seed for both the small and large search spaces and for all the tested 
configurations.

We then validated QVina-W (in its final configuration) by virtually screening the 54520 structures from 
Maybridge library screening collection against the crystal structure of influenza A H1N1 Nucleoprotein (NP) 
chain A monomer, obtained from protein data bank (PDB ID: 2IQH), comparing the results to those obtained 
from Vina on the same structure.

Search space. We had two search space settings: one for searching a certain pocket (referred to as small 
search space hereinafter) and the other for searching the whole receptor surface without any preference to any 
pocket (referred to as large search space hereinafter).

The small search space is similar to that defined in Vina, QVina 1 and QVina 24,8,9. For each of the 195 com-
plexes of the test set, the search space is defined as the minimal rectangular parallelepiped, aligned with the 
coordinate system that includes the docked ligand, plus added 5 Å in the 3D (three dimensions: X, Y, and Z). 
Additional 5 Å were added randomly to either sides in each dimension, to decentralize the search space over the 
target pocket. If the search space in any dimension was less than 22.5 Å, it was uniformly increased to this value 
to ensure the search space allowed the ligand to rotate. For the influenza A NP, we used the T-loop binding site 
used in Awuni et al.20.

We defined the large search space (for both the PDBbind core set and Influenza NP), by determining the larg-
est dimension of the ligand, and adding its value to the protein at both directions in each of the three dimensions, 
following the recommendation that the ligand should be allowed to rotate in the search space19. We did not take 
any other measures to decentralize the search space because it is already centered on the protein center of geom-
etry, while the target pocket is somewhere on the protein surface.

Procedure overview. After preparing the benchmarking dataset, we profiled the performance of QuickVina 
on the dataset using different configurations of internal tool parameters on small search space, in order to select 
the best candidate configuration. Afterwards, we projected that configuration to large search space, where we 
applied the inter-process communication, and profiled its performance. Then we kept increasing its maximum 
number of steps, until we reached four folds of the number of steps the original Vina undergoes. We will describe 
the procedure steps in detail in the next sections.

Development of QuickVina-W. Profiling different QVina 2 on small search space. Vina has a parameter 
called “exhaustiveness” that controls how comprehensive its search is. The more the exhaustiveness, the less the 
probability a good result is missed. Throughout the profiling, we kept the exhaustiveness value equal to the num-
ber of CPUs used. We changed the code of QVina 2 to test different configurations. These configurations include 
maximum number of checks (P) mentioned earlier and buffer size (Q). For our study, we tested different combi-
nations of configurations {(P, Q)}, as well as exhaustiveness level (E). Configurations are {(P, Q)| P ∈ {0.5 N, N, 2 N, 
4 N, 6 N, 8 N} AND Q ∈ {N, 2 N, 5 N, 10 N, 20 N, 40 N} AND P ≤ Q}. Combinations are in the form {((P, Q), E) | 
E ∈ {8, 16, 32}}. The value N is the number of degrees of freedom (equals six + number of rotatable bonds). For 
example, suppose that QVina 2 is run with configuration (P = 4 N, Q = 5 N) and exhaustiveness (E = 16). When 
the ligand has 4 bonds, there will be 4 + 6 = 10 degrees of freedom (N), so the maximum number of checks would 
be the nearest 40 (4 N) points among the latest 50 (5 N), for each of the 16 threads exploring the search space.

After small search space profiling, we selected the configuration that showed the best results to project it to the 
large search space. The selected configuration was P = 4 N, Q = 5 N. We then used exhaustiveness value of 64 in 
the large search space. Details of the profiling process is available in the supplementary document.

Adding the Hybrid Buffer and profiling on large search space. We kept the maximum number of checks and the 
buffer size to 4 N and 5 N respectively. We modified the QVina 2 code to add a global buffer in addition to the 
individual buffer for every thread. We refer to the combination of both the global and individual buffers as the 
hybrid buffer, which means for a thread to check whether a potential point is significant or not, it would check the 
nearest points in the global buffer first. If not detected as significant, or if there are not enough near points in the 
global history to decide, then the thread searches the history of its own individual buffer next.
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We then profiled the two parameters of the new check: the proximity cut off radius (R) and the maximum 
number of checks allowed from the global buffer (P1 ≪ P). The proximity cut-off is calculated as the Euclidian 
distance in the three dimensions.

The number of checks actually performed from the global buffer is (p1 ≤ P1). After p1 checks are done, the rest 
of P checks (p2) are taken from the thread’s own individual buffer. Please note that p2 = P − p1 (not p2 = P − P1). 
In both steps, the history points to be checked are ordered from nearer to farther according to their Euclidian 
distance to the potential point in all N dimensions. To extend the previous example with selected configuration 
(P = 4 N, Q = 5 N) and a ligand with four rotatable bonds, the total maximum checks to be done (P) is 4 N (i.e. 40 
checks). Now, if the maximum allowed checks from the global buffer P1 is N (i.e. 10) and none of them passed the 
test, then the remaining 30 checks are completed from the individual thread buffer. If there are only 8 points in 
the history of the global buffer within the cut off R, then the individual checks p2 will be 32.

The best configuration we found was that with P1 = 1 N, R = 5 Å, P = 4 N, and Q = 5 N as shown in the supple-
mentary document.

Increasing the maximum number of steps. Applying the hybrid buffer boosted a leap of speed in QVina 2 without 
loss of accuracy. We made use of that boosted search speed without compromising the accuracy, and increased 
the accuracy further, by increasing the maximum number of steps (S) optimization iterations Vina undergoes. S 
is determined as a function of the ligand number of movable atoms and rotatable bonds. At a first sight, it seems 
that increasing S would increase the total duration of the search, and would slow the searching speed. However, 
as we showed earlier, the more steps taken so far (s ≤ S), the higher the probability to pass nearby high-quality 
history points, and consequently, the faster (and the more accurate) the decision-making will be. That is to say, 
provided T0→1000 is the time taken to do steps S0→1000, if we duplicate S, then T0→2000 < 2 * T0→1000 as we will show 
in the results.

We elected the configuration with the best results so far (P1 = 1 N, R = 5 Å, P = 4 N, and Q = 5 N) and kept 
increasing the number of steps S, expecting the accuracy to increase, and keeping in mind to preserve the speed 
faster than – or at least comparable to- that of Vina, until we reached up to 4 folds the number of steps.

Paralellizing the preparation stage. To ensure that the new tool is efficient for whole protein surface sampling, 
we additionally decreased the tool overhead time by adding multithreading to its preprocessing stage, when it 
prepares the ligand, the receptor, and the scoring grid.

Implementation Details. All angles are measured in radians and normalized to the range [−2π, 2π]. Translation 
distance is measured in Angstrom.

The newly added global history buffer class responsible for the inter-process communication is a single object 
that implements the singleton design pattern. The buffer size would increase without limits. However, as long as 
it would hold a relatively small number of points, the size is not an issue. The global buffer is implemented as an 
octree (octal tree) of history points. The octree root is a cell that spans over the whole search space; and the history 
points are distributed in the octree according to their spatial distribution in the three dimensions. The choice of 
the Octree data structure to store the history points from all threads is related to the fact that blind docking is 
a [spatially-non-focused search]. Therefore, injecting spatial orientation to enforce spatio-temporal integration 
necessitates choosing a data structure that best performs in relation to the 3D position, which is the octree.

Figure 3 shows an overview of the whole tool after putting all the parts together. While the searching threads 
explore the search space, all history points are continuously added to the circular buffer, while end points are 

Figure 3. Overview of the whole tool with both types of buffers. Searching threads are shown in violet solid 
arrows (for Monte Carlo optimization) and black dotted arrows (for BFGS optimization). End (stop) points are 
shown as small red/blue spheres. Areas where threads come close to each other are shown as light blue spheres. 
All history points are continuously added to the circular buffer, while end points are stored in the Octree 
according to their three-dimensional position. Finally, the local minima are added to the results vector.
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stored in the Octree according to their three-dimensional position. The local minima are added to the results 
vector.

With a fixed proximity cutoff, the tree traversal and processing time increases with increasing the limit of max-
imum number of contents a node possesses, because that increased limit implies more unnecessary tests. While 
on the other hand, decreasing the maximum cell (node) content limit in a recursive binary search causes longer 
processing time, because it implies deeper recursive search overhead. That means one has to balance between the 
depth and the breadth of the search.

We managed this tradeoff by having two limits, one on the minimum cell size width (WMIN, given an arbitrary 
value of 0.1 Angstrom) and another one on the maximum number of points a cell can contain (SMAX, given the 
value 8); and giving WMIN a higher priority over SMAX. This way, every leaf node can accept up to SMAX. Every time 
a new point is added to a full (containing SMAX points) leaf node, this node is converted into an internal node and 
is split into eight leaf children, unless the node is too small to be divided (i.e. unless each cell dimension Wi in the 
3D is less than WMIN). In such a case, the node will not be divided. Instead, the new point will just be added and 
the node will contain more than the default SMAX capacity. We made this decision because that condition usually 
occurs around the local minima, where nodes tend to accumulate very close to each other (note that binding 
pockets are global attractors). In this case, 1) Searching such area will be slow, because it will go so deep (down to 
14 levels according to our primary experiments), and the cell width might fall beyond the capacity of C ++ float 
type precision. 2) Most –if not all– of the adjacent nodes should be considered for checking and consequently 
there is no need for recursive calls overhead.

When a new potential point is proposed, the currently held points in the tree are filtered according to the 
Euclidian distance in the first three dimensions (i.e. in the spatial distance) to the new point. Then, those which 
are within the cut off are ordered according to the Euclidian distance (in all dimensions) to the new point from 
nearer to farther. Points that pass the local optimization step are added to the octree (the history buffer). Lastly, 
we synchronized reading/writing to the octree using C ++ 09 Shared Mutex.

Collecting Results to Analyze. For the PDBbind dataset, we collected the output data as PDBQT files, and com-
pared our results to the experimental data. We used OriginLab to facilitate studying the several dimensions 
of the data; (i.e. checks, sizes, and exhaustiveness), in order to compare the results from the combination of 
configurations.

We studied several performance measurements of the docking process, namely Acceleration, Binding Energy, 
and Root Mean Square Distance (RMSD).

•	 The acceleration was calculated by dividing the time consumed by Vina by the time of QVina 2 or QVina-W 
of the studied configuration. The components of time a tool takes are:

 (1) The search time (TS), which is the time taken purely to search for probable solutions. Search time 
acceleration (aTs) is calculated as

=a Ts
Ts

,
(5)

Ts
Vina

QVina

where TsVina and TsQvina refer to the search time of Vina and QVina respectively.
 (2) The overhead time (TH), which is the time necessary to load the input files, prepare for the run, and 

write output files. All the versions before parallelizing the preparation step share almost identical set 
of values for overhead time, and all versions after parallelization have another almost identical set.

 (3) The overall time (TO): All the clock time taken by the tool process run from start to finish, and equals 
the sum of the previous two times. The overall-time acceleration (aTo) is calculated as

=a To
To (6)

To
Vina

QVina

where ToVina and ToQVina refer to the overall time of Vina and QVina respectively.

•	 The binding energy was studied by calculating the energy of corresponding models of QVina 2 and QVina-W 
configuration(s) against that of Vina for the same complex.

•	 For the RMSD measure, a prediction was considered to be successful if the RMSD of the predicted pose (as 
calculated in4,8,9) with respect to the experimental structure is less than 2 Å. The percentage of complexes with 
successful RMSD was calculated over 195 total complexes of the PDBbind database.

In addition, we outputted all the history points from all the threads into separate files to allow our retrospec-
tive analysis. We counted the number of passes/fails in QVina 2 acceptance check per both the global buffer and 
the individual buffer, along with the number of checks per every passed test (we needn’t count the failed tests, 
because we know it is the maximum). We monitored the progression of the ratio between success in global check 
and success in individual check.

Results and Discussion
Search progressions. To study the search process, we ran a blind docking search on every complex of the 
PDBbind Core dataset using 64 threads, and counted the average sum of relative frequencies of any one of the 
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running threads to fall in close proximity of 5 Angstrom to the history “foot print” of any of the other 63 threads 
(ASoF). In Fig. 4, we study one example complex from our data set (namely PDB ID 10GS). Figure 4(I) shows the 
progression of that ASoF in the first 340 time frames (each defined as 1000 steps of local/essential-local searches 
running concurrently), while Fig. 4(II) shows snapshots of the search history at selected points on the graph 
shown in (I).

Figure 4(I) shows; in the initial loading phase (the corresponding left green segment); that the searching 
threads start uniformly distributed over the whole search space with a zero ASoF between threads, as seen on 
Fig. 4(II)a. Then rapidly most of them settle on the surface of the receptor, and consequently their ASoF starts to 
rise. The second phase (frames 13–259) shows that the search threads explore the whole accessible search space. It 
shows a steady increase in the ASoF. That goes along with the steady increase in the aggregation of threads, as seen 
in Fig. 4(II)c–g (roughly proportional to the amount of black dots in clustered structures). One unique feature of 
this figure was the transient curve-shift seen in frames 161–210 (the blue-colored segment in the middle of the 
magenta-colored one). By inspecting the search history, we noticed that the reason of this shift is that there was 
a transient thread (congestion) in one of the cavities. This congestion started, evolved, then resolved. We can see 
this incident as thread concentration spikes from d (frame 140) to e (frame 166), then the continued increase in 
f (frame 204) then decrease again in g (frame 224) to a value lower than e but higher than d. The final phase (the 
right green segment, frames 260–340) is associated with decline in the ASoF. In this phase, the running threads 
finish one by one and the density of active threads tends to decline, as seen in Fig. 4(II)h. It is noteworthy that the 
successful threads finish their searches and end earlier, while by the end of the search time, the remaining threads 
are those that tend to fail in finding suitable solutions and lost their way and tend to explore areas in the search 
space too far from the receptor surface, as in Fig. 4(II)i.

With increased relative frequency of proximity, we expect an increased rate of passing the QuickVina accept-
ance check through the global check G. We show the progression of success in that stage among every 7500 passed 
checks from all concurrent threads, in Fig. 4(III). The figure shows a rising trend. There are two positive expected 
effects on the increased frequency of G step passes: increased speed and accuracy.

Since the global stage (G) precedes the individual stage (I) and the number of all the performed steps in G 
stage represents a small portion of the total checks (p1 ≤ P1 ≪ P), we expect that the more accepted points from 
the global stage, the less the total checks become, hence less time is required for decision making. Additionally, as 
more history is accumulated in the global buffer, the search keeps becoming faster towards the end than it was in 

Figure 4. Study of search progress of 10GS. (I) Progression of Average of Sum of proximity relative Frequencies 
(ASoF) of the first 340 time frames. The numbers are averaged over periods of 1000 steps each. The curve shows 
an initial sharp rising segment and a terminal falling segment (frames 1–12 and 260–340 respectively, both 
colored in green). Between these segments, a rising trend (frames 13–259, colored in magenta) appears with a 
slightly shifted small segment (frames 161–210, colored in blue).To investigate and explain the reason of this 
curve’s features, we mark some representative points with black circles (frames 1, 9, 32, 140, 166, 204, 224, 305, 
and 338), and show their snapshots in (II). (II) Snapshots of the search progress of ligand-protein complex 
PDB ID 10GS, using 64 threads. The ligands representing the searching threads are in black. (III) Progression 
of Frequency of G test pass among all passes. Every point is the sum of G pass among 2000 passes (either G or I 
pass) from all threads.
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the beginning. That effect is already found in Fig. 5. In Fig. 5A, we show the progression of sum of checks needed 
to pass 7500 tests. It is obvious that the number of needed checks per test decreases, which means a significant 
point is accepted faster to undergo local optimization. To ensure that the declining curve is merely due to the 
effect of the increased frequency of the G component only, we plotted the different fractions of components par-
ticipating in the decision taking time in Fig. 5B. The curve shows that the (G) component is increasing while the 
(I) component is stationary.

To show the effect of increased search speed on the search time, in Fig. 6 we show the (normalized) search 
time trend achieved by QVina-W for different numbers of steps S (X1, X2, and X4), in relation to the number of 
heavy atoms. The figure shows that the (normalized) search time decreases with increasing number of steps S, and 
that decrease occurs in an increasing rate with increasing S.

The second effect of increased ASoF is the decision accuracy in terms of sensitivity. Considering QuickVina 
acceptance check as ultimate positive condition, we can define the sensitivity of the G phase successes as a rate 
of acceptance by G step divided by rate of total acceptance (G + I). Again, Fig. 7 shows a rising trend denoting 
increasing sensitivity.

Figure 5. Analysis of decision-making process. (A) Progression of decision time, in terms of number of checks 
taken to pass a potentially significant point, is the sum of checks done in 7500 passed tests. (B) Fractional 
analysis of decision taking time components. The frequency of success in the Global stage increases with time, 
while the frequency of success in the Individual stage is stationary.

Figure 6. Normalized Search Time Trend for QVina-W for steps X1, X2, and X4. The curve shift from middle 
to lower curves is much bigger than the shift from the upper to the middle curves, indicating that the search 
speed keeps increasing as the search progresses, in an increasing rate.
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Finally, to prove the relation between the ASoF and sensitivity, we plot both the ASoF from Fig. 4(I) and aver-
age sensitivity from Fig. 7 together in Fig. 8. The graph shows a definite relation between them with Correlation 
Coefficient r = 0.862, which proves our theory.

Increasing maximum steps. After deciding the best configuration of our tool (5Å1N_4N5N as shown in 
the supplementary file), we tested the effect of increasing the maximum steps on the same best setting after chang-
ing the maximum steps to be doubled (×2) and quadrupled (×4).

In term of the binding energy illustrated in Fig. 9, there is an obvious enhancement trend in QVina 2, 
QVina-W configurations X1, X2, and X4. The later shows 78% of the predictions with binding energies better 
than or equal to the original Vina 1.1.2, out of which 26% are better with average 0.81 KCal/mol more negative.

Similarly, Fig. 10A shows a clear RMSD success enhancement of QVina-W over the original Vina 1.1.2, with 
46% success in the first predicted mode, versus 39% for the Vina predictions. Similarly, Fig. 10B shows that the 
quadrupled number of steps is by far much better than Vina if we consider any (best) predicted mode (72% for 
the new QuickVina versus 63% for the original Vina).

It is here worth mentioning that for blind docking experiments over the whole receptors surface, it is useful to 
consider all predicted modes, not the first one only.

Overall acceleration after multithreading the preparation overhead. As we accelerated the over-
head time as well, it is more legitimate to calculate the acceleration based on the overall time rather than the 
search time only. In Fig. 11A, we show a crude calculation of the overall-time acceleration of previous QVina 
2 and QVina-W steps X1, X2, and X4 against Vina. The overall-time acceleration, as calculated in formula (6), 
shows that the quadrupled QVina-W still has the superiority over Vina when the ligand contains a number ≤11 
or ≥39 heavy atoms.

Finally, if we consider that a single run of the QVina-W is effectively equivalent to 4 runs without having to 
repeat the overhead time, we can normalize the acceleration calculation by means of dividing the QVina time by 
its base (B ∈ {1, 2, 4}). This way, the calculation would be

Figure 7. Progression of G check Sensitivity. The sensitivity of the global checks is shown in relation to time in 
terms of a unit of 1000 steps of the search process.

Figure 8. Relation between ASoF and Average thread Sensitivity. A plot of both ASOF and average sensitivity 
in relation to time in term of a unit of 1000 steps. It shows the definite relation between them with Correlation 
Coefficient r = 0.862.
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where B determines the abovementioned QVina base. The exact normalized acceleration values are displayed 
in Fig. 11B and summarized in Table 1. They show that the quadrupled configuration is superior to the previous 
QVina 2 with a maximum normalized acceleration of 34.33 and average 3.60 folds versus respective values of 
18.02 and 1.98 for the pervious QVina 2. It is noteworthy that the normalized acceleration average is only less 
than a factor of 2, because there is a direct relation between the ligand size (number of heavy atoms) and the 
gained acceleration, but the dataset ligand sizes are not evenly distributed. The histogram of number of heavy 
atoms, as seen in the supplementary data, is right skewed, with 58.5% of the set having ≤25 heavy atoms.

Figure 9. Quality of first predicted model (in terms of binding energy) of different steps of QVina-W and the 
previously published version of QVina, in relation to Vina. Binding energy of the first predicted model of the 
previously published version of QVina(QVina 2), and QVina-W with different steps compared to Vina. The 
decimal numbers on both sides are the average Binding Energy difference.

Figure 10. RMSD of Vina, QVina 2, and QVina-W. Relative frequency of successes using RMSD to 
experimental data for both Vina and QVina-W. (A) RMSD distribution of the first mode. (B) First mode success 
at 2.0 A. (C) RMSD distribution of the best mode. (D) Best mode success at 2.0 A.
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From the results shown above and in the supplementary data, we can conclude that the latest configuration 
of QuickVina with global buffer explores four folds points in the search space more than AutoDock Vina and 
previous QVina 2. It obtained better results than Vina, yet in faster time compared to QVina 2. The better results 
are in terms of both Binding Energy and RMSD. It is faster than Vina in a crude comparison when the ligand 
heavy atoms are ≤11 or ≥39; and faster than both Vina and QVina 2 in a normalized acceleration where it scored 
34.33 fold maximal acceleration and 3.60 folds average acceleration over Vina 1.1.2. The final configuration is 
“QuickVina with circular individual buffer of size 5 N, maximum checks 4 N and Octree global buffer with cutoff 
of 5 Angstrom and maximum checks of 1 N, where N is the number of degrees of freedom”.

We are releasing this tool under the name “Quick-Vina-Wide” (QVina-W), which refers to the ability to work 
in wide search space. It is suitable for blind docking with its proven high accuracy and accelerated speed.

Conclusion
In this work, we present QVina-W, a new docking tool particularly useful for wide search space, especially for 
blind docking. QVina-W utilizes the powerful scoring function of AutoDock Vina, the accelerated search of 
QVina 2, and adds thorough search for wide search space. It is based on the observation that allowing a searching 
thread to communicate with other nearby threads to make use of their wisdom, would increase the speed and 
sensitivity of that searching thread. This communication was allowed by means of a global buffer that keeps high 
quality search history points from all the threads.

In order to prove our theory, we analyzed the search process to trace the Average Sum of Proximity relative 
Frequencies (ASoF) among all searching threads, along with its effect on the speed and sensitivity of decision 
taking, as well as the effect on increasing number of search steps on the search speed and accuracy. That proved 

Figure 11. Acceleration of QVina 2 and QVina-W (different steps) against Vina. (A) Overall time acceleration 
for QVina 2 and QVina-W steps X1, X2, X4 against Vina. (B) Normalized overall time acceleration for QVina 2 
and QVina-W.

Normalized overall 
time acceleration Average Maximum

QVina 2 1.98 18.02

QVina-W 3.60 34.33

Table 1. Normalized overall time acceleration values (in relation to Vina).
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the direct relation between the length of the search and ASoF, which is reflected on the search speed and accuracy, 
and that in turn implies higher probability for better results. QVina-W makes use of the acceleration and explores 
four folds the number of points that Vina used to explore in a more efficient way. We also multithreaded the 
preparation overhead, which adds more to the overall time acceleration.

QVina-W proved to be faster than QVina 2 (with average and maximum normalized overall time accelera-
tions of 3.60 and 34.33 folds in relation to Vina versus 1.98 and 18.02 respectively), yet better than Vina in terms 
of Binding Energy (78% of predictions with binding energy better than or equal to Vina) and RMSD (with success 
rate of 72% by QVina-W versus 63% by Vina).

Future work. Our plan to extend this work includes implementing genetic algorithm between nearby points 
to maximize the benefit of shared wisdom of threads, in addition to making a self-fine-tuning tool for QuickVina, 
to adjust its parameters according to the installation environment.

Availability of data and materials. The tool is available from this [http://www.qvina.org]

•	 Operating system(s): cross platform
•	 Programming language: C++
•	 Other requirements: BOOST 1.60
•	 License: Apache License (Version 2.0)

The dataset supporting the conclusions of this article is available in the PDBbind database repository, [http://
www.pdbbind.org.cn].
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