Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Human ATG3 binding to lipid bilayers: role of lipid geometry, and electric charge

Abstract

Specific protein-lipid interactions lead to a gradual recruitment of AuTophaGy-related (ATG) proteins to the nascent membrane during autophagosome (AP) formation. ATG3, a key protein in the movement of LC3 towards the isolation membrane, has been proposed to facilitate LC3/GABARAP lipidation in highly curved membranes. In this work we have performed a biophysical study of human ATG3 interaction with membranes containing phosphatidylethanolamine, phosphatidylcholine and anionic phospholipids. We have found that ATG3 interacts more strongly with negatively-charged phospholipid vesicles or nanotubes than with electrically neutral model membranes, cone-shaped anionic phospholipids (cardiolipin and phosphatidic acid) being particularly active in promoting binding. Moreover, an increase in membrane curvature facilitates ATG3 recruitment to membranes although addition of anionic lipid molecules makes the curvature factor relatively less important. The predicted N-terminus amphipathic α-helix of ATG3 would be responsible for membrane curvature detection, the positive residues Lys 9 and 11 being essential in the recognition of phospholipid negative moieties. We have also observed membrane aggregation induced by ATG3 in vitro, which could point to a more complex function of this protein in AP biogenesis. Moreover, in vitro GABARAP lipidation assays suggest that ATG3-membrane interaction could facilitate the lipidation of ATG8 homologues.

Introduction

Macroautophagy is a bulk degradation pathway conserved among eukaryotic cells1. This process is characterized by the generation of a double membrane structure called autophagosome (AP) which engulfs organelles or cytoplasmic portions and subsequently delivers the material into the lysosome for degradation2. AP formation requires more than 30 autophagy-related (ATG) proteins acting in a hierarchical way3. Among these proteins an ubiquitin-like (UBL) system, composed by Atg7, Atg3 and Atg8, triggers the covalent attachment of Atg8 (LC3 and GABARAP subfamilies in mammals) to phosphatidylethanolamine (PE), a lipid found in the AP membrane4,5. It has been shown that Atg3 is responsible for transferring Atg8 to the membrane6,7, where Atg8 participates in AP formation, maturation and closure. In fact, it has been described that mammalian Atg8-like proteins (LC3, GATE-16 and GABARAP) induce membrane tethering and fusion in vitro 8,9,10, which could be related to the AP growth process. The correct equilibrium of these processes is vital for the maintenance of cell homeostasis, and their imbalance is related to human disorders e.g. neurodegenerative diseases and cancer.

Human ATG3, the E2-like enzyme for Atg8 conjugation, contains some disordered regions that allow its classification among the intrinsically disordered proteins11. This property is found in proteins that participate in processes required for quick cellular responses, such as autophagy. Atg3 handle region (HR) and flexible region (FR) have been found to interact with Atg7 and Atg8, respectively12. These two domains act together with the catalytic cysteine (Cys264) to catalyse ATG3-LC3 binding, upon which LC3 partitions to the membrane13. Atg3 N-terminus has been proposed to be the protein region responsible for membrane detection and interaction14. Specifically, the N-terminal amphipathic α-helix domain of the protein was shown to be a membrane-curvature sensing domain15. Recent data16 indicate that acetylation enhances Atg3 membrane binding and Atg8 lipidation. The details of Atg3 interaction with the membrane lipid matrix are, to our knowledge, virtually unexplored. Due to the ability of Atg3 to interact with Atg1217,18, Atg12-Atg5-Atg16L1 would promote a more efficient recruitment of Atg3 to membranes in vivo 19,20. Atg12-Atg5 induces a reorientation of Atg3 catalytic cysteine toward a threonine residue so that Atg3 conjugase activity is stimulated13,21. Apart from its specific role in autophagy, the possible implication of Atg3 in the regulation of mitochondrial homeostasis, cell death and mitophagy has also been proposed17,22.

Here we show that the N terminus of human ATG3 is involved in the binding of the protein to uncharged model membranes containing phosphatidylethanolamine, the degree of binding being directly proportional to membrane curvature. When negatively-charged lipid species are present in the membrane, ATG3 binding is favored in all types of membrane templates used in this study, by-passing the membrane curvature enhancement required for neutral membrane compositions. Additionally, we have observed the effect of membrane tethering induced by the ATG3 in vitro, which might point to a more complex role of this protein in the process of AP formation.

Results

ATG3 binding to lipid monolayers and bilayers

ATG3 has been proposed to direct human Atg8 homologues (LC3, GATE-16 and GABARAP) to the membrane to complete their lipidation process. Some studies have demonstrated an important implication of the Atg3 N-terminal region in membrane recognition14. A predicted N-terminal amphipathic alpha-helix (Fig. 1), expected to be a membrane curvature sensor, would be responsible for this recognition15. In order to assess the direct implication of the N-terminal region of ATG3 in membrane binding and curvature sensing, we produced the ATG3 K9D/K11D mutant, in which the sequence predicted to fit into the bilayer-water interface is modified chemically and electrically.

Figure 1
figure1

Predicted structure of ATG3 N-terminal amphipathic α-helix. (A) Helical wheel representation of the predicted N-terminal amphipathic helix (amino acids 2–27) of human ATG3 (wheel generated in Helical Wheel Projections). (B) The predicted insertion of ATG3 N-terminal α-helix into membranes. Hydrophobic (Leu, Ala, Val), negatively-charged (Glu) and positively-charged (Lys) residues are coloured yellow, red and blue respectively (courtesy of Dr. Martin B. Ulmschneider, Johns Hopkins University, Baltimore, MD). Peptide binding onto a lipid bilayer was studied by unbiased atomic detail molecular dynamics simulations following a protocol described in detail elsewhere59. In brief, the peptide was initially placed in bulk water in a fully extended conformation and allowed to freely fold and bind to the membrane. No biasing potentials were applied. The peptide was found to bind irreversibly and fold onto the interface within one microsecond.

We first assayed the ability of ATG3 and its mutant to interact with and insert into lipid monolayers formed at the air-water interface in a Langmuir balance. Figure 2A shows that addition of either native ATG3 or of its K9D/K11D mutant to the aqueous phase causes a rapid, dose-dependent increase in surface pressure Π. Thus these are surface-active proteins, in principle susceptible to bind lipid monolayers and bilayers. The mutant appears to be somewhat less potent than the native ATG3, but in both cases the maximum change in Π appears to be close to 20 mN/m. The monolayers composed of PC:DOPE (70:30 mol ratio), PC:DOPE:CL (60:30:10 mol ratio) and PC:DOPE:PA (50:30:20 mol ratio) were used to test the affinity of ATG3 for membranes containing different anionic phospholipids. Lipid names are given in full in the “Materials” section. The protein (0.2 μM) was injected into the subphase and the increase in surface pressure was monitored in real time. The increase in surface pressure Π is interpreted as the protein interacting with the lipids in the monolayer and becoming embedded in it. Both ATG3 and the mutant were able to insert into these lipid monolayers extended at an initial surface pressure ≥23 mN/m (Fig. 2B), i.e. above the maximum change in surface pressure caused by adsorption of the proteins at the air-water interface (Fig. 2A).

Figure 2
figure2

ATG3 and ATG3 K9D/K11D insertion into lipid monolayers. (A) Representative time courses of adsorption of ATG3 (left) or ATG3 K9D/K11D (right) at an air-water interface. (B) Representative time courses of increase in lateral pressure after ATG3 (0.2 μM) addition to PC:DOPE:CL (60:30:10 mol ratio) or PC:DOPE:PA (50:30:20 mol ratio) monolayers (left). Representative time courses of increase in lateral pressure after ATG3 or ATG3 K9D/K11D addition to PC:DOPE:CL (60:30:10 mol ratio) monolayers (right). (C) Maximum increase in lateral pressure after ATG3 (left) or ATG3 K9D/K11D (right) addition to lipid monolayers. Lipids were: [] PC:DOPE (70:30 mol ratio), [▲] PC:DOPE:CL (60:30:10 mol ratio), [▫] PC:DOPE:PA (50:30:20 mol ratio). Data reported as a function of initial lateral pressure.

ATG3 exhibited a higher affinity for monolayers containing PA than for those containing CL (Fig. 2B, left-hand panel). When the monolayer contained CL (Fig. 2B, right-hand panel) the K9D/K11D mutant showed a markedly lower affinity than the native ATG3. When the new equilibrium was attained, a further change in the lateral pressure at equilibrium (Δπ) was observed for all monolayer compositions. The protein-induced change in Δπ decreased linearly for both proteins with the increase in initial pressure (π0), i.e. protein insertion became hindered at higher initial lateral pressures. Above a certain π0 value, protein insertion was no longer observed (Fig. 2C). Extrapolation of the Δπ versus π0 lines to Δπ = 0 provides the so-called critical surface pressure πc, above which no protein insertion occurs. πc values shown in Table 1 for wild type and mutant ATG3 are close to or above the usually accepted average value of lateral pressure in the cell membranes (i.e.30–35 mN/m23). Interestingly, wild type ATG3 caused a larger surface pressure increase in PA-containing monolayers than in CL-containing monolayers, the net electrical charge being similar in both cases (Fig. 2B left-hand panel). However, mutation of the N-terminus lysine residues of the protein canceled its selectivity for anionic phospholipids (Fig. 2C right-hand panel). Thus the lysine residues close to the membrane interface might influence ATG3 insertion into the lipid matrix.

Table 1 Critical surface pressures (πc) of monolayers with different lipid compositions in the presence of ATG3.

Next we explored whether these compositional preferences of the protein are also exhibited in the presence of a lipid membrane. Liposomal flotation assays were performed so that the composition and curvature that cell membranes would adopt in vivo could be mimicked. A fixed concentration of pure ATG3 (10 μM) was incubated with liposomes (1:300 protein:lipid mol ratio) and the mixture was subjected to an equilibrium sucrose gradient centrifugation, in which the vesicles have the capacity to float up, and the amount of protein interacting with these liposomes can be quantified. According to previous studies with a UBL system, 55% DOPE was required for an optimal lipidation of LC3, and also for aggregation and fusion of lipid vesicles24. As ATG3 is thought to be responsible for bringing over Atg8 homologues to the membrane, the preference of this protein for membranes with different amounts of DOPE and the influence of negatively-charged phospholipids on this interaction were tested. We found that ATG3 binds to DOPE-containing 100-nm LUVs, but no significant difference was observed between 30% and 55% DOPE (Fig. 3A). Moreover, when an anionic phospholipid (10% CL) was included into the LUV composition, the affinity of ATG3 for the membrane increased significantly (Fig. 3A). In the presence of CL no difference between 30% and 55% of DOPE was observed either. ATG3 K9D/K11D was not able to bind vesicles of any composition tested (Fig. 3A), this would be an example of a protein that can insert in a monolayer, but not in a bilayer. In general monolayer insertion is a requisite for bilayer insertion, but not all proteins that bind/insert into lipid monolayers are then able to insert into bilayers. These results suggest that ATG3 has a marked preference for negatively-charged membranes, and indicate that its N-terminal positively-charged residues play an important role in this interaction.

Figure 3
figure3

ATG3 interacts with negatively-charged phospholipid vesicles. Results from the flotation assay and quantification of the liposome-bound protein fraction of (A) 10 µM ATG3 or ATG3 K9D/K11D incubated with 3 mM LUVs (100 nm average size) (B) 10 μM ATG3 incubated with 3 mM SUVs (60 nm average size) (C) 10 μM ATG3 with LUV containing different anionic phospholipids. The gels show representative results. The data correspond to mean ± SEM (n = 3); **P = 0.001–0.01, ***P < 0.001. Full-length blots are presented in Supplementary Figure 3.

Melia and coworkers15 showed that mouse ATG3 contains a predicted N-terminal amphipathic helix that could be a membrane curvature sensor. In order to test whether the human ATG3 possesses this property, we compared the ATG3 binding to lipid vesicles of different sizes. As expected, decrease in membrane radius resulted in an increase of bound protein to neutral membranes. Indeed we observed an increase in the binding of ATG3 to PC/DOPE-containing SUV (60 nm in diameter) as compared to LUV (100 nm in diameter) (Fig. 3B). However with vesicles containing anionic phospholipids no ATG3 curvature preference was detected (Fig. 3B). Hence, ATG3 appears to behave as a membrane curvature sensor with neutral membranes, however the incorporation of negatively-charged phospholipids helps to by-pass this curvature effect.

Negatively-charged phospholipids are present in most cell membranes conferring some specific properties to the respective membrane compartments and playing a critical role in cell signaling. Since the origin of the autophagosomal membrane is still unknown, the preference of ATG3 for different anionic phospholipids was assessed using liposome flotation experiments. ATG3 showed a strong affinity for PA and CL, although its binding to liposomes containing PI, PG or PS was also significantly higher than to electrically neutral membranes (Fig. 3C). Considering that PA and CL, which gave the highest binding affinities, are “conically shaped” phospholipids, i.e. lipids with a negative intrinsic curvature25, we could suggest two factors that facilitate ATG3 interaction with membranes, namely lipids with an intrinsic negative curvature and net negative charges in the membrane. Aerolysin26, adenylate cyclase toxin27 or CTP:phosphocholine cytidyltransferase28 interactions with membranes are favoured by the incorporation of this kind of lipids, and this appears also to be the case for ATG3.

To summarize, the above results suggest that human ATG3 interacts with membranes containing physiological concentrations of DOPE and binds preferentially to membranes containing non-bilayer anionic lipids with negative spontaneous curvatures. The presence of anionic phospholipids decreases or suppresses the preference for highly curved vesicles, whereas the anionic lipids with a negative intrinsic curvature clearly facilitate ATG3 interaction with membranes. Furthermore mutations of Lys residues 9 and 11 in the predicted N-terminal α-helix reveal the important role of these residues in protein binding to lipid vesicles. Note that the natural anionic lipids used in this study may carry rather different fatty acyl chains, PI and CL being usually more unsaturated than PA or PG, thus the fluidity factor cannot be obviated when analyzing in depth the results in Fig. 3, this is a matter that deserves further study.

Membrane tethering by ATG3

The ATG7/ATG3/LC3 UBL system is involved in autophagosome elongation. In this process vesicle tethering and fusion are essential. It is usually understood that the full responsibility for the latter processes falls on LC3. The other components (ATG7 and ATG3) are considered to act only in the previous conjugation reactions. However, since ATG3 interacts with membranes this protein could in principle contribute, to some extent, to the aggregation and fusion of vesicles. This hypothesis was tested as detailed below.

The ability of ATG3 to induce vesicle tethering was assessed by monitoring in a spectrophotometer the increase in sample turbidity (absorbance at 400 nm)29. ATG3 was observed to cause aggregation of electrically neutral vesicles [PC:DOPE (70:30 mol ratio)] and, at higher rates, of negatively-charged liposomes (containing PA, CL or PI) (Fig. 4A). Just as in the ATG3-vesicle interaction assay (Fig. 3) this protein showed the highest extent of tethering with PA-containing liposomes. In all cases, aggregation is ATG3 concentration-dependent, at least between 1 μM and 10 μM (Fig. 4A). Furthermore, the activity of ATG3 K9D/K11D was tested in parallel experiments and no vesicle aggregation was observed even with anionic vesicles (Fig. 4B). These results support the notion that the characteristics of ATG3-membrane association are directly related to this newly observed function, i.e. vesicle aggregation.

Figure 4
figure4

ATG3-promoted vesicle aggregation. (A) Time-course of 3 mM LUV (PC:DOPE:CL 60:30:10 mol ratio) aggregation induced by 10 μM ATG3. Arrow indicates addition of ATG3. Each curve represents the mean ± SE (n = 3). Note that data for ATG3, for LUV only and for ATG3 K9D/K11D + LUV overlap. (B) Effect of lipid composition and ATG3 concentration on LUV aggregation. Bars represent mean ± SE (n = 3) of ΔA400. ***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05 of unpaired t-test. (C) Representative images of ATG3-induced aggregation of LUV of different lipid compositions: PC:DOPE (70:30 mol ratio), PC:DOPE:CL (60:30:10 mol ratio) or PC:DOPE:PA (50:30:20 mol ratio). Scale bars: 30 μm.

Confocal images of liposome aggregates confirmed the turbidity results. 10 μM ATG3 was incubated with liposomes of different lipid compositions, and after 1 h images were taken in a confocal microscope. Limited aggregation was observed with the PC:DOPE composition, while extensive liposome aggregation was seen with CL- or PA-containing vesicles (Fig. 4C). Our negative controls, buffer only or ATG3 K9D/K11D did not show any vesicle tethering.

Intervesicular lipid mixing and release of vesicle contents assays were performed in order to assess the possible contribution of ATG3 to the fusion processes in autophagosome elongation. However, ATG3 did not exhibit any of those activities under our experimental conditions (data not shown).

The above results illustrate a novel, easily testable activity for ATG3, namely vesicle aggregation. This activity would be in part dependent on the N-terminal α-helix as a membrane anchor, but other hydrophobic regions in the protein must also be involved (Fig. 2C). Our observations could suggest a possible contribution of ATG3 to vesicle tethering preceding fusion events in autophagosome elongation, while the fusogenic ability would remain in the final effector of the UBL system, Atg8. These aggregation and fusion processes would be facilitated in negatively-charged and highly curved membrane regions such as the edge of the isolation membrane, in which a relative enrichment of these proteins could exist.

ATG3 Interaction with GUV containing negatively-charged lipids

Giant unilamellar vesicles (GUV) constitute a cell-sized model membrane system that allows direct visualization of particular membrane-related phenomena, such as domain formation or protein interaction, at the level of single vesicles using fluorescence microscopy-related techniques. This method was used to test whether or not ATG3 was able to interact with GUV of different lipid compositions, whether it had any lipid preference when binding to GUV, or whether we could reproduce the aggregation activity observed with highly curved membranes in this low-curvature system.

Alexa488-labeled ATG3 incubation with Rho-PE-containing GUV resulted in protein binding to GUVs containing negatively-charged phospholipids (Figs 5A and S1). We observed tethering of GUV membranes with preferential association of ATG3 to the GUV-GUV contact sites (Fig. 5B). No ATG3 binding was observed with electrically neutral GUV compositions (Fig. 5A).

Figure 5
figure5

Interaction of ATG3 with cell-sized lipid vesicles, GUVs. (A) ATG3 interaction with GUV in the presence or absence of CL. Membranes labeled with Rho-PE and ATG3 labeled with Alexa 488. Merge: yellow indicates colocalization of both probes. Lipid composition is given at the left-hand side. Scale bars: 20 μm. (B) ATG3 preferential localization in GUV contact sites. (C) ATG3 binding to GUV with segregated domains. Two different lipid domains are clearly seen, one of them containing CL and labeled with Rho-PE. (D) ATG3 K9D/K11D does not interact with PC:DOPE:CL (60:30:10 mol ratio) GUV. Lipid compositions are given in each panel. Scale bars: 10 μm.

To further analyze the preference of ATG3 for anionic phospholipids, GUV with segregated domains were electroformed. Asymmetric distributions of CL within the membrane of single vesicles were engineered by incorporating CL into lipid mixtures that are known to phase separate into two distinct liquid phases. Ternary mixtures of DOPE/DPPC/Chol have a large region of their phase diagram wherein these bilayer lipids segregate to form liquid-ordered (Lo) and liquid-disordered (Ld) domains30. The Ld phase of these model membranes is rich in DOPE due to its unsaturated hydrocarbon tails, and the Lo phase is rich in the saturated DPPC. Cholesterol partitions into both phases but is slightly enriched in the Lo domains as compared to the Ld phase. GUV composed of DOPE:DPPC:Chol (37.5:37.5:25 mol %) at 22 °C are within this region of liquid-liquid phase separation in the phase diagram. Domains of these two liquid phases coalesce in the individual vesicles to form two large domains on the vesicle surface, one of each phase. 10 mol% DOPE were exchanged for 10 mol% CL based upon two assumptions: that CL, due to its high degree of chain unsaturation, will preferentially partition into the Ld phase, and that despite such a significant change in lipid composition, the membrane will still be in a region of liquid-liquid phase coexistence31. ATG3-Alexa488 bound preferentially to regions of the membrane that are rich in CL (labeled with Rho-PE) (Fig. 5C). Thus, ATG3 interaction with GUV is determined by the presence of negatively-charged lipids on their surface. However, CL-containing GUVs were not labeled with ATG3 K9D/K11D-Alexa488. In fact, in the latter case the vesicles were seen as dark objects against a green (Alexa488) background (Fig. 5D)

In addition, ATG3 aggregation experiments could also be reproduced in GUV. A specific methodology was used to form GUV in order to obtain them close to each other to allow protein-induced tethering. In this case, PC:DOPE:CL (60:30:10 mol ratio) GUV were electroformed and directly visualized in a Nikon confocal microscope. Upon addition of ATG3-Alexa488 (1 μM) GUV tended to aggregate and precisely the flattened areas between tightly aggregated GUV appeared enriched in ATG3-Alexa488 (Fig. 6 upper panels). Controls made with ATG3 K9D/K11D-Alexa488 and buffer did not show any comparable event (Fig. 6 lower panels).

Figure 6
figure6

ATG3-induced GUV aggregation. Red channel corresponds to PC:DOPE:CL (60:30:10 mol ratio) GUVs containing 0.05 mol% of Rho-PE as membrane marker. Proteins (1 μM final concentration) were labeled with Alexa488 (green channel). 10 seconds after its addition to GUVs, ATG3 localized preferentially to vesicle contact sites. ATG3 K9D/K11D or buffer alone did not induce any effect on the GUVs.

These results confirm that ATG3 interaction with anionic membranes does not require a high vesicle curvature (GUV curvature is practically zero). Instead, the intrinsic negative membrane curvature generated by cone-shaped lipid molecules and in part the electrostatic interaction with anionic phospholipids would be properties required for this specific association.

During autophagosome formation highly curved membrane regions emerge at the edge of this new structure. ATG8-driven fusion of new membrane material that allows PAS growth would occur in these regions. However, how the human ATG8 homologues are directed to the appropriate place to carry out their function is still under discussion. Hypotheses proposed by ours and other groups assume that ATG3 would be the effector for the detection of some special properties of a membrane region, such as curvature, structural defects or charges, where autophagosomal elongation would take place.

As shown in the previous flotation studies with SUV, ATG3 increases its binding to neutral membranes when vesicle size decreases. To visualize this effect under the microscope we generated lipid nanotubes (NTs) starting from a compositionally well-defined unilamellar membrane system, such as the SUPER templates32,33. The formed NTs are thin tubules with high membrane curvature, reported to be a powerful tool to analyze curvature-dependent binding of proteins. ATG3-Alexa488 interacted with electrically neutral (PC:DOPE) NTs, while GABARAP did not exhibit any binding to NTs with similar curvature (Fig. 7). Thus, as observed above, a high membrane curvature is enough to induce ATG3 binding, even if the addition of anionic lipids relieves this requirement.

Figure 7
figure7

Binding of ATG3 (but not GABARAP) to neutral NTs. (A) ATG3 but not GABARAP (labeled with Alexa 488) binds to PC:DOPE (70:30 mol%) NTs containing 0.05 mol% of Rho-PE as membrane marker. Scale bars: 20 µm. (B) Fluorescence intensities of Rho-PE (black) and ATG3-A488/GABARAP-A488 (red) from the pictures in A were analyzed using the Image J function “Plot Profile”. Here the x-axis represents the horizontal distance through the selection and the y-axis the vertically averaged pixel intensity. For each condition, at least 20 nanotubes from 3 independent experiments were analyzed. (C) From the confocal fluorescence images, the ratio of mean integrated fluorescence intensity of ATG3 and GABARAP-488 in membrane (IFmemb.) and solution (IFsol.) was obtained from radial profiles. In the box-chart and raw data (dots) representation, squares represent mean of each condition, the “whisker” represents minimum and maximum values. The box plot goes from upper (75) percentile, median and lower (25) percentile of the values. For each condition, at least 20 nanotubes from 3 independent experiments were analyzed. ***p < 0.001.

ATG3 interaction with membranes enhances GABARAP lipidation

Atg3 was proposed to direct LC3 to the membrane for lipidation in vitro and, more recently, to act together with the Atg12-Atg5-Atg16L1 system to perform the same task in vivo 20,34. In this context, lipid composition changes could modify the lipidation rate of Atg8 homologues4,15,35. The effect of adding negatively-charged lipids, or lipids with a negative intrinsic curvature, that facilitate ATG3 binding to membranes, on GABARAP lipidation was analysed. For this purpose in vitro lipidation assays incubating ATG7, ATG3 and GABARAP in the presence of liposomes, ATP and MgCl2 were performed. The lipidation product was followed by SDS-PAGE gels and its subsequent Coomassie staining or Western blotting. GABARAP was used as the human Atg8 homologue in these experiments because the lipidated band of LC3 and GATE-16 was undistinguishable from the presumably adenylated form of the protein. The increased affinity of ATG3 for anionic monolayers (Fig. 8A) and vesicles (Fig. 8B) was also associated to an enhanced lipidation as observed in Fig. 8C,D. Moreover higher lipidation ratios were observed when lipids such as PA and CL, with a high negative intrinsic curvature, were incorporated to the liposomes. This suggests that ATG3 membrane interaction could govern the lipidation efficiency of the Atg8 homologues. This does not rule out a similar involvement of ATG7 in the regulation of Atg8 lipidation, for which no experimental data are available.

Figure 8
figure8

ATG3 governs GABARAP lipidation ratio. (A) ATG3 binding to lipid monolayers. Data from Fig. 2C normalized to the PC:DOPE value. (B) ATG3 binding to liposomes of different lipid compositions. Data from Fig. 3C normalized to PC:DOPE. (C) GABARAP lipidation ratio using different lipid compositions. Data obtained from gels as shown in D normalized to the PC:DOPE value. Average values of two experiments. (D) Coomassie blue staining (upper panel) and anti-GABARAP Western blotting (lower panel) of the in vitro lipidation reaction using different lipid compositions. Lipid compositions are detailed in each panel. Black arrow heads indicate lipidated and non-lipidated forms of GABARAP. Full-length blots/gels are presented in Supplementary Figure 3.

As an additional control the lipidation experiment in Fig. 8D was performed with GABARAP ΔG, and bilayers containing PC, DOPE, and either CL or PI. As expected, no lipidation was observed in any case (Fig. S2).

Discussion

It is generally accepted that in AP elongation the protein Atg8 (and its mammalian homologues LC3, GATE-16 and GABARAP) triggers the aggregation and fusion of vesicles with the nascent autophagosome. Little is known of the way in which Atg8 is directed to the membrane. Some studies showed that Atg3 is involved in the transport and recognition of PE as an Atg8 substrate36, and also that another UBL system involved in autophagy, Atg12-Atg5-Atg16L1, interacts with membranes and improves the rate of Atg8 lipidation through interaction with Atg319.

Atg3 was demonstrated to interact with membranes in part through its N-terminal region. It was also suggested that the predicted N-terminal amphipathic helix would be responsible for this attachment, and also that this helix would be a membrane curvature sensor15. Our results demonstrate the role of the N-terminal helix in ATG3-membrane interaction, and the particular affinity of ATG3 for negatively-charged membranes. In addition we have found that ATG3 induces aggregation of lipid vesicles, and enhances lipidation of Atg8 proteins.

ATG3-membrane Interaction

The aim of this work was to obtain a better understanding of ATG3-membrane interaction. Using Langmuir balance measurements (Fig. 2) and liposome flotation assays (Fig. 3) we show that ATG3 binds PE-containing membranes and exhibits a particular affinity for negatively-charged membranes (Fig. 3A). Nath et al.15 indicated that ATG3 contains a membrane curvature sensor in its N terminus, but we show here that curvature recognition by ATG3 is only noticed with neutral membranes (Fig. 7). Indeed no change is observed in ATG3 binding when the size of anionic-lipid containing liposomes decreases (Fig. 3B). Furthermore, ATG3 attachment to membranes relies on electrostatic and hydrophobic interactions, since mutations in the N-terminal amphipathic helix, including polar and hydrophobic residues, alter ATG3 interaction efficiency15. Our results with the ATG3 K9D/K11D mutant (Fig. 3A) strongly support the idea that these two lysine residues, located between the hydrophobic and polar faces of the helix, constitute an important anchor for ATG3 binding, probably related to the increased binding capacity in the presence of anionic phospholipids. Moreover, comparing the different negatively-charged phospholipids we observe that lipid packaging defects in the membrane can be important for ATG3 interaction (Fig. 3C). Both CL and PA possess a high negative intrinsic curvature at neutral pHs37, and when incorporated to bilayers they could create membrane defects in turn helping ATG3 insertion. According to this, the electrostatic component would favor protein binding but it would not be the only force driving this association.

BAR domains and amphipathic α-helices are considered to be the best examples of membrane curvature-sensing domains in proteins. BAR domains sense membrane curvature by insertion of an amphipathic helix into membrane defects and also by electrostatic interactions with negative charges in the membrane38, whereas amphipathic α-helices such as ALPS motifs just insert their hydrophobic face into lipid packing defects39,40. ATG3 exhibits both capabilities, detecting electrostatics and intrinsic curvature of the membrane lipids. According to the “snorkel model”, lysines at the interface of the polar and nonpolar faces of the helix favor the association to flat membranes and the electrostatic interaction with them41, and this would also explain ATG3 ability to bind negatively-charged vesicles. Hence, mutations of lysine residues to aspartic acid in ATG3 K9D/K11D mutant would cause an electrostatic repulsion between these amino acids and the negative charges of the membrane (lipid polar head groups and phosphate). A comparable Lys/Ala mutation slightly decreases the binding to anionic vesicles but not to neutral membranes (data not shown). In the autophagy context, ATG3 would not be the only protein proposed to sense membrane curvature through an amphipathic helix, Barkor is also involved in detecting this curvature in phosphatidylinositol 3-phosphate (PI3P)-enriched membranes42,43.

Moreover, there are evidences suggesting that the autophagosome biogenesis is a lipid-modulated process44. While the role of phosphoinositides (PI3P, PI4P, PI5P, PI(4,5)P2) in autophagy progression is well known44,45,46, little information on the participation of other lipid species during the different steps of autophagosome biogenesis has been reported47,48. A combined action between lipids and autophagy proteins should lead to phagophore expansion. The participation of PA and other cone-shaped lipids (e.g. DAG) in autophagy and also in membrane fusion/fission processes has been proposed49,50. Previous studies from our group have suggested a possible role of intrinsic-curvature modifying lipids such as CL, DAG and LPC in promoting GATE-16 and GABARAP mediated vesicle fusion in vitro 10. DAG generation was shown to be required for the initiation of Salmonella-induced autophagy51. Moreover the PLD1 pathway, that produces PA, a cone-shaped lipid, has been also reported to promote autophagy52,53,54. The lipid composition of the pre-autophagosomal membrane is not yet known but its description would open a new window to understand how AP elongation would occur.

ATG3 promotes vesicle aggregation and enhances LC3/GABARAP lipidation

During autophagosome formation and elongation, a large amount of vesicles containing protein and lipid material are fused with the nascent autophagosome. In this process some Atg proteins are involved, i.e the Atg7/Atg3/Atg8 UBL system. Atg8 homologues are the final effectors of the system and mediate the tethering and fusion of liposomes in vitro 10. It is also known that other proteins e.g. SNARES participate in this action55. Here we report a novel function for ATG3 as a tethering protein (Figs 4 and 6). The aggregation potential would be related to the anionic charge and intrinsic lipid curvature, but further work has to be performed to find the specific protein regions involved in this activity. In this context, ATG3 might be cooperating with Atg8 in the aggregation process prior to vesicle fusion in the pre-autophagosome elongation.

Other studies have reported a regulation of the lipidation ratio of Atg8 and their mammalian homologues through changes in the membrane lipid composition4,10,15,35. According to this, we suggest in this work that ATG3 would be responsible for bringing Atg8 homologues to the membrane. As we have shown, the in vitro incorporation of CL, PA or PI to liposomes improves ATG3 association to the membrane and also enhances the lipidation ratio of GABARAP (Fig. 8). Nevertheless, other proteins participate in this process in vivo such as the Atg12-Atg5-Atg16L1 system, and further experiments with the latter partners should be performed to discern the precise role of each protein.

In conclusion, the above data on ATG3 interaction with membranes should help clarify the mechanism by which the lipid composition of the autophagosomal membrane would facilitate redirecting the autophagy machinery to some regions, for the elongation process to occur. However, the phagophore lipid composition and the number of proteins recruited to it must be further investigated to understand the phagophore elongation process. This would lead to the discovery of new potential targets involved in macroautophagy that could also be explored in cancer progression therapies.

Materials and Methods

Materials

Egg phosphatidylcholine (PC) was purchased from Lipid Products (South Nutfield, UK). 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), bovine liver phosphatidylinositol (PI), heart bovine cardiolipin (CL), brain phosphatidylserine (PS), egg phosphatidyldglycerol (PG), egg phosphatidic acid (PA), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (Rho-PE), ovine wool cholesterol (Chol) and 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine (DPPC) were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL). Anti-ATG3 antibody and goat anti-mouse IgG-HRP were from Santa Cruz Biotechnology, Inc. (Dallas, TX). Anti-GABARAP monoclonal antibody was from MBL International (Medical & Biological Laboratories Co. Ltd.). Alexa Fluor® 488 dye was purchased from Molecular Probes (Eugene, OR). All other reagents were of analytical grade.

DNA constructs and site-directed mutagenesis

Plasmids for expression of human ATG3, ATG7 and GABARAP were kindly provided by Dr. Isei Tanida (National Institute of Infectious Diseases, Tokyo, Japan). A double mutant for Lys to Asp at positions 9 and 11 of ATG3 (ATG3 K9D/K11D) was constructed using a QuikChange site-directed mutagenesis kit (Stratagene, San Diego, California). Specifically designed ATG3 primers to introduce site-directed mutations were purchased from Sigma Aldrich (Madrid, Spain). The PCR-amplification products were evaluated by agarose gel electrophoresis and the parental methylated and hemimethylated DNA was digested by DpnI endonuclease (New England Biolabs). After inactivation of DpnI (80 °C for 20 min), the digested PCR product was transformed into DH5-α E. coli chemo-competent cells and inoculated on Luria–Bertani (LB) plates containing 100 mg/ml ampicillin. A total of 5 colonies were selected and their plasmids were isolated by mini-prep (GeneJET Plasmid Miniprep Kit, Thermo Scientific). Mutations were confirmed by DNA sequencing (Secugen S.L, Madrid, Spain).

Recombinant protein expression and purification

ATG3 variants and GABARAP were purified from soluble fractions of bacterial extracts obtained in the absence of detergents, and were >90% pure as evaluated by Coomassie-stained SDS-PAGE. E.coli BL21 (λDE3) cells were transformed with appropriate plasmids, grown to OD600 = 0.8 and induced with 0.5 mM IPTG for 18 h at 20 °C. Following centrifugation at 4,500 xg for 15 min, the pellet was resuspended and sonicated in breaking buffer (PBS with protease inhibitors mixture and 1 mM DTT). After removal of cellular debris by centrifugation at 30,000 xg for 30 min at 4 °C, the sample supernatant fraction was incubated with 1 ml Glutathione Sepharose 4B (GE Healthcare) for 3 h at 4 °C to bind GST tagged proteins. Then, PreScission Protease (GE Healthcare) was added at 100 units/ml in 2 bed volumes of PreScission Buffer [50 mM Tris (pH 7.5), 150 mM NaCl, 1 mM EDTA] with freshly added 1 mM DTT and cleavage was performed for 4 h at 4 °C. Cleaved protein was eluted and purified proteins were stored in 20% glycerol at −80 °C.

ATG7 was expressed by baculoviral infection of HighFive (H5) insect cells. ATG7 in pFASTBAC HTa plasmid DNA was used to transform DH10Bac E. coli for transposition into the bacmid. We used blue/white colony selection to identify colonies containing the recombinant bacmid and they were confirmed by polymerase chain reaction. The recombinant bacmid was then isolated and purified using the Macherey Nagel endotoxin-free DNA purification kit. H5 insect cells were transfected with purified bacmid using Lipofectamine from Invitrogen (Waltham, MA) in TC-100 insect media (Sigma-Aldrich) supplemented with the appropriate antibiotics. When the transfected cells demonstrated signs of late stage infection (typically around 72 h), the medium containing the free virus was collected. We repeated cycles of transfection and virus collection to amplify the viral stock. Cells were collected after 48 h infection followed by centrifugation at 5000 xg for 10 min. The pellet was resuspended and sonicated in a breaking buffer consisting of 50 mM Tris pH 8, 150 mM NaCl, and freshly prepared 1 mM TCEP and protease inhibitors. The lysate was cleared by 30 min centrifugation at 30,000 xg and loaded on cobalt resin (Clontech, Mountain View, CA) for 3 h at 4 °C. Protein was eluted with 500 mM imidazole, concentrated up to 500 μl using YM-30 microcons (Millipore, Darmstadt, Germany) and loaded onto a Superdex TM200HR 10/30 size exclusion column (GE Healthcare, Buckinghamshire, UK) equilibrated in 50 mM Tris pH 8, 150 mM NaCl, supplemented with freshly added 1 mM DTT and protease inhibitors. Purified protein was kept at 4 °C.

Monolayer surface pressure measurements

Lateral pressure experiments were carried out in a multi-well Delta Pi-4 Langmuir balance (Kibron Inc., Helsinki, Finland) under constant stirring. Lipid monolayers were formed by spreading a small amount of the lipid mixtures in chloroform:methanol (2:1 v/v) solution on top of assay buffer, until the desired initial surface pressure was reached. Proteins were injected with a micropipette through a hole connected to the subphase. Upon protein addition, changes induced in surface pressure at the air-water interface and protein-lipid monolayer interactions were studied at 25 °C (same results were obtained at 37 °C, data not shown). The assay buffer was 20 mM HEPES [4-(2-hydroxyethyl)−1-piperazineethanesulfonic acid] (pH 7.4), 150 mM NaCl, 1 mM MgCl2, 0.2 mM DTT.

Liposome preparation

The appropriate lipids were mixed in organic solution and the solvent was evaporated to dryness under a N2 stream. Then the sample was kept under vacuum for 2 h to remove solvent traces. The lipids were swollen in the desired buffer in order to obtain multilamellar vesicles (MLVs). Large unilamellar vesicles (LUVs) were prepared from MLVs. They were subjected to 10 freeze/thaw cycles, then extruded using 0.1 µm pore size Nuclepore filters as described by Mayer et al.56. In the case of small unilamellar vesicles (SUVs), they were obtained by sonicating MLVs with a probe tip sonicator (MSE Soniprep 150 (MSE, UK)) for 10 min (10 s on, 10 s off) on ice. Vesicle size was checked by quasi-elastic light scattering using a Malvern Zeta-Sizer 4 spectrometer (Malvern Instruments, Worcestershire, UK). LUVs had an average diameter of ≈100 nm and SUVs an average diameter of ≈50 nm. Phospholipid concentration was determined with a phosphate assay57.

Sucrose gradient centrifugation of liposomes

ATG3 purified as indicated (10 µM) was incubated with 3 mM liposomes (containing 0.05% Rho-PE for detection) for 1 h at 37 °C in 200 µl PreScission buffer. The protein/lipid mix was diluted to 300 µL in PreScission buffer containing 2.4 M sucrose. Then the reaction mix was transferred to a centrifuge tube, and the sample layer was overlaid with 400 µl PreScission buffer containing 0.8 M sucrose and subsequently 300 µL PreScission buffer containing 0.5 M sucrose. Sucrose step gradients were centrifuged in a TLA-120.2 rotor at 100,000 xg for 3 h at 4 °C. After that, four 250-µL fractions were pipetted starting from the bottom. The bottom fraction (B) contained the unbound protein, and the top fraction (T) contained liposomes as determined by the rhodamine fluorescence. Both fractions were analyzed by SDS-PAGE and Western blotting. The liposome-bound protein fraction was further quantified by densitometric integration of the electrophoretic peaks.

Aggregation assays

Assays were carried out at 37 °C with continuous stirring, in a 1 mL cuvette with 600 μL of 50 mM Tris, 150 mM NaCl, 1 mM DTT buffer (pH 7.5). All experiments were performed at a vesicle concentration equivalent to 0.4 mM phosphate and 10 μM ATG3, unless otherwise stated. Lipid aggregation was monitored in a Uvikon 922 spectrophotometer (Kontron instruments, Groß-Zimmern, Germany) as an increase in turbidity (absorbance at 400 nm) of the sample.

Alexa Fluor 488 protein labeling

Purified proteins were concentrated to 4–5 mg/mL and dialyzed against 0.1 M sodium bicarbonate pH 8.2, 150 mM NaCl buffer to remove any amine-containing substances that could interfere with the conjugation reaction. Then the protein solution was slowly mixed with 10 µl of the reactive dye solution (10 mg/mL of the amine-reactive compound dissolved in dimethylsulfoxide). The reaction mixture was incubated for 2 h at 37 °C with continuous stirring. Using a Sephadex G-25 chromatography column the conjugate was separated from unreacted labelling reagent, with PreScission buffer as the eluent. The degree of labelling was determined measuring the absorbance of the protein-dye conjugate at 280 nm and that of the dye at 488 nm.

Giant Unilamellar Vesicle (GUV) preparation

GUVs were prepared using the electroformation method detailed below. For direct visualization under the microscope a homemade chamber was used58. Transferred GUVs were formed in a PRETGUV 4 chamber supplied by Industrias Técnicas ITC (Bilbao, Spain). Stock solutions of lipids (0.2 mM total lipid containing 0.2 mol% Rho-PE) were prepared in chloroform:methanol (2:1, v/v), 3 μL of the lipid stocks were added onto the surface of platinum (Pt) electrodes and solvent traces were removed by drying the chamber under high vacuum for at least 2 h.

Direct visualization of GUVs

The Pt electrodes were covered with 400 μl of 50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.5 buffer. The Pt wires were connected to an electric wave generator (TG330 function generator, Thurlby Thandar Instruments, Huntington, UK) under alternating current (AC) field conditions (500 Hz, 0.031 VRMS for 6 min; 500 Hz, 0.281 VRMS for 20 min, and 500 Hz, 0.623 VRMS for 1 h 30 min) at 37 °C. After GUV formation, the chamber was placed on an inverted confocal fluorescence microscope (Nikon D-ECLIPSE C1, Nikon, Melville, NY). The excitation wavelengths were 488 nm for ATG3-Alexa488 and 561 nm for Rho-PE. The images were collected using band-pass filters of 593 ± 20 nm for Rho-PE, and of 515 ± 15 nm for Alexa488. Then 1 μM ATG3-Alexa488 was added to study the ATG3 effect on the GUVs. All these experiments were performed at room temperature. Image treatment was performed using the EZ-C1 3.20 software (Nikon).

Observation of transferred GUVs

The Pt electrodes were covered with 400 μl of a 300 mM sucrose solution, previously equilibrated at 37 °C. The Pt electrodes were connected to a generator (TG330 function generator, Thurlby Thandar Instruments) under AC field conditions (10 Hz, 1 VRMS for 2 h, followed by 2.5 Hz, 1 VRMS, 1 h 30 min) at 37 °C. Finally, the AC field was turned off and the vesicles (in 300 mM sucrose) were collected from the PRETGUV 4 chamber with a pipette and transferred to chambers pretreated with bovine serum albumin (BSA) (2 mg/ml) and containing an equiosmolar buffer solution of 50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.5. Due to the different density of the two solutions, the vesicles sedimented at the bottom of the chamber, and this facilitated observation under the microscope. Finally, ATG3-Alexa488 at 1 μM was added to study the ATG3 effect on the GUVs. The excitation wavelengths were 488 nm for ATG3-Alexa488 and 561 nm for Rho-PE; and the emission was collected using 515 ± 15 nm and 593 ± 20 nm band-pass filters, respectively. All these experiments were performed at room temperature. Image treatment was performed using the EZ-C1 3.20 software (Nikon).

Lipid nanotube formation

Lipid nanotubes (NTs) were formed by surface spreading of supported bilayers with excess membrane reservoir (SUPER templates32). Briefly, stock 100-nm LUVs containing egg PC:DOPE:Rho-PE, 69:30:1 mol% at 1 mM total lipid concentration were prepared in 20 mM Hepes pH 7.5, 150 mM NaCl. Stock LUVs were incubated with 40 μm-diameter silica beads as described earlier33 in order to obtain the SUPER templates. SUPER templates were then introduced into a homemade chamber made with two polydimethylsiloxane (PDMS) ribbons forming a thin (~1 mm high, 5 mm wide, 15 mm long) channel between a 25–35 mm round cover glass at the bottom and a 15 mm round cover glass at the top. The bottom cover glass was introduced into a coverslip dish (Harvard Apparatus, Holliston, Massachusetts), which was used for visualization of the sample on an inverted confocal microscope (Leica TCS-SP5). A small aliquot containing the SUPER templates was introduced from one side (loading side) of the channel previously filled up with the working buffer. SUPER templates were allowed to settle down for 5 minutes, and then the chamber was carefully tilted 45–65 degrees with the loading side heading up. The cloud of SUPER templates was observed to descend the channel for 3/4 of its length, allowing for NT formation between the beads, and on the lower coverslip surface. To decrease fluorescent background, only the NTs formed between the beads were observed. Upon NT formation, ATG3-containing solution was introduced from the loading side and was allowed to diffuse for 30 minutes along the channel, thus avoiding physical perturbation of the NTs. The ATG3 final concentration in the experimental channel was 1 μM.

References

  1. 1.

    Tooze, S. a. et al. Trafficking and signaling in mammalian autophagy. IUBMB Life 62, 503–8 (2010).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    He, C. & Klionsky, D. J. Regulation Mechanisms and Signaling Pathways of Autophagy. Annu. Rev. Genet. 43, 67–93 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Lamb, C. a., Yoshimori, T. & Tooze, S. a. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759–774 (2013).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Sou, Y.-s., Tanida, I., Komatsu, M., Ueno, T. & Kominami, E. Phosphatidylserine in Addition to Phosphatidylethanolamine Is an in Vitro Target of the Mammalian Atg8 Modifiers, LC3, GABARAP, and GATE-16. J. Biol. Chem. 281, 3017–3024 (2006).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Tanida, I., Ueno, T. & Kominami, E. LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol. 36, 2503–18 (2004).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Kaiser, S. E. et al. Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7–Atg3 and Atg7–Atg10 structures. Nat. Struct. Mol. Biol. 19, 1242–1249 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Hong, S. B. et al. Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat. Struct. Mol. Biol. 18, 1323–30 (2011).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Weidberg, H. et al. LC3 and GATE-16 N Termini Mediate Membrane Fusion Processes Required for Autophagosome Biogenesis. Dev. Cell 20, 444–454 (2011).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Nakatogawa, H., Ichimura, Y. & Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165–78 (2007).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Landajuela, A. et al. Lipid geometry and bilayer curvature modultae LC3/GABARAP-mediated model autophagosome elongation. Biophys. J. 110, 411–422 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Popelka, H., Uversky, V. N. & Klionsky, D. J. Identification of Atg3 as an intrinsically disordered polypeptide yields insights into the molecular dynamics of autophagy-related proteins in yeast. Autophagy 10, 1093–104 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Yamada, Y. et al. The Crystal Structure of Atg3, an Autophagy-related Ubiquitin Carrier Protein (E2) Enzyme that Mediates Atg8 Lipidation. J. Biol. Chem. 282, 8036–8043 (2007).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Sakoh-Nakatogawa, M. et al. Atg12–Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nat. Struct. Mol. Biol. 20, 433–439 (2013).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Hanada, T., Satomi, Y., Takao, T. & Ohsumi, Y. The amino-terminal region of Atg3 is essential for association with phosphatidylethanolamine in Atg8 lipidation. FEBS Lett. 583, 1078–1083 (2009).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Nath, S. et al. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat. Cell Biol. 16, 415–24 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Li, Y.-T. et al. A semisynthetic Atg3 reveals that acetylation promotes Atg3 membrane binding and Atg8 lipidation. Nat. Commun. 8, 14846 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Radoshevich, L. et al. ATG12 Conjugation to ATG3 Regulates Mitochondrial Homeostasis and Cell Death. Cell 142, 590–600 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Metlagel, Z., Otomo, C., Takaesu, G. & Otomo, T. Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. Proc. Natl. Acad. Sci. USA 110, 18844–9 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Romanov, J. et al. Mechanism and functions of membrane binding by the Atg5–Atg12/Atg16 complex during autophagosome formation. EMBO J. 31, 4304–4317 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Walczak, M. & Martens, S. Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy 9, 424–425 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Klionsky, D. J. & Schulman, B. a. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat. Struct. Mol. Biol. 21, 336–345 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Liu, K. et al. ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance. Autophagy 12, 2000–2008 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Marsh, D. Lateral pressure in membranes. Biochim. Biophys. Acta - Rev. Biomembr. 1286, 183–223 (1996).

    CAS  Article  Google Scholar 

  24. 24.

    Nair, U. et al. SNARE proteins are required for macroautophagy. Cell 146, 290–302 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Israelachvili, J., Marcelja, S. & Horn, R. Physical principles of membrane organization. Q. Rev. … 13, 121–200 (1980).

    CAS  Google Scholar 

  26. 26.

    Alonso, A., Goñi, F. M. & Buckley, J. T. Lipids favoring inverted phase enhance the ability of aerolysin to permeabilize liposome bilayers. Biochemistry 39, 14019–24 (2000).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Martín, C. et al. Membrane restructuring by Bordetella pertussis adenylate cyclase toxin, a member of the RTX toxin family. J. Bacteriol. 186, 3760–5 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Jamil, H., Hatch, G. M. & Vance, D. E. Evidence that binding of CTP:phosphocholine cytidylyltransferase to membranes in rat hepatocytes is modulated by the ratio of bilayer- to non-bilayer-forming lipids. Biochem. J. 291, 419–27 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Goñi, F. M., Villar, A. V., Nieva, J. L. & Alonso, A. Interaction of phospholipases C and sphingomyelinase with liposomes. Methods Enzymol. 372, 3–19 (2003).

    Article  PubMed  Google Scholar 

  30. 30.

    Veatch, S. L. & Keller, S. L. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85, 3074–83 (2003).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Beales, P. A., Bergstrom, C. L., Geerts, N., Groves, J. T. & Vanderlick, T. K. Single vesicle observations of the cardiolipin-cytochrome C interaction: induction of membrane morphology changes. Langmuir 27, 6107–15 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Neumann, S., Pucadyil, T. J. & Schmid, S. L. Analyzing membrane remodeling and fission using supported bilayers with excess membrane reservoir. Nat. Protoc. 8, 213–22 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Pucadyil, T. J. & Schmid, S. L. Supported Bilayers with Excess Membrane Reservoir: A Template for Reconstituting Membrane Budding and Fission. Biophys. J. 99, 517–525 (2010).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Hanada, T. et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282, 37298–302 (2007).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Ichimura, Y. et al. In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J. Biol. Chem. 279, 40584–92 (2004).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Oh-oka, K., Nakatogawa, H. & Ohsumi, Y. Physiological pH and Acidic Phospholipids Contribute to Substrate Specificity in Lipidation of Atg8. J. Biol. Chem. 283, 21847–21852 (2008).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Frolov, V. A., Shnyrova, A. V. & Zimmerberg, J. Lipid polymorphisms and membrane shape. Cold Spring Harb. Perspect. Biol. 3, a004747 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. 38.

    Madsen, K. L., Bhatia, V. K., Gether, U. & Stamou, D. BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature. FEBS Lett. 584, 1848–55 (2010).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Bigay, J., Casella, J.-F., Drin, G., Mesmin, B. & Antonny, B. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J. 24, 2244–2253 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Mesmin, B. et al. Two lipid-packing sensor motifs contribute to the sensitivity of ArfGAP1 to membrane curvature. Biochemistry 46, 1779–90 (2007).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Mishra, V. K., Palgunachari, M. N., Segrest, J. P. & Anantharamaiah, G. M. Interactions of synthetic peptide analogs of the class A amphipathic helix with lipids. Evidence for the snorkel hypothesis. J. Biol. Chem. 269, 7185–91 (1994).

    CAS  PubMed  Google Scholar 

  42. 42.

    Fan, W., Nassiri, a. & Zhong, Q. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc. Natl. Acad. Sci. 108, 7769–7774 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Wilz, L., Fan, W. & Zhong, Q. Membrane curvature response in autophagy. Autophagy 7, 1249–50 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Dall’Armi, C., Devereaux, K. A. & Di Paolo, G. The Role of Lipids in the Control of Autophagy. Curr. Biol. 23, R33–R45 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. 45.

    Dooley, H. C. et al. WIPI2 Links LC3 Conjugation with PI3P, Autophagosome Formation, and Pathogen Clearance by Recruiting Atg12–5-16L1. Mol. Cell 55, 238–252 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Vicinanza, M. et al. PI(5)P regulates autophagosome biogenesis. Mol. Cell 57, 219–34 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Sentelle, R. D. et al. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat. Chem. Biol. 8, 831–8 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Chu, C. T. et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15, 1197–1205 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Ibarguren, M. et al. End-products diacylglycerol and ceramide modulate membrane fusion induced by a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. Biochim. Biophys. Acta 1798, 59–64 (2010).

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Nieva, J. L. et al. Topological properties of two cubic phases of a phospholipid: cholesterol: diacylglycerol aqueous system and their possible implications in the phospholipase C-induced liposome fusion. FEBS Lett. 368, 143–147 (1995).

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Shahnazari, S., Namolovan, A., Klionsky, D. J. & Brumell, J. H. A role for diacylglycerol in antibacterial autophagy. Autophagy 7, 331–333 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Dall’Armi, C. et al. The phospholipase D1 pathway modulates macroautophagy. Nat. Commun. 1, 142 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. 53.

    Jenkins, G. M. & Frohman, M. A. Phospholipase D: a lipid centric review. Cell. Mol. Life Sci. 62, 2305–2316 (2005).

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Foster, D. a. Regulation of mTOR by Phosphatidic Acid? Cancer Res. 67, 1–4 (2007).

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Moreau, K., Renna, M. & Rubinsztein, D. C. Connections between SNAREs and autophagy. Trends Biochem. Sci. 38, 57–63 (2013).

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Mayer, L. D., Hope, M. J. & Cullis, P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta - Biomembr. 858, 161–168 (1986).

    CAS  Article  Google Scholar 

  57. 57.

    Böttcher, C. J. F., Van gent, C. M. & Pries, C. A rapid and sensitive sub-micro phosphorus determination. Anal. Chim. Acta 24, 203–204 (1961).

    Article  Google Scholar 

  58. 58.

    Fidorra, M., Duelund, L., Leidy, C., Simonsen, A. C. & Bagatolli, L. A. Absence of fluid-ordered/fluid-disordered phase coexistence in ceramide/POPC mixtures containing cholesterol. Biophys. J. 90, 4437–51 (2006).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Ulmschneider, M. B. et al. Spontaneous transmembrane helix insertion thermodynamically mimics translocon-guided insertion. Nat. Commun. 5, 4863 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article is part of COST (European Cooperation in Science and Technology) Actions (PROTEOSTASIS, BM1307, TRANSAUTOPHAGY, CA15138). The authors thank Dr. Isei Tanida (National Institute of Infectious Diseases, Tokyo, Japan) for providing human ATG3 and GABARAP plasmids, and to Dr. Martin B. Ulmschneider (Johns Hopkins University, Baltimore, MD) for Fig. 1B. They are also indebted to Ms Araceli Marcos for technical support. This work was supported in part by grants from the Spanish Ministry of Economy and FEDER (BFU 2011–28566, BFU 2015–66306-P, AGL2011–24758), and from the Basque Government (IT838-13, IT849-13). A.S. acknowledges support from RyC Program of the Spanish Ministry of Economy. J.H.H and Z.A. were predoctoral students supported by the University of the Basque Country.

Author information

Affiliations

Authors

Contributions

A.A. and J.H.H. conceived and coordinated the study. F.M.G. helped in coordinating the study, designed experiments and edited the paper. J.H.H. and A.L. designed, performed and analyzed most of the experiments. Z.A. contributed to the experimental design, performance and analysis. A.V.S. designed the experiments shown in Fig. 7. J.H.H. wrote the manuscript with significant contribution from all the authors who also approved the final version of the manuscript.

Corresponding author

Correspondence to Alicia Alonso.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hervás, J.H., Landajuela, A., Antón, Z. et al. Human ATG3 binding to lipid bilayers: role of lipid geometry, and electric charge. Sci Rep 7, 15614 (2017). https://doi.org/10.1038/s41598-017-15057-6

Download citation

Further reading

  • An N-terminal conserved region in human Atg3 couples membrane curvature sensitivity to conjugase activity during autophagy

    • Yansheng Ye
    • , Erin R. Tyndall
    • , Van Bui
    • , Zhenyuan Tang
    • , Yan Shen
    • , Xuejun Jiang
    • , John M. Flanagan
    • , Hong-Gang Wang
    •  & Fang Tian

    Nature Communications (2021)

  • Functional expression and purification of recombinant full-length human ATG7 protein with HIV-1 Tat peptide in Escherichia coli

    • Guofu Dong
    • , Xi Zhao
    • , Junwang Guo
    • , Lei Ma
    • , Hongmei Zhou
    • , Qi Liu
    • , Xuelong Zhao
    • , Changzhen Wang
    •  & Ke Wu

    Protein Expression and Purification (2021)

  • Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1

    • Daniel J. Klionsky
    • , Amal Kamal Abdel-Aziz
    • , Sara Abdelfatah
    • , Mahmoud Abdellatif
    • , Asghar Abdoli
    • , Steffen Abel
    • , Hagai Abeliovich
    • , Marie H. Abildgaard
    • , Yakubu Princely Abudu
    • , Abraham Acevedo-Arozena
    • , Iannis E. Adamopoulos
    • , Khosrow Adeli
    • , Timon E. Adolph
    • , Annagrazia Adornetto
    • , Elma Aflaki
    • , Galila Agam
    • , Anupam Agarwal
    • , Bharat B. Aggarwal
    • , Maria Agnello
    • , Patrizia Agostinis
    • , Javed N. Agrewala
    • , Alexander Agrotis
    • , Patricia V. Aguilar
    • , S. Tariq Ahmad
    • , Zubair M. Ahmed
    • , Ulises Ahumada-Castro
    • , Sonja Aits
    • , Shu Aizawa
    • , Yunus Akkoc
    • , Tonia Akoumianaki
    • , Hafize Aysin Akpinar
    • , Ahmed M. Al-Abd
    • , Lina Al-Akra
    • , Abeer Al-Gharaibeh
    • , Moulay A. Alaoui-Jamali
    • , Simon Alberti
    • , Elísabet Alcocer-Gómez
    • , Cristiano Alessandri
    • , Muhammad Ali
    • , M. Abdul Alim Al-Bari
    • , Saeb Aliwaini
    • , Javad Alizadeh
    • , Eugènia Almacellas
    • , Alexandru Almasan
    • , Alicia Alonso
    • , Guillermo D. Alonso
    • , Nihal Altan-Bonnet
    • , Dario C. Altieri
    • , Élida M. C. Álvarez
    • , Sara Alves
    • , Cristine Alves da Costa
    • , Mazen M. Alzaharna
    • , Marialaura Amadio
    • , Consuelo Amantini
    • , Cristina Amaral
    • , Susanna Ambrosio
    • , Amal O. Amer
    • , Veena Ammanathan
    • , Zhenyi An
    • , Stig U. Andersen
    • , Shaida A. Andrabi
    • , Magaiver Andrade-Silva
    • , Allen M. Andres
    • , Sabrina Angelini
    • , David Ann
    • , Uche C. Anozie
    • , Mohammad Y. Ansari
    • , Pedro Antas
    • , Adam Antebi
    • , Zuriñe Antón
    • , Tahira Anwar
    • , Lionel Apetoh
    • , Nadezda Apostolova
    • , Toshiyuki Araki
    • , Yasuhiro Araki
    • , Kohei Arasaki
    • , Wagner L. Araújo
    • , Jun Araya
    • , Catherine Arden
    • , Maria-Angeles Arévalo
    • , Sandro Arguelles
    • , Esperanza Arias
    • , Jyothi Arikkath
    • , Hirokazu Arimoto
    • , Aileen R. Ariosa
    • , Darius Armstrong-James
    • , Laetitia Arnauné-Pelloquin
    • , Angeles Aroca
    • , Daniela S. Arroyo
    • , Ivica Arsov
    • , Rubén Artero
    • , Dalia Maria Lucia Asaro
    • , Michael Aschner
    • , Milad Ashrafizadeh
    • , Osnat Ashur-Fabian
    • , Atanas G. Atanasov
    • , Alicia K. Au
    • , Patrick Auberger
    • , Holger W. Auner
    • , Laure Aurelian
    • , Riccardo Autelli
    • , Laura Avagliano
    • , Yenniffer Ávalos
    • , Sanja Aveic
    • , Célia Alexandra Aveleira
    • , Tamar Avin-Wittenberg
    • , Yucel Aydin
    • , Scott Ayton
    • , Srinivas Ayyadevara
    • , Maria Azzopardi
    • , Misuzu Baba
    • , Jonathan M. Backer
    • , Steven K. Backues
    • , Dong-Hun Bae
    • , Ok-Nam Bae
    • , Soo Han Bae
    • , Eric H. Baehrecke
    • , Ahruem Baek
    • , Seung-Hoon Baek
    • , Sung Hee Baek
    • , Giacinto Bagetta
    • , Agnieszka Bagniewska-Zadworna
    • , Hua Bai
    • , Jie Bai
    • , Xiyuan Bai
    • , Yidong Bai
    • , Nandadulal Bairagi
    • , Shounak Baksi
    • , Teresa Balbi
    • , Cosima T. Baldari
    • , Walter Balduini
    • , Andrea Ballabio
    • , Maria Ballester
    • , Salma Balazadeh
    • , Rena Balzan
    • , Rina Bandopadhyay
    • , Sreeparna Banerjee
    • , Sulagna Banerjee
    • , Ágnes Bánréti
    • , Yan Bao
    • , Mauricio S. Baptista
    • , Alessandra Baracca
    • , Cristiana Barbati
    • , Ariadna Bargiela
    • , Daniela Barilà
    • , Peter G. Barlow
    • , Sami J. Barmada
    • , Esther Barreiro
    • , George E. Barreto
    • , Jiri Bartek
    • , Bonnie Bartel
    • , Alberto Bartolome
    • , Gaurav R. Barve
    • , Suresh H. Basagoudanavar
    • , Diane C. Bassham
    • , Robert C. Bast
    • , Alakananda Basu
    • , Henri Batoko
    • , Isabella Batten
    • , Etienne E. Baulieu
    • , Bradley L. Baumgarner
    • , Jagadeesh Bayry
    • , Rupert Beale
    • , Isabelle Beau
    • , Florian Beaumatin
    • , Luiz R.G. Bechara
    • , George R. Beck
    • , Michael F. Beers
    • , Jakob Begun
    • , Christian Behrends
    • , Georg M.N. Behrens
    • , Roberto Bei
    • , Eloy Bejarano
    • , Shai Bel
    • , Christian Behl
    • , Amine Belaid
    • , Naïma Belgareh-Touzé
    • , Cristina Bellarosa
    • , Francesca Belleudi
    • , Melissa Belló Pérez
    • , Raquel Bello-Morales
    • , Jackeline Soares de Oliveira Beltran
    • , Sebastián Beltran
    • , Doris Mangiaracina Benbrook
    • , Mykolas Bendorius
    • , Bruno A. Benitez
    • , Irene Benito-Cuesta
    • , Julien Bensalem
    • , Martin W. Berchtold
    • , Sabina Berezowska
    • , Daniele Bergamaschi
    • , Matteo Bergami
    • , Andreas Bergmann
    • , Laura Berliocchi
    • , Clarisse Berlioz-Torrent
    • , Amélie Bernard
    • , Lionel Berthoux
    • , Cagri G. Besirli
    • , Sebastien Besteiro
    • , Virginie M. Betin
    • , Rudi Beyaert
    • , Jelena S. Bezbradica
    • , Kiran Bhaskar
    • , Ingrid Bhatia-Kissova
    • , Resham Bhattacharya
    • , Sujoy Bhattacharya
    • , Shalmoli Bhattacharyya
    • , Md. Shenuarin Bhuiyan
    • , Sujit Kumar Bhutia
    • , Lanrong Bi
    • , Xiaolin Bi
    • , Trevor J. Biden
    • , Krikor Bijian
    • , Viktor A. Billes
    • , Nadine Binart
    • , Claudia Bincoletto
    • , Asa B. Birgisdottir
    • , Geir Bjorkoy
    • , Gonzalo Blanco
    • , Ana Blas-Garcia
    • , Janusz Blasiak
    • , Robert Blomgran
    • , Klas Blomgren
    • , Janice S. Blum
    • , Emilio Boada-Romero
    • , Mirta Boban
    • , Kathleen Boesze-Battaglia
    • , Philippe Boeuf
    • , Barry Boland
    • , Pascale Bomont
    • , Paolo Bonaldo
    • , Srinivasa Reddy Bonam
    • , Laura Bonfili
    • , Juan S. Bonifacino
    • , Brian A. Boone
    • , Martin D. Bootman
    • , Matteo Bordi
    • , Christoph Borner
    • , Beat C. Bornhauser
    • , Gautam Borthakur
    • , Jürgen Bosch
    • , Santanu Bose
    • , Luis M. Botana
    • , Juan Botas
    • , Chantal M. Boulanger
    • , Michael E. Boulton
    • , Mathieu Bourdenx
    • , Benjamin Bourgeois
    • , Nollaig M. Bourke
    • , Guilhem Bousquet
    • , Patricia Boya
    • , Peter V. Bozhkov
    • , Luiz H. M. Bozi
    • , Tolga O. Bozkurt
    • , Doug E. Brackney
    • , Christian H. Brandts
    • , Ralf J. Braun
    • , Gerhard H. Braus
    • , Roberto Bravo-Sagua
    • , José M. Bravo-San Pedro
    • , Patrick Brest
    • , Marie-Agnès Bringer
    • , Alfredo Briones-Herrera
    • , V. Courtney Broaddus
    • , Peter Brodersen
    • , Jeffrey L. Brodsky
    • , Steven L. Brody
    • , Paola G. Bronson
    • , Jeff M. Bronstein
    • , Carolyn N. Brown
    • , Rhoderick E. Brown
    • , Patricia C. Brum
    • , John H. Brumell
    • , Nicola Brunetti-Pierri
    • , Daniele Bruno
    • , Robert J. Bryson-Richardson
    • , Cecilia Bucci
    • , Carmen Buchrieser
    • , Marta Bueno
    • , Laura Elisa Buitrago-Molina
    • , Simone Buraschi
    • , Shilpa Buch
    • , J. Ross Buchan
    • , Erin M. Buckingham
    • , Hikmet Budak
    • , Mauricio Budini
    • , Geert Bultynck
    • , Florin Burada
    • , Joseph R. Burgoyne
    • , M. Isabel Burón
    • , Victor Bustos
    • , Sabrina Büttner
    • , Elena Butturini
    • , Aaron Byrd
    • , Isabel Cabas
    • , Sandra Cabrera-Benitez
    • , Ken Cadwell
    • , Jingjing Cai
    • , Lu Cai
    • , Qian Cai
    • , Montserrat Cairó
    • , Jose A. Calbet
    • , Guy A. Caldwell
    • , Kim A. Caldwell
    • , Jarrod A. Call
    • , Riccardo Calvani
    • , Ana C. Calvo
    • , Miguel Calvo-Rubio Barrera
    • , Niels OS Camara
    • , Jacques H. Camonis
    • , Nadine Camougrand
    • , Michelangelo Campanella
    • , Edward M. Campbell
    • , François-Xavier Campbell-Valois
    • , Silvia Campello
    • , Ilaria Campesi
    • , Juliane C. Campos
    • , Olivier Camuzard
    • , Jorge Cancino
    • , Danilo Candido de Almeida
    • , Laura Canesi
    • , Isabella Caniggia
    • , Barbara Canonico
    • , Carles Cantí
    • , Bin Cao
    • , Michele Caraglia
    • , Beatriz Caramés
    • , Evie H. Carchman
    • , Elena Cardenal-Muñoz
    • , Cesar Cardenas
    • , Luis Cardenas
    • , Sandra M. Cardoso
    • , Jennifer S. Carew
    • , Georges F. Carle
    • , Gillian Carleton
    • , Silvia Carloni
    • , Didac Carmona-Gutierrez
    • , Leticia A. Carneiro
    • , Oliana Carnevali
    • , Julian M. Carosi
    • , Serena Carra
    • , Alice Carrier
    • , Lucie Carrier
    • , Bernadette Carroll
    • , A. Brent Carter
    • , Andreia Neves Carvalho
    • , Magali Casanova
    • , Caty Casas
    • , Josefina Casas
    • , Chiara Cassioli
    • , Eliseo F. Castillo
    • , Karen Castillo
    • , Sonia Castillo-Lluva
    • , Francesca Castoldi
    • , Marco Castori
    • , Ariel F. Castro
    • , Margarida Castro-Caldas
    • , Javier Castro-Hernandez
    • , Susana Castro-Obregon
    • , Sergio D. Catz
    • , Claudia Cavadas
    • , Federica Cavaliere
    • , Gabriella Cavallini
    • , Maria Cavinato
    • , Maria L. Cayuela
    • , Paula Cebollada Rica
    • , Valentina Cecarini
    • , Francesco Cecconi
    • , Marzanna Cechowska-Pasko
    • , Simone Cenci
    • , Victòria Ceperuelo-Mallafré
    • , João J. Cerqueira
    • , Janete M. Cerutti
    • , Davide Cervia
    • , Vildan Bozok Cetintas
    • , Silvia Cetrullo
    • , Han-Jung Chae
    • , Andrei S. Chagin
    • , Chee-Yin Chai
    • , Gopal Chakrabarti
    • , Oishee Chakrabarti
    • , Tapas Chakraborty
    • , Trinad Chakraborty
    • , Mounia Chami
    • , Georgios Chamilos
    • , David W. Chan
    • , Edmond Y. W. Chan
    • , Edward D. Chan
    • , H.Y. Edwin Chan
    • , Helen H. Chan
    • , Hung Chan
    • , Matthew T.V. Chan
    • , Yau Sang Chan
    • , Partha K. Chandra
    • , Chih-Peng Chang
    • , Chunmei Chang
    • , Hao-Chun Chang
    • , Kai Chang
    • , Jie Chao
    • , Tracey Chapman
    • , Nicolas Charlet-Berguerand
    • , Samrat Chatterjee
    • , Shail K. Chaube
    • , Anu Chaudhary
    • , Santosh Chauhan
    • , Edward Chaum
    • , Frédéric Checler
    • , Michael E. Cheetham
    • , Chang-Shi Chen
    • , Guang-Chao Chen
    • , Jian-Fu Chen
    • , Liam L. Chen
    • , Leilei Chen
    • , Lin Chen
    • , Mingliang Chen
    • , Mu-Kuan Chen
    • , Ning Chen
    • , Quan Chen
    • , Ruey-Hwa Chen
    • , Shi Chen
    • , Wei Chen
    • , Weiqiang Chen
    • , Xin-Ming Chen
    • , Xiong-Wen Chen
    • , Xu Chen
    • , Yan Chen
    • , Ye-Guang Chen
    • , Yingyu Chen
    • , Yongqiang Chen
    • , Yu-Jen Chen
    • , Yue-Qin Chen
    • , Zhefan Stephen Chen
    • , Zhi Chen
    • , Zhi-Hua Chen
    • , Zhijian J. Chen
    • , Zhixiang Chen
    • , Hanhua Cheng
    • , Jun Cheng
    • , Shi-Yuan Cheng
    • , Wei Cheng
    • , Xiaodong Cheng
    • , Xiu-Tang Cheng
    • , Yiyun Cheng
    • , Zhiyong Cheng
    • , Zhong Chen
    • , Heesun Cheong
    • , Jit Kong Cheong
    • , Boris V. Chernyak
    • , Sara Cherry
    • , Chi Fai Randy Cheung
    • , Chun Hei Antonio Cheung
    • , King-Ho Cheung
    • , Eric Chevet
    • , Richard J. Chi
    • , Alan Kwok Shing Chiang
    • , Ferdinando Chiaradonna
    • , Roberto Chiarelli
    • , Mario Chiariello
    • , Nathalia Chica
    • , Susanna Chiocca
    • , Mario Chiong
    • , Shih-Hwa Chiou
    • , Abhilash I. Chiramel
    • , Valerio Chiurchiù
    • , Dong-Hyung Cho
    • , Seong-Kyu Choe
    • , Augustine M.K. Choi
    • , Mary E. Choi
    • , Kamalika Roy Choudhury
    • , Norman S. Chow
    • , Charleen T. Chu
    • , Jason P. Chua
    • , John Jia En Chua
    • , Hyewon Chung
    • , Kin Pan Chung
    • , Seockhoon Chung
    • , So-Hyang Chung
    • , Yuen-Li Chung
    • , Valentina Cianfanelli
    • , Iwona A. Ciechomska
    • , Mariana Cifuentes
    • , Laura Cinque
    • , Sebahattin Cirak
    • , Mara Cirone
    • , Michael J. Clague
    • , Robert Clarke
    • , Emilio Clementi
    • , Eliana M. Coccia
    • , Patrice Codogno
    • , Ehud Cohen
    • , Mickael M. Cohen
    • , Tania Colasanti
    • , Fiorella Colasuonno
    • , Robert A. Colbert
    • , Anna Colell
    • , Miodrag Čolić
    • , Nuria S. Coll
    • , Mark O. Collins
    • , María I. Colombo
    • , Daniel A. Colón-Ramos
    • , Lydie Combaret
    • , Sergio Comincini
    • , Márcia R. Cominetti
    • , Antonella Consiglio
    • , Andrea Conte
    • , Fabrizio Conti
    • , Viorica Raluca Contu
    • , Mark R. Cookson
    • , Kevin M. Coombs
    • , Isabelle Coppens
    • , Maria Tiziana Corasaniti
    • , Dale P. Corkery
    • , Nils Cordes
    • , Katia Cortese
    • , Maria do Carmo Costa
    • , Sarah Costantino
    • , Paola Costelli
    • , Ana Coto-Montes
    • , Peter J. Crack
    • , Jose L. Crespo
    • , Alfredo Criollo
    • , Valeria Crippa
    • , Riccardo Cristofani
    • , Tamas Csizmadia
    • , Antonio Cuadrado
    • , Bing Cui
    • , Jun Cui
    • , Yixian Cui
    • , Yong Cui
    • , Emmanuel Culetto
    • , Andrea C. Cumino
    • , Andrey V. Cybulsky
    • , Mark J. Czaja
    • , Stanislaw J. Czuczwar
    • , Stefania D’Adamo
    • , Marcello D’Amelio
    • , Daniela D’Arcangelo
    • , Andrew C. D’Lugos
    • , Gabriella D’Orazi
    • , James A. da Silva
    • , Hormos Salimi Dafsari
    • , Ruben K. Dagda
    • , Yasin Dagdas
    • , Maria Daglia
    • , Xiaoxia Dai
    • , Yun Dai
    • , Yuyuan Dai
    • , Jessica Dal Col
    • , Paul Dalhaimer
    • , Luisa Dalla Valle
    • , Tobias Dallenga
    • , Guillaume Dalmasso
    • , Markus Damme
    • , Ilaria Dando
    • , Nico P. Dantuma
    • , April L. Darling
    • , Hiranmoy Das
    • , Srinivasan Dasarathy
    • , Santosh K. Dasari
    • , Srikanta Dash
    • , Oliver Daumke
    • , Adrian N. Dauphinee
    • , Jeffrey S. Davies
    • , Valeria A. Dávila
    • , Roger J. Davis
    • , Tanja Davis
    • , Sharadha Dayalan Naidu
    • , Francesca De Amicis
    • , Karolien De Bosscher
    • , Francesca De Felice
    • , Lucia De Franceschi
    • , Chiara De Leonibus
    • , Mayara G. de Mattos Barbosa
    • , Guido R.Y. De Meyer
    • , Angelo De Milito
    • , Cosimo De Nunzio
    • , Clara De Palma
    • , Mauro De Santi
    • , Claudio De Virgilio
    • , Daniela De Zio
    • , Jayanta Debnath
    • , Brian J. DeBosch
    • , Jean-Paul Decuypere
    • , Mark A. Deehan
    • , Gianluca Deflorian
    • , James DeGregori
    • , Benjamin Dehay
    • , Gabriel Del Rio
    • , Joe R. Delaney
    • , Lea M. D. Delbridge
    • , Elizabeth Delorme-Axford
    • , M. Victoria Delpino
    • , Francesca Demarchi
    • , Vilma Dembitz
    • , Nicholas D. Demers
    • , Hongbin Deng
    • , Zhiqiang Deng
    • , Joern Dengjel
    • , Paul Dent
    • , Donna Denton
    • , Melvin L. DePamphilis
    • , Channing J. Der
    • , Vojo Deretic
    • , Albert Descoteaux
    • , Laura Devis
    • , Sushil Devkota
    • , Olivier Devuyst
    • , Grant Dewson
    • , Mahendiran Dharmasivam
    • , Rohan Dhiman
    • , Diego di Bernardo
    • , Manlio Di Cristina
    • , Fabio Di Domenico
    • , Pietro Di Fazio
    • , Alessio Di Fonzo
    • , Giovanni Di Guardo
    • , Gianni M. Di Guglielmo
    • , Luca Di Leo
    • , Chiara Di Malta
    • , Alessia Di Nardo
    • , Martina Di Rienzo
    • , Federica Di Sano
    • , George Diallinas
    • , Jiajie Diao
    • , Guillermo Diaz-Araya
    • , Inés Díaz-Laviada
    • , Jared M. Dickinson
    • , Marc Diederich
    • , Mélanie Dieudé
    • , Ivan Dikic
    • , Shiping Ding
    • , Wen-Xing Ding
    • , Luciana Dini
    • , Jelena Dinić
    • , Miroslav Dinic
    • , Albena T. Dinkova-Kostova
    • , Marc S. Dionne
    • , Jörg H.W. Distler
    • , Abhinav Diwan
    • , Ian M.C. Dixon
    • , Mojgan Djavaheri-Mergny
    • , Ina Dobrinski
    • , Oxana Dobrovinskaya
    • , Radek Dobrowolski
    • , Renwick C.J. Dobson
    • , Jelena Đokić
    • , Serap Dokmeci Emre
    • , Massimo Donadelli
    • , Bo Dong
    • , Xiaonan Dong
    • , Zhiwu Dong
    • , Gerald W. Dorn II
    • , Volker Dotsch
    • , Huan Dou
    • , Juan Dou
    • , Moataz Dowaidar
    • , Sami Dridi
    • , Liat Drucker
    • , Ailian Du
    • , Caigan Du
    • , Guangwei Du
    • , Hai-Ning Du
    • , Li-Lin Du
    • , André du Toit
    • , Shao-Bin Duan
    • , Xiaoqiong Duan
    • , Sónia P. Duarte
    • , Anna Dubrovska
    • , Elaine A. Dunlop
    • , Nicolas Dupont
    • , Raúl V. Durán
    • , Bilikere S. Dwarakanath
    • , Sergey A. Dyshlovoy
    • , Darius Ebrahimi-Fakhari
    • , Leopold Eckhart
    • , Charles L. Edelstein
    • , Thomas Efferth
    • , Eftekhar Eftekharpour
    • , Ludwig Eichinger
    • , Nabil Eid
    • , Tobias Eisenberg
    • , N. Tony Eissa
    • , Sanaa Eissa
    • , Miriam Ejarque
    • , Abdeljabar El Andaloussi
    • , Nazira El-Hage
    • , Shahenda El-Naggar
    • , Anna Maria Eleuteri
    • , Eman S. El-Shafey
    • , Mohamed Elgendy
    • , Aristides G. Eliopoulos
    • , María M. Elizalde
    • , Philip M. Elks
    • , Hans-Peter Elsasser
    • , Eslam S. Elsherbiny
    • , Brooke M. Emerling
    • , N. C. Tolga Emre
    • , Christina H. Eng
    • , Nikolai Engedal
    • , Anna-Mart Engelbrecht
    • , Agnete S.T. Engelsen
    • , Jorrit M. Enserink
    • , Ricardo Escalante
    • , Audrey Esclatine
    • , Mafalda Escobar-Henriques
    • , Eeva-Liisa Eskelinen
    • , Lucile Espert
    • , Makandjou-Ola Eusebio
    • , Gemma Fabrias
    • , Cinzia Fabrizi
    • , Antonio Facchiano
    • , Francesco Facchiano
    • , Bengt Fadeel
    • , Claudio Fader
    • , Alex C. Faesen
    • , W. Douglas Fairlie
    • , Alberto Falcó
    • , Bjorn H. Falkenburger
    • , Daping Fan
    • , Jie Fan
    • , Yanbo Fan
    • , Evandro F. Fang
    • , Yanshan Fang
    • , Yognqi Fang
    • , Manolis Fanto
    • , Tamar Farfel-Becker
    • , Mathias Faure
    • , Gholamreza Fazeli
    • , Anthony O. Fedele
    • , Arthur M. Feldman
    • , Du Feng
    • , Jiachun Feng
    • , Lifeng Feng
    • , Yibin Feng
    • , Yuchen Feng
    • , Wei Feng
    • , Thais Fenz Araujo
    • , Thomas A. Ferguson
    • , Álvaro F. Fernández
    • , Jose C. Fernandez-Checa
    • , Sonia Fernández-Veledo
    • , Alisdair R. Fernie
    • , Anthony W. Ferrante
    • , Alessandra Ferraresi
    • , Merari F. Ferrari
    • , Julio C.B. Ferreira
    • , Susan Ferro-Novick
    • , Antonio Figueras
    • , Riccardo Filadi
    • , Nicoletta Filigheddu
    • , Eduardo Filippi-Chiela
    • , Giuseppe Filomeni
    • , Gian Maria Fimia
    • , Vittorio Fineschi
    • , Francesca Finetti
    • , Steven Finkbeiner
    • , Edward A. Fisher
    • , Paul B. Fisher
    • , Flavio Flamigni
    • , Steven J. Fliesler
    • , Trude H. Flo
    • , Ida Florance
    • , Oliver Florey
    • , Tullio Florio
    • , Erika Fodor
    • , Carlo Follo
    • , Edward A. Fon
    • , Antonella Forlino
    • , Francesco Fornai
    • , Paola Fortini
    • , Anna Fracassi
    • , Alessandro Fraldi
    • , Brunella Franco
    • , Rodrigo Franco
    • , Flavia Franconi
    • , Lisa B. Frankel
    • , Scott L. Friedman
    • , Leopold F. Fröhlich
    • , Gema Frühbeck
    • , Jose M. Fuentes
    • , Yukio Fujiki
    • , Naonobu Fujita
    • , Yuuki Fujiwara
    • , Mitsunori Fukuda
    • , Simone Fulda
    • , Luc Furic
    • , Norihiko Furuya
    • , Carmela Fusco
    • , Michaela U. Gack
    • , Lidia Gaffke
    • , Sehamuddin Galadari
    • , Alessia Galasso
    • , Maria F. Galindo
    • , Sachith Gallolu Kankanamalage
    • , Lorenzo Galluzzi
    • , Vincent Galy
    • , Noor Gammoh
    • , Boyi Gan
    • , Ian G. Ganley
    • , Feng Gao
    • , Hui Gao
    • , Minghui Gao
    • , Ping Gao
    • , Shou-Jiang Gao
    • , Wentao Gao
    • , Xiaobo Gao
    • , Ana Garcera
    • , Maria Noé Garcia
    • , Verónica E. Garcia
    • , Francisco García-Del Portillo
    • , Vega Garcia-Escudero
    • , Aracely Garcia-Garcia
    • , Marina Garcia-Macia
    • , Diana García-Moreno
    • , Carmen Garcia-Ruiz
    • , Patricia García-Sanz
    • , Abhishek D. Garg
    • , Ricardo Gargini
    • , Tina Garofalo
    • , Robert F. Garry
    • , Nils C. Gassen
    • , Damian Gatica
    • , Liang Ge
    • , Wanzhong Ge
    • , Ruth Geiss-Friedlander
    • , Cecilia Gelfi
    • , Pascal Genschik
    • , Ian E. Gentle
    • , Valeria Gerbino
    • , Christoph Gerhardt
    • , Kyla Germain
    • , Marc Germain
    • , David A. Gewirtz
    • , Elham Ghasemipour Afshar
    • , Saeid Ghavami
    • , Alessandra Ghigo
    • , Manosij Ghosh
    • , Georgios Giamas
    • , Claudia Giampietri
    • , Alexandra Giatromanolaki
    • , Gary E. Gibson
    • , Spencer B. Gibson
    • , Vanessa Ginet
    • , Edward Giniger
    • , Carlotta Giorgi
    • , Henrique Girao
    • , Stephen E. Girardin
    • , Mridhula Giridharan
    • , Sandy Giuliano
    • , Cecilia Giulivi
    • , Sylvie Giuriato
    • , Julien Giustiniani
    • , Alexander Gluschko
    • , Veit Goder
    • , Alexander Goginashvili
    • , Jakub Golab
    • , David C. Goldstone
    • , Anna Golebiewska
    • , Luciana R. Gomes
    • , Rodrigo Gomez
    • , Rubén Gómez-Sánchez
    • , Maria Catalina Gomez-Puerto
    • , Raquel Gomez-Sintes
    • , Qingqiu Gong
    • , Felix M. Goni
    • , Javier González-Gallego
    • , Tomas Gonzalez-Hernandez
    • , Rosa A. Gonzalez-Polo
    • , Jose A. Gonzalez-Reyes
    • , Patricia González-Rodríguez
    • , Ing Swie Goping
    • , Marina S. Gorbatyuk
    • , Nikolai V. Gorbunov
    • , Kıvanç Görgülü
    • , Roxana M. Gorojod
    • , Sharon M. Gorski
    • , Sandro Goruppi
    • , Cecilia Gotor
    • , Roberta A. Gottlieb
    • , Illana Gozes
    • , Devrim Gozuacik
    • , Martin Graef
    • , Markus H. Gräler
    • , Veronica Granatiero
    • , Daniel Grasso
    • , Joshua P. Gray
    • , Douglas R. Green
    • , Alexander Greenhough
    • , Stephen L. Gregory
    • , Edward F. Griffin
    • , Mark W. Grinstaff
    • , Frederic Gros
    • , Charles Grose
    • , Angelina S. Gross
    • , Florian Gruber
    • , Paolo Grumati
    • , Tilman Grune
    • , Xueyan Gu
    • , Jun-Lin Guan
    • , Carlos M. Guardia
    • , Kishore Guda
    • , Flora Guerra
    • , Consuelo Guerri
    • , Prasun Guha
    • , Carlos Guillén
    • , Shashi Gujar
    • , Anna Gukovskaya
    • , Ilya Gukovsky
    • , Jan Gunst
    • , Andreas Günther
    • , Anyonya R. Guntur
    • , Chuanyong Guo
    • , Chun Guo
    • , Hongqing Guo
    • , Lian-Wang Guo
    • , Ming Guo
    • , Pawan Gupta
    • , Shashi Kumar Gupta
    • , Swapnil Gupta
    • , Veer Bala Gupta
    • , Vivek Gupta
    • , Asa B. Gustafsson
    • , David D. Gutterman
    • , Ranjitha H.B.
    • , Annakaisa Haapasalo
    • , James E. Haber
    • , Aleksandra Hać
    • , Shinji Hadano
    • , Anders J. Hafrén
    • , Mansour Haidar
    • , Belinda S. Hall
    • , Gunnel Halldén
    • , Anne Hamacher-Brady
    • , Andrea Hamann
    • , Maho Hamasaki
    • , Weidong Han
    • , Malene Hansen
    • , Phyllis I.  Hanson
    • , Zijian Hao
    • , Masaru Harada
    • , Ljubica Harhaji-Trajkovic
    • , Nirmala Hariharan
    • , Nigil Haroon
    • , James Harris
    • , Takafumi Hasegawa
    • , Noor Hasima Nagoor
    • , Jeffrey A. Haspel
    • , Volker Haucke
    • , Wayne D. Hawkins
    • , Bruce A. Hay
    • , Cole M. Haynes
    • , Soren B. Hayrabedyan
    • , Thomas S. Hays
    • , Congcong He
    • , Qin He
    • , Rong-Rong He
    • , You-Wen He
    • , Yu-Ying He
    • , Yasser Heakal
    • , Alexander M. Heberle
    • , J. Fielding Hejtmancik
    • , Gudmundur Vignir  Helgason
    • , Vanessa Henkel
    • , Marc Herb
    • , Alexander Hergovich
    • , Anna Herman-Antosiewicz
    • , Agustín Hernández
    • , Carlos Hernandez
    • , Sergio Hernandez-Diaz
    • , Virginia Hernandez-Gea
    • , Amaury Herpin
    • , Judit Herreros
    • , Javier H. Hervás
    • , Daniel Hesselson
    • , Claudio Hetz
    • , Volker T. Heussler
    • , Yujiro Higuchi
    • , Sabine Hilfiker
    • , Joseph A. Hill
    • , William S. Hlavacek
    • , Emmanuel A. Ho
    • , Idy H.T. Ho
    • , Philip Wing-Lok Ho
    • , Shu-Leong Ho
    • , Wan Yun Ho
    • , G. Aaron Hobbs
    • , Mark Hochstrasser
    • , Peter H.M. Hoet
    • , Daniel Hofius
    • , Paul Hofman
    • , Annika Höhn
    • , Carina I. Holmberg
    • , Jose R. Hombrebueno
    • , Chang-Won Hong, Yi-Ren Hong
    • , Lora V. Hooper
    • , Thorsten Hoppe
    • , Rastislav Horos
    • , Yujin Hoshida
    • , I-Lun Hsin
    • , Hsin-Yun Hsu
    • , Bing Hu
    • , Dong Hu
    • , Li-Fang Hu
    • , Ming Chang Hu
    • , Ronggui Hu
    • , Wei Hu
    • , Yu-Chen Hu
    • , Zhuo-Wei Hu
    • , Fang Hua
    • , Jinlian Hua
    • , Yingqi Hua
    • , Chongmin Huan
    • , Canhua Huang
    • , Chuanshu Huang
    • , Chuanxin Huang
    • , Chunling Huang
    • , Haishan Huang
    • , Kun Huang
    • , Michael L.H. Huang
    • , Rui Huang
    • , Shan Huang
    • , Tianzhi Huang
    • , Xing Huang
    • , Yuxiang Jack Huang
    • , Tobias B. Huber
    • , Virginie Hubert
    • , Christian A. Hubner
    • , Stephanie M. Hughes
    • , William E. Hughes
    • , Magali Humbert
    • , Gerhard Hummer
    • , James H. Hurley
    • , Sabah Hussain
    • , Salik Hussain
    • , Patrick J. Hussey
    • , Martina Hutabarat
    • , Hui-Yun Hwang
    • , Seungmin Hwang
    • , Antonio Ieni
    • , Fumiyo Ikeda
    • , Yusuke Imagawa
    • , Yuzuru Imai
    • , Carol Imbriano
    • , Masaya Imoto
    • , Denise M. Inman
    • , Ken Inoki
    • , Juan Iovanna
    • , Renato V. Iozzo
    • , Giuseppe Ippolito
    • , Javier E. Irazoqui
    • , Pablo Iribarren
    • , Mohd Ishaq
    • , Makoto Ishikawa
    • , Nestor Ishimwe
    • , Ciro Isidoro
    • , Nahed Ismail
    • , Shohreh Issazadeh-Navikas
    • , Eisuke Itakura
    • , Daisuke Ito
    • , Davor Ivankovic
    • , Saška Ivanova
    • , Anand Krishnan V. Iyer
    • , José M. Izquierdo
    • , Masanori Izumi
    • , Marja Jäättelä
    • , Majid Sakhi Jabir
    • , William T. Jackson
    • , Nadia Jacobo-Herrera
    • , Anne-Claire Jacomin
    • , Elise Jacquin
    • , Pooja Jadiya
    • , Hartmut Jaeschke
    • , Chinnaswamy Jagannath
    • , Arjen J. Jakobi
    • , Johan Jakobsson
    • , Bassam Janji
    • , Pidder Jansen-Dürr
    • , Patric J. Jansson
    • , Jonathan Jantsch
    • , Sławomir Januszewski
    • , Alagie Jassey
    • , Steve Jean
    • , Hélène Jeltsch-David
    • , Pavla Jendelova
    • , Andreas Jenny
    • , Thomas E. Jensen
    • , Niels Jessen
    • , Jenna L. Jewell
    • , Jing Ji
    • , Lijun Jia
    • , Rui Jia
    • , Liwen Jiang
    • , Qing Jiang
    • , Richeng Jiang
    • , Teng Jiang
    • , Xuejun Jiang
    • , Yu Jiang
    • , Maria Jimenez-Sanchez
    • , Eun-Jung Jin
    • , Fengyan Jin
    • , Hongchuan Jin
    • , Li Jin
    • , Luqi Jin
    • , Meiyan Jin
    • , Si Jin
    • , Eun-Kyeong Jo
    • , Carine Joffre
    • , Terje Johansen
    • , Gail V.W. Johnson
    • , Simon A. Johnston
    • , Eija Jokitalo
    • , Mohit Kumar Jolly
    • , Leo A.B. Joosten
    • , Joaquin Jordan
    • , Bertrand Joseph
    • , Dianwen Ju
    • , Jeong-Sun Ju
    • , Jingfang Ju
    • , Esmeralda Juárez
    • , Delphine Judith
    • , Gábor Juhász
    • , Youngsoo Jun
    • , Chang Hwa Jung
    • , Sung-Chul Jung
    • , Yong Keun Jung
    • , Heinz Jungbluth
    • , Johannes Jungverdorben
    • , Steffen Just
    • , Kai Kaarniranta
    • , Allen Kaasik
    • , Tomohiro Kabuta
    • , Daniel Kaganovich
    • , Alon Kahana
    • , Renate Kain
    • , Shinjo Kajimura
    • , Maria Kalamvoki
    • , Manjula Kalia
    • , Danuta S. Kalinowski
    • , Nina Kaludercic
    • , Ioanna Kalvari
    • , Joanna Kaminska
    • , Vitaliy O. Kaminskyy
    • , Hiromitsu Kanamori
    • , Keizo Kanasaki
    • , Chanhee Kang
    • , Rui Kang
    • , Sang Sun Kang
    • , Senthilvelrajan Kaniyappan
    • , Tomotake Kanki
    • , Thirumala-Devi Kanneganti
    • , Anumantha G. Kanthasamy
    • , Arthi Kanthasamy
    • , Marc Kantorow
    • , Orsolya Kapuy
    • , Michalis V. Karamouzis
    • , Md. Razaul Karim
    • , Parimal Karmakar
    • , Rajesh G. Katare
    • , Masaru Kato
    • , Stefan H.E. Kaufmann
    • , Anu Kauppinen
    • , Gur P. Kaushal
    • , Susmita Kaushik
    • , Kiyoshi Kawasaki
    • , Kemal Kazan
    • , Po-Yuan Ke
    • , Damien J. Keating
    • , Ursula Keber
    • , John H. Kehrl
    • , Kate E. Keller
    • , Christian W. Keller
    • , Jongsook Kim Kemper
    • , Candia M. Kenific
    • , Oliver Kepp
    • , Stephanie Kermorgant
    • , Andreas Kern
    • , Robin Ketteler
    • , Tom G. Keulers
    • , Boris Khalfin
    • , Hany Khalil
    • , Bilon Khambu
    • , Shahid Y. Khan
    • , Vinoth Kumar Megraj Khandelwal
    • , Rekha Khandia
    • , Widuri Kho
    • , Noopur V. Khobrekar
    • , Sataree Khuansuwan
    • , Mukhran Khundadze
    • , Samuel A. Killackey
    • , Dasol Kim
    • , Deok Ryong Kim
    • , Do-Hyung Kim
    • , Dong-Eun Kim
    • , Eun Young Kim
    • , Eun-Kyoung Kim
    • , Hak-Rim Kim
    • , Hee-Sik Kim
    • , Hyung-Ryong Kim
    • , Jeong Hun Kim
    • , Jin Kyung Kim
    • , Jin-Hoi Kim
    • , Joungmok Kim
    • , Ju Hwan Kim
    • , Keun Il Kim
    • , Peter K. Kim
    • , Seong-Jun Kim
    • , Scot R. Kimball
    • , Adi Kimchi
    • , Alec C. Kimmelman
    • , Tomonori Kimura
    • , Matthew A. King
    • , Kerri J. Kinghorn
    • , Conan G. Kinsey
    • , Vladimir Kirkin
    • , Lorrie A. Kirshenbaum
    • , Sergey L. Kiselev
    • , Shuji Kishi
    • , Katsuhiko Kitamoto
    • , Yasushi Kitaoka
    • , Kaio Kitazato
    • , Richard N. Kitsis
    • , Josef T. Kittler
    • , Ole Kjaerulff
    • , Peter S. Klein
    • , Thomas Klopstock
    • , Jochen Klucken
    • , Helene Knævelsrud
    • , Roland L. Knorr
    • , Ben C.B. Ko
    • , Fred Ko
    • , Jiunn-Liang Ko
    • , Hotaka Kobayashi
    • , Satoru Kobayashi
    • , Ina Koch
    • , Jan C. Koch
    • , Ulrich Koenig
    • , Donat Kögel
    • , Young Ho Koh
    • , Masato Koike
    • , Sepp D. Kohlwein
    • , Nur M. Kocaturk
    • , Masaaki Komatsu
    • , Jeannette König
    • , Toru Kono
    • , Benjamin T. Kopp
    • , Tamas Korcsmaros
    • , Gözde Korkmaz
    • , Viktor I. Korolchuk
    • , Mónica Suárez Korsnes
    • , Ali Koskela
    • , Janaiah Kota
    • , Yaichiro Kotake
    • , Monica L. Kotler
    • , Yanjun Kou
    • , Michael I. Koukourakis
    • , Evangelos Koustas
    • , Attila L. Kovacs
    • , Tibor Kovács
    • , Daisuke Koya
    • , Tomohiro Kozako
    • , Claudine Kraft
    • , Dimitri Krainc
    • , Helmut Krämer
    • , Anna D. Krasnodembskaya
    • , Carole Kretz-Remy
    • , Guido Kroemer
    • , Nicholas T. Ktistakis
    • , Kazuyuki Kuchitsu
    • , Sabine Kuenen
    • , Lars Kuerschner
    • , Thomas Kukar
    • , Ajay Kumar
    • , Ashok Kumar
    • , Deepak Kumar
    • , Dhiraj Kumar
    • , Sharad Kumar
    • , Shinji Kume
    • , Caroline Kumsta
    • , Chanakya N. Kundu
    • , Mondira Kundu
    • , Ajaikumar B. Kunnumakkara
    • , Lukasz Kurgan
    • , Tatiana G. Kutateladze
    • , Ozlem Kutlu
    • , SeongAe Kwak
    • , Ho Jeong Kwon
    • , Taeg Kyu Kwon
    • , Yong Tae Kwon
    • , Irene Kyrmizi
    • , Albert La Spada
    • , Patrick Labonté
    • , Sylvain Ladoire
    • , Ilaria Laface
    • , Frank Lafont
    • , Diane C. Lagace
    • , Vikramjit Lahiri
    • , Zhibing Lai
    • , Angela S. Laird
    • , Aparna Lakkaraju
    • , Trond Lamark
    • , Sheng-Hui Lan
    • , Ane Landajuela
    • , Darius J. R. Lane
    • , Jon D. Lane
    • , Charles H. Lang
    • , Carsten Lange
    • , Ülo Langel
    • , Rupert Langer
    • , Pierre Lapaquette
    • , Jocelyn Laporte
    • , Nicholas F. LaRusso
    • , Isabel Lastres-Becker
    • , Wilson Chun Yu Lau
    • , Gordon W. Laurie
    • , Sergio Lavandero
    • , Betty Yuen Kwan Law
    • , Helen Ka-wai Law
    • , Rob Layfield
    • , Weidong Le
    • , Herve Le Stunff
    • , Alexandre Y. Leary
    • , Jean-Jacques Lebrun
    • , Lionel Y.W. Leck
    • , Jean-Philippe Leduc-Gaudet
    • , Changwook Lee
    • , Chung-Pei Lee
    • , Da-Hye Lee
    • , Edward B. Lee
    • , Erinna F. Lee
    • , Gyun Min Lee
    • , He-Jin Lee
    • , Heung Kyu Lee
    • , Jae Man Lee
    • , Jason S. Lee
    • , Jin-A Lee
    • , Joo-Yong Lee
    • , Jun Hee Lee
    • , Michael Lee
    • , Min Goo Lee
    • , Min Jae Lee
    • , Myung-Shik Lee
    • , Sang Yoon Lee
    • , Seung-Jae Lee
    • , Stella Y. Lee
    • , Sung Bae Lee
    • , Won Hee Lee
    • , Ying-Ray Lee
    • , Yong-ho Lee
    • , Youngil Lee
    • , Christophe Lefebvre
    • , Renaud Legouis
    • , Yu L. Lei
    • , Yuchen Lei
    • , Sergey Leikin
    • , Gerd Leitinger
    • , Leticia Lemus
    • , Shuilong Leng
    • , Olivia Lenoir
    • , Guido Lenz
    • , Heinz Josef Lenz
    • , Paola Lenzi
    • , Yolanda León
    • , Andréia M. Leopoldino
    • , Christoph Leschczyk
    • , Stina Leskelä
    • , Elisabeth Letellier
    • , Chi-Ting Leung
    • , Po Sing Leung
    • , Jeremy S. Leventhal
    • , Beth Levine
    • , Patrick A. Lewis
    • , Klaus Ley
    • , Bin Li
    • , Da-Qiang Li
    • , Jianming Li
    • , Jing Li
    • , Jiong Li
    • , Ke Li
    • , Liwu Li
    • , Mei Li
    • , Min Li
    • , Min Li
    • , Ming Li
    • , Mingchuan Li
    • , Pin-Lan Li
    • , Ming-Qing Li
    • , Qing Li
    • , Sheng Li
    • , Tiangang Li
    • , Wei Li
    • , Wenming Li
    • , Xue Li
    • , Yi-Ping Li
    • , Yuan Li
    • , Zhiqiang Li
    • , Zhiyong Li
    • , Zhiyuan Li
    • , Jiqin Lian
    • , Chengyu Liang
    • , Qiangrong Liang
    • , Weicheng Liang
    • , Yongheng Liang
    • , YongTian Liang
    • , Guanghong Liao
    • , Lujian Liao
    • , Mingzhi Liao
    • , Yung-Feng Liao
    • , Mariangela Librizzi
    • , Pearl P. Y. Lie
    • , Mary A. Lilly
    • , Hyunjung J. Lim
    • , Thania R.R. Lima
    • , Federica Limana
    • , Chao Lin
    • , Chih-Wen Lin
    • , Dar-Shong Lin
    • , Fu-Cheng Lin
    • , Jiandie D. Lin
    • , Kurt M. Lin
    • , Kwang-Huei Lin
    • , Liang-Tzung Lin
    • , Pei-Hui Lin
    • , Qiong Lin
    • , Shaofeng Lin
    • , Su-Ju Lin
    • , Wenyu Lin
    • , Xueying Lin
    • , Yao-Xin Lin
    • , Yee-Shin Lin
    • , Rafael Linden
    • , Paula Lindner
    • , Shuo-Chien Ling
    • , Paul Lingor
    • , Amelia K. Linnemann
    • , Yih-Cherng Liou
    • , Marta M. Lipinski
    • , Saška Lipovšek
    • , Vitor A. Lira
    • , Natalia Lisiak
    • , Paloma B. Liton
    • , Chao Liu
    • , Ching-Hsuan Liu
    • , Chun-Feng Liu
    • , Cui Hua Liu
    • , Fang Liu
    • , Hao Liu
    • , Hsiao-Sheng Liu
    • , Hua-feng Liu
    • , Huifang Liu
    • , Jia Liu
    • , Jing Liu
    • , Julia Liu
    • , Leyuan Liu
    • , Longhua Liu
    • , Meilian Liu
    • , Qin Liu
    • , Wei Liu
    • , Wende Liu
    • , Xiao-Hong Liu
    • , Xiaodong Liu
    • , Xingguo Liu
    • , Xu Liu
    • , Xuedong Liu
    • , Yanfen Liu
    • , Yang Liu
    • , Yang Liu
    • , Yueyang Liu
    • , Yule Liu
    • , J. Andrew Livingston
    • , Gerard Lizard
    • , Jose M. Lizcano
    • , Senka Ljubojevic-Holzer
    • , Matilde E. LLeonart
    • , David Llobet-Navàs
    • , Alicia Llorente
    • , Chih Hung Lo
    • , Damián Lobato-Márquez
    • , Qi Long
    • , Yun Chau Long
    • , Ben Loos
    • , Julia A. Loos
    • , Manuela G. López
    • , Guillermo López-Doménech
    • , José Antonio López-Guerrero
    • , Ana T. López-Jiménez
    • , Óscar López-Pérez
    • , Israel López-Valero
    • , Magdalena J. Lorenowicz
    • , Mar Lorente
    • , Peter Lorincz
    • , Laura Lossi
    • , Sophie Lotersztajn
    • , Penny E. Lovat
    • , Jonathan F. Lovell
    • , Alenka Lovy
    • , Péter Lőw
    • , Guang Lu
    • , Haocheng Lu
    • , Jia-Hong Lu
    • , Jin-Jian Lu
    • , Mengji Lu
    • , Shuyan Lu
    • , Alessandro Luciani
    • , John M. Lucocq
    • , Paula Ludovico
    • , Micah A. Luftig
    • , Morten Luhr
    • , Diego Luis-Ravelo
    • , Julian J. Lum
    • , Liany Luna-Dulcey
    • , Anders H. Lund
    • , Viktor K. Lund
    • , Jan D. Lünemann
    • , Patrick Lüningschrör
    • , Honglin Luo
    • , Rongcan Luo
    • , Shouqing Luo
    • , Zhi Luo
    • , Claudio Luparello
    • , Bernhard Lüscher
    • , Luan Luu
    • , Alex Lyakhovich
    • , Konstantin G. Lyamzaev
    • , Alf Håkon Lystad
    • , Lyubomyr Lytvynchuk
    • , Alvin C. Ma
    • , Changle Ma
    • , Mengxiao Ma
    • , Ning-Fang Ma
    • , Quan-Hong Ma
    • , Xinliang Ma
    • , Yueyun Ma
    • , Zhenyi Ma
    • , Ormond A. MacDougald
    • , Fernando Macian
    • , Gustavo C. MacIntosh
    • , Jeffrey P. MacKeigan
    • , Kay F. Macleod
    • , Sandra Maday
    • , Frank Madeo
    • , Muniswamy Madesh
    • , Tobias Madl
    • , Julio Madrigal-Matute
    • , Akiko Maeda
    • , Yasuhiro Maejima
    • , Marta Magarinos
    • , Poornima Mahavadi
    • , Emiliano Maiani
    • , Kenneth Maiese
    • , Panchanan Maiti
    • , Maria Chiara Maiuri
    • , Barbara Majello
    • , Michael B. Major
    • , Elena Makareeva
    • , Fayaz Malik
    • , Karthik Mallilankaraman
    • , Walter Malorni
    • , Alina Maloyan
    • , Najiba Mammadova
    • , Gene Chi Wai Man
    • , Federico Manai
    • , Joseph D. Mancias
    • , Eva-Maria Mandelkow
    • , Michael A. Mandell
    • , Angelo A. Manfredi
    • , Masoud H. Manjili
    • , Ravi Manjithaya
    • , Patricio Manque
    • , Bella B. Manshian
    • , Raquel Manzano
    • , Claudia Manzoni
    • , Kai Mao
    • , Cinzia Marchese
    • , Sandrine Marchetti
    • , Anna Maria Marconi
    • , Fabrizio Marcucci
    • , Stefania Mardente
    • , Olga A. Mareninova
    • , Marta Margeta
    • , Muriel Mari
    • , Sara Marinelli
    • , Oliviero Marinelli
    • , Guillermo Mariño
    • , Sofia Mariotto
    • , Richard S. Marshall
    • , Mark R. Marten
    • , Sascha Martens
    • , Alexandre P.J. Martin
    • , Katie R. Martin
    • , Sara Martin
    • , Shaun Martin
    • , Adrián Martín-Segura
    • , Miguel A. Martín-Acebes
    • , Inmaculada Martin-Burriel
    • , Marcos Martin-Rincon
    • , Paloma Martin-Sanz
    • , José A. Martina
    • , Wim Martinet
    • , Aitor Martinez
    • , Ana Martinez
    • , Jennifer Martinez
    • , Moises Martinez Velazquez
    • , Nuria Martinez-Lopez
    • , Marta Martinez-Vicente
    • , Daniel O. Martins
    • , Joilson O. Martins
    • , Waleska K. Martins
    • , Tania Martins-Marques
    • , Emanuele Marzetti
    • , Shashank Masaldan
    • , Celine Masclaux-Daubresse
    • , Douglas G. Mashek
    • , Valentina Massa
    • , Lourdes Massieu
    • , Glenn R. Masson
    • , Laura Masuelli
    • , Anatoliy I. Masyuk
    • , Tetyana V. Masyuk
    • , Paola Matarrese
    • , Ander Matheu
    • , Satoaki Matoba
    • , Sachiko Matsuzaki
    • , Pamela Mattar
    • , Alessandro Matte
    • , Domenico Mattoscio
    • , José L. Mauriz
    • , Mario Mauthe
    • , Caroline Mauvezin
    • , Emanual Maverakis
    • , Paola Maycotte
    • , Johanna Mayer
    • , Gianluigi Mazzoccoli
    • , Cristina Mazzoni
    • , Joseph R. Mazzulli
    • , Nami McCarty
    • , Christine McDonald
    • , Mitchell R. McGill
    • , Sharon L. McKenna
    • , BethAnn McLaughlin
    • , Fionn McLoughlin
    • , Mark A. McNiven
    • , Thomas G. McWilliams
    • , Fatima Mechta-Grigoriou
    • , Tania Catarina Medeiros
    • , Diego L. Medina
    • , Lynn A. Megeney
    • , Klara Megyeri
    • , Maryam Mehrpour
    • , Jawahar L. Mehta
    • , Alfred J. Meijer
    • , Annemarie H. Meijer
    • , Jakob Mejlvang
    • , Alicia Meléndez
    • , Annette Melk
    • , Gonen Memisoglu
    • , Alexandrina F. Mendes
    • , Delong Meng
    • , Fei Meng
    • , Tian Meng
    • , Rubem Menna-Barreto
    • , Manoj B. Menon
    • , Carol Mercer
    • , Anne E. Mercier
    • , Jean-Louis Mergny
    • , Adalberto Merighi
    • , Seth D. Merkley
    • , Giuseppe Merla
    • , Volker Meske
    • , Ana Cecilia Mestre
    • , Shree Padma Metur
    • , Christian Meyer
    • , Hemmo Meyer
    • , Wenyi Mi
    • , Jeanne Mialet-Perez
    • , Junying Miao
    • , Lucia Micale
    • , Yasuo Miki
    • , Enrico Milan
    • , Małgorzata Milczarek
    • , Dana L. Miller
    • , Samuel I. Miller
    • , Silke Miller
    • , Steven W. Millward
    • , Ira Milosevic
    • , Elena A. Minina
    • , Hamed Mirzaei
    • , Hamid Reza Mirzaei
    • , Mehdi Mirzaei
    • , Amit Mishra
    • , Nandita Mishra
    • , Paras Kumar Mishra
    • , Maja Misirkic Marjanovic
    • , Roberta Misasi
    • , Amit Misra
    • , Gabriella Misso
    • , Claire Mitchell
    • , Geraldine Mitou
    • , Tetsuji Miura
    • , Shigeki Miyamoto
    • , Makoto Miyazaki
    • , Mitsunori Miyazaki
    • , Taiga Miyazaki
    • , Keisuke Miyazawa
    • , Noboru Mizushima
    • , Trine H. Mogensen
    • , Baharia Mograbi
    • , Reza Mohammadinejad
    • , Yasir Mohamud
    • , Abhishek Mohanty
    • , Sipra Mohapatra
    • , Torsten Möhlmann
    • , Asif Mohmmed
    • , Anna Moles
    • , Kelle H. Moley
    • , Maurizio Molinari
    • , Vincenzo Mollace
    • , Andreas Buch Møller
    • , Bertrand Mollereau
    • , Faustino Mollinedo
    • , Costanza Montagna
    • , Mervyn J. Monteiro
    • , Andrea Montella
    • , L. Ruth Montes
    • , Barbara Montico
    • , Vinod K. Mony
    • , Giacomo Monzio Compagnoni
    • , Michael N. Moore
    • , Mohammad A. Moosavi
    • , Ana L. Mora
    • , Marina Mora
    • , David Morales-Alamo
    • , Rosario Moratalla
    • , Paula I. Moreira
    • , Elena Morelli
    • , Sandra Moreno
    • , Daniel Moreno-Blas
    • , Viviana Moresi
    • , Benjamin Morga
    • , Alwena H. Morgan
    • , Fabrice Morin
    • , Hideaki Morishita
    • , Orson L. Moritz
    • , Mariko Moriyama
    • , Yuji Moriyasu
    • , Manuela Morleo
    • , Eugenia Morselli
    • , Jose F. Moruno-Manchon
    • , Jorge Moscat
    • , Serge Mostowy
    • , Elisa Motori
    • , Andrea Felinto Moura
    • , Naima Moustaid-Moussa
    • , Maria Mrakovcic
    • , Gabriel Muciño-Hernández
    • , Anupam Mukherjee
    • , Subhadip Mukhopadhyay
    • , Jean M. Mulcahy Levy
    • , Victoriano Mulero
    • , Sylviane Muller
    • , Christian Münch
    • , Ashok Munjal
    • , Pura Munoz-Canoves
    • , Teresa Muñoz-Galdeano
    • , Christian Münz
    • , Tomokazu Murakawa
    • , Claudia Muratori
    • , Brona M. Murphy
    • , J. Patrick Murphy
    • , Aditya Murthy
    • , Timo T. Myöhänen
    • , Indira U. Mysorekar
    • , Jennifer Mytych
    • , Seyed Mohammad Nabavi
    • , Massimo Nabissi
    • , Péter Nagy
    • , Jihoon Nah
    • , Aimable Nahimana
    • , Ichiro Nakagawa
    • , Ken Nakamura
    • , Hitoshi Nakatogawa
    • , Shyam S. Nandi
    • , Meera Nanjundan
    • , Monica Nanni
    • , Gennaro Napolitano
    • , Roberta Nardacci
    • , Masashi Narita
    • , Melissa Nassif
    • , Ilana Nathan
    • , Manabu Natsumeda
    • , Ryno J. Naude
    • , Christin Naumann
    • , Olaia Naveiras
    • , Fatemeh Navid
    • , Steffan T. Nawrocki
    • , Taras Y. Nazarko
    • , Francesca Nazio
    • , Florentina Negoita
    • , Thomas Neill
    • , Amanda L. Neisch
    • , Luca M. Neri
    • , Mihai G. Netea
    • , Patrick Neubert
    • , Thomas P. Neufeld
    • , Dietbert Neumann
    • , Albert Neutzner
    • , Phillip T. Newton
    • , Paul A. Ney
    • , Ioannis P. Nezis
    • , Charlene C.W. Ng
    • , Tzi Bun Ng
    • , Hang T. T. Nguyen
    • , Long T. Nguyen
    • , Hong-Min Ni
    • , Clíona Ní Cheallaigh
    • , Zhenhong Ni
    • , M. Celeste Nicolao
    • , Francesco Nicoli
    • , Manuel Nieto-Diaz
    • , Per Nilsson
    • , Shunbin Ning
    • , Rituraj Niranjan
    • , Hiroshi Nishimune
    • , Mireia Niso-Santano
    • , Ralph A. Nixon
    • , Annalisa Nobili
    • , Clevio Nobrega
    • , Takeshi Noda
    • , Uxía Nogueira-Recalde
    • , Trevor M. Nolan
    • , Ivan Nombela
    • , Ivana Novak
    • , Beatriz Novoa
    • , Takashi Nozawa
    • , Nobuyuki Nukina
    • , Carmen Nussbaum-Krammer
    • , Jesper Nylandsted
    • , Tracey R. O’Donovan
    • , Seónadh M. O’Leary
    • , Eyleen J. O’Rourke
    • , Mary P. O’Sullivan
    • , Timothy E. O’Sullivan
    • , Salvatore Oddo
    • , Ina Oehme
    • , Michinaga Ogawa
    • , Eric Ogier-Denis
    • , Margret H. Ogmundsdottir
    • , Besim Ogretmen
    • , Goo Taeg Oh
    • , Seon-Hee Oh
    • , Young J. Oh
    • , Takashi Ohama
    • , Yohei Ohashi
    • , Masaki Ohmuraya
    • , Vasileios Oikonomou
    • , Rani Ojha
    • , Koji Okamoto
    • , Hitoshi Okazawa
    • , Masahide Oku
    • , Sara Oliván
    • , Jorge M. A. Oliveira
    • , Michael Ollmann
    • , James A. Olzmann
    • , Shakib Omari
    • , M. Bishr Omary
    • , Gizem Önal
    • , Martin Ondrej
    • , Sang-Bing Ong
    • , Sang-Ging Ong
    • , Anna Onnis
    • , Juan A. Orellana
    • , Sara Orellana-Muñoz
    • , Maria Del Mar Ortega-Villaizan
    • , Xilma R. Ortiz-Gonzalez
    • , Elena Ortona
    • , Heinz D. Osiewacz
    • , Abdel-Hamid K. Osman
    • , Rosario Osta
    • , Marisa S. Otegui
    • , Kinya Otsu
    • , Christiane Ott
    • , Luisa Ottobrini
    • , Jing-hsiung James Ou
    • , Tiago F. Outeiro
    • , Inger Oynebraten
    • , Melek Ozturk
    • , Gilles Pagès
    • , Susanta Pahari
    • , Marta Pajares
    • , Utpal B. Pajvani
    • , Rituraj Pal
    • , Simona Paladino
    • , Nicolas Pallet
    • , Michela Palmieri
    • , Giuseppe Palmisano
    • , Camilla Palumbo
    • , Francesco Pampaloni
    • , Lifeng Pan
    • , Qingjun Pan
    • , Wenliang Pan
    • , Xin Pan
    • , Ganna Panasyuk
    • , Rahul Pandey
    • , Udai B. Pandey
    • , Vrajesh Pandya
    • , Francesco Paneni
    • , Shirley Y. Pang
    • , Elisa Panzarini
    • , Daniela L. Papademetrio
    • , Elena Papaleo
    • , Daniel Papinski
    • , Diana Papp
    • , Eun Chan Park
    • , Hwan Tae Park
    • , Ji-Man Park
    • , Jong-In Park
    • , Joon Tae Park
    • , Junsoo Park
    • , Sang Chul Park
    • , Sang-Youel Park
    • , Abraham H. Parola
    • , Jan B. Parys
    • , Adrien Pasquier
    • , Benoit Pasquier
    • , João F. Passos
    • , Nunzia Pastore
    • , Hemal H. Patel
    • , Daniel Patschan
    • , Sophie Pattingre
    • , Gustavo Pedraza-Alva
    • , Jose Pedraza-Chaverri
    • , Zully Pedrozo
    • , Gang Pei
    • , Jianming Pei
    • , Hadas Peled-Zehavi
    • , Joaquín M. Pellegrini
    • , Joffrey Pelletier
    • , Miguel A. Peñalva
    • , Di Peng
    • , Ying Peng
    • , Fabio Penna
    • , Maria Pennuto
    • , Francesca Pentimalli
    • , Cláudia MF Pereira
    • , Gustavo J.S. Pereira
    • , Lilian C. Pereira
    • , Luis Pereira de Almeida
    • , Nirma D. Perera
    • , Ángel Pérez-Lara
    • , Ana B. Perez-Oliva
    • , María Esther Pérez-Pérez
    • , Palsamy Periyasamy
    • , Andras Perl
    • , Cristiana Perrotta
    • , Ida Perrotta
    • , Richard G. Pestell
    • , Morten Petersen
    • , Irina Petrache
    • , Goran Petrovski
    • , Thorsten Pfirrmann
    • , Astrid S. Pfister
    • , Jennifer A. Philips
    • , Huifeng Pi
    • , Anna Picca
    • , Alicia M. Pickrell
    • , Sandy Picot
    • , Giovanna M. Pierantoni
    • , Marina Pierdominici
    • , Philippe Pierre
    • , Valérie Pierrefite-Carle
    • , Karolina Pierzynowska
    • , Federico Pietrocola
    • , Miroslawa Pietruczuk
    • , Claudio Pignata
    • , Felipe X. Pimentel-Muiños
    • , Mario Pinar
    • , Roberta O. Pinheiro
    • , Ronit Pinkas-Kramarski
    • , Paolo Pinton
    • , Karolina Pircs
    • , Sujan Piya
    • , Paola Pizzo
    • , Theo S. Plantinga
    • , Harald W. Platta
    • , Ainhoa Plaza-Zabala
    • , Markus Plomann
    • , Egor Y. Plotnikov
    • , Helene Plun-Favreau
    • , Ryszard Pluta
    • , Roger Pocock
    • , Stefanie Pöggeler
    • , Christian Pohl
    • , Marc Poirot
    • , Angelo Poletti
    • , Marisa Ponpuak
    • , Hana Popelka
    • , Blagovesta Popova
    • , Helena Porta
    • , Soledad Porte Alcon
    • , Eliana Portilla-Fernandez
    • , Martin Post
    • , Malia B. Potts
    • , Joanna Poulton
    • , Ted Powers
    • , Veena Prahlad
    • , Tomasz K. Prajsnar
    • , Domenico Praticò
    • , Rosaria Prencipe
    • , Muriel Priault
    • , Tassula Proikas-Cezanne
    • , Vasilis J. Promponas
    • , Christopher G. Proud
    • , Rosa Puertollano
    • , Luigi Puglielli
    • , Thomas Pulinilkunnil
    • , Deepika Puri
    • , Rajat Puri
    • , Julien Puyal
    • , Xiaopeng Qi
    • , Yongmei Qi
    • , Wenbin Qian
    • , Lei Qiang
    • , Yu Qiu
    • , Joe Quadrilatero
    • , Jorge Quarleri
    • , Nina Raben
    • , Hannah Rabinowich
    • , Debora Ragona
    • , Michael J. Ragusa
    • , Nader Rahimi
    • , Marveh Rahmati
    • , Valeria Raia
    • , Nuno Raimundo
    • , Namakkal-Soorappan Rajasekaran
    • , Sriganesh Ramachandra Rao
    • , Abdelhaq Rami
    • , Ignacio Ramírez-Pardo
    • , David B. Ramsden
    • , Felix Randow
    • , Pundi N. Rangarajan
    • , Danilo Ranieri
    • , Hai Rao
    • , Lang Rao
    • , Rekha Rao
    • , Sumit Rathore
    • , J. Arjuna Ratnayaka
    • , Edward A. Ratovitski
    • , Palaniyandi Ravanan
    • , Gloria Ravegnini
    • , Swapan K. Ray
    • , Babak Razani
    • , Vito Rebecca
    • , Fulvio Reggiori
    • , Anne Régnier-Vigouroux
    • , Andreas S. Reichert
    • , David Reigada
    • , Jan H. Reiling
    • , Theo Rein
    • , Siegfried Reipert
    • , Rokeya Sultana Rekha
    • , Hongmei Ren
    • , Jun Ren
    • , Weichao Ren
    • , Tristan Renault
    • , Giorgia Renga
    • , Karen Reue
    • , Kim Rewitz
    • , Bruna Ribeiro de Andrade Ramos
    • , S. Amer Riazuddin
    • , Teresa M. Ribeiro-Rodrigues
    • , Jean-Ehrland Ricci
    • , Romeo Ricci
    • , Victoria Riccio
    • , Des R. Richardson
    • , Yasuko Rikihisa
    • , Makarand V. Risbud
    • , Ruth M. Risueño
    • , Konstantinos Ritis
    • , Salvatore Rizza
    • , Rosario Rizzuto
    • , Helen C. Roberts
    • , Luke D. Roberts
    • , Katherine J. Robinson
    • , Maria Carmela Roccheri
    • , Stephane Rocchi
    • , George G. Rodney
    • , Tiago Rodrigues
    • , Vagner Ramon Rodrigues Silva
    • , Amaia Rodriguez
    • , Ruth Rodriguez-Barrueco
    • , Nieves Rodriguez-Henche
    • , Humberto Rodriguez-Rocha
    • , Jeroen Roelofs
    • , Robert S. Rogers
    • , Vladimir V. Rogov
    • , Ana I. Rojo
    • , Krzysztof Rolka
    • , Vanina Romanello
    • , Luigina Romani
    • , Alessandra Romano
    • , Patricia S. Romano
    • , David Romeo-Guitart
    • , Luis C. Romero
    • , Montserrat Romero
    • , Joseph C. Roney
    • , Christopher Rongo
    • , Sante Roperto
    • , Mathias T. Rosenfeldt
    • , Philip Rosenstiel
    • , Anne G. Rosenwald
    • , Kevin A. Roth
    • , Lynn Roth
    • , Steven Roth
    • , Kasper M.A. Rouschop
    • , Benoit D. Roussel
    • , Sophie Roux
    • , Patrizia Rovere-Querini
    • , Ajit Roy
    • , Aurore Rozieres
    • , Diego Ruano
    • , David C. Rubinsztein
    • , Maria P. Rubtsova
    • , Klaus Ruckdeschel
    • , Christoph Ruckenstuhl
    • , Emil Rudolf
    • , Rüdiger Rudolf
    • , Alessandra Ruggieri
    • , Avnika Ashok Ruparelia
    • , Paola Rusmini
    • , Ryan R. Russell
    • , Gian Luigi Russo
    • , Maria Russo
    • , Rossella Russo
    • , Oxana O. Ryabaya
    • , Kevin M. Ryan
    • , Kwon-Yul Ryu
    • , Maria Sabater-Arcis
    • , Ulka Sachdev
    • , Michael Sacher
    • , Carsten Sachse
    • , Abhishek Sadhu
    • , Junichi Sadoshima
    • , Nathaniel Safren
    • , Paul Saftig
    • , Antonia P. Sagona
    • , Gaurav Sahay
    • , Amirhossein Sahebkar
    • , Mustafa Sahin
    • , Ozgur Sahin
    • , Sumit Sahni
    • , Nayuta Saito
    • , Shigeru Saito
    • , Tsunenori Saito
    • , Ryohei Sakai
    • , Yasuyoshi Sakai
    • , Jun-Ichi Sakamaki
    • , Kalle Saksela
    • , Gloria Salazar
    • , Anna Salazar-Degracia
    • , Ghasem H. Salekdeh
    • , Ashok K. Saluja
    • , Belém Sampaio-Marques
    • , Maria Cecilia Sanchez
    • , Jose A. Sanchez-Alcazar
    • , Victoria Sanchez-Vera
    • , Vanessa Sancho-Shimizu
    • , J. Thomas Sanderson
    • , Marco Sandri
    • , Stefano Santaguida
    • , Laura Santambrogio
    • , Magda M. Santana
    • , Giorgio Santoni
    • , Alberto Sanz
    • , Pascual Sanz
    • , Shweta Saran
    • , Marco Sardiello
    • , Timothy J. Sargeant
    • , Apurva Sarin
    • , Chinmoy Sarkar
    • , Sovan Sarkar
    • , Maria-Rosa Sarrias
    • , Surajit Sarkar
    • , Dipanka Tanu Sarmah
    • , Jaakko Sarparanta
    • , Aishwarya Sathyanarayan
    • , Ranganayaki Sathyanarayanan
    • , K. Matthew Scaglione
    • , Francesca Scatozza
    • , Liliana Schaefer
    • , Zachary T. Schafer
    • , Ulrich E. Schaible
    • , Anthony H.V. Schapira
    • , Michael Scharl
    • , Hermann M. Schatzl
    • , Catherine H. Schein
    • , Wiep Scheper
    • , David Scheuring
    • , Maria Vittoria Schiaffino
    • , Monica Schiappacassi
    • , Rainer Schindl
    • , Uwe Schlattner
    • , Oliver Schmidt
    • , Roland Schmitt
    • , Stephen D. Schmidt
    • , Ingo Schmitz
    • , Eran Schmukler
    • , Anja Schneider
    • , Bianca E. Schneider
    • , Romana Schober
    • , Alejandra C. Schoijet
    • , Micah B. Schott
    • , Michael Schramm
    • , Bernd Schröder
    • , Kai Schuh
    • , Christoph Schüller
    • , Ryan J. Schulze
    • , Lea Schürmanns
    • , Jens C. Schwamborn
    • , Melanie Schwarten
    • , Filippo Scialo
    • , Sebastiano Sciarretta
    • , Melanie J. Scott
    • , Kathleen W. Scotto
    • , A. Ivana Scovassi
    • , Andrea Scrima
    • , Aurora Scrivo
    • , David Sebastian
    • , Salwa Sebti
    • , Simon Sedej
    • , Laura Segatori
    • , Nava Segev
    • , Per O. Seglen
    • , Iban Seiliez
    • , Ekihiro Seki
    • , Scott B. Selleck
    • , Frank W. Sellke
    • , Joshua T. Selsby
    • , Michael Sendtner
    • , Serif Senturk
    • , Elena Seranova
    • , Consolato Sergi
    • , Ruth Serra-Moreno
    • , Hiromi Sesaki
    • , Carmine Settembre
    • , Subba Rao Gangi Setty
    • , Gianluca Sgarbi
    • , Ou Sha
    • , John J. Shacka
    • , Javeed A. Shah
    • , Dantong Shang
    • , Changshun Shao
    • , Feng Shao
    • , Soroush Sharbati
    • , Lisa M. Sharkey
    • , Dipali Sharma
    • , Gaurav Sharma
    • , Kulbhushan Sharma
    • , Pawan Sharma
    • , Surendra Sharma
    • , Han-Ming Shen
    • , Hongtao Shen
    • , Jiangang Shen
    • , Ming Shen
    • , Weili Shen
    • , Zheni Shen
    • , Rui Sheng
    • , Zhi Sheng
    • , Zu-Hang Sheng
    • , Jianjian Shi
    • , Xiaobing Shi
    • , Ying-Hong Shi
    • , Kahori Shiba-Fukushima
    • , Jeng-Jer Shieh
    • , Yohta Shimada
    • , Shigeomi Shimizu
    • , Makoto Shimozawa
    • , Takahiro Shintani
    • , Christopher J. Shoemaker
    • , Shahla Shojaei
    • , Ikuo Shoji
    • , Bhupendra V. Shravage
    • , Viji Shridhar
    • , Chih-Wen Shu
    • , Hong-Bing Shu
    • , Ke Shui
    • , Arvind K. Shukla
    • , Timothy E. Shutt
    • , Valentina Sica
    • , Aleem Siddiqui
    • , Amanda Sierra
    • , Virginia Sierra-Torre
    • , Santiago Signorelli
    • , Payel Sil
    • , Bruno J. de Andrade Silva
    • , Johnatas D. Silva
    • , Eduardo Silva-Pavez
    • , Sandrine Silvente-Poirot
    • , Rachel E. Simmonds
    • , Anna Katharina Simon
    • , Hans-Uwe Simon
    • , Matias Simons
    • , Anurag Singh
    • , Lalit P. Singh
    • , Rajat Singh
    • , Shivendra V. Singh
    • , Shrawan K. Singh
    • , Sudha B. Singh
    • , Sunaina Singh
    • , Surinder Pal Singh
    • , Debasish Sinha
    • , Rohit Anthony Sinha
    • , Sangita Sinha
    • , Agnieszka Sirko
    • , Kapil Sirohi
    • , Efthimios L. Sivridis
    • , Panagiotis Skendros
    • , Aleksandra Skirycz
    • , Iva Slaninová
    • , Soraya S. Smaili
    • , Andrei Smertenko
    • , Matthew D. Smith
    • , Stefaan J. Soenen
    • , Eun Jung Sohn
    • , Sophia P. M. Sok
    • , Giancarlo Solaini
    • , Thierry Soldati
    • , Scott A. Soleimanpour
    • , Rosa M. Soler
    • , Alexei Solovchenko
    • , Jason A. Somarelli
    • , Avinash Sonawane
    • , Fuyong Song
    • , Hyun Kyu Song
    • , Ju-Xian Song
    • , Kunhua Song
    • , Zhiyin Song
    • , Leandro R. Soria
    • , Maurizio Sorice
    • , Alexander A. Soukas
    • , Sandra-Fausia Soukup
    • , Diana Sousa
    • , Nadia Sousa
    • , Paul A. Spagnuolo
    • , Stephen A. Spector
    • , M. M. Srinivas Bharath
    • , Daret St. Clair
    • , Venturina Stagni
    • , Leopoldo Staiano
    • , Clint A. Stalnecker
    • , Metodi V. Stankov
    • , Peter B. Stathopulos
    • , Katja Stefan
    • , Sven Marcel Stefan
    • , Leonidas Stefanis
    • , Joan S. Steffan
    • , Alexander Steinkasserer
    • , Harald Stenmark
    • , Jared Sterneckert
    • , Craig Stevens
    • , Veronika Stoka
    • , Stephan Storch
    • , Björn Stork
    • , Flavie Strappazzon
    • , Anne Marie Strohecker
    • , Dwayne G. Stupack
    • , Huanxing Su
    • , Ling-Yan Su
    • , Longxiang Su
    • , Ana M. Suarez-Fontes
    • , Carlos S. Subauste
    • , Selvakumar Subbian
    • , Paula V. Subirada
    • , Ganapasam Sudhandiran
    • , Carolyn M. Sue
    • , Xinbing Sui
    • , Corey Summers
    • , Guangchao Sun
    • , Jun Sun
    • , Kang Sun
    • , Meng-xiang Sun
    • , Qiming Sun
    • , Yi Sun
    • , Zhongjie Sun
    • , Karen K.S. Sunahara
    • , Eva Sundberg
    • , Katalin Susztak
    • , Peter Sutovsky
    • , Hidekazu Suzuki
    • , Gary Sweeney
    • , J. David Symons
    • , Stephen Cho Wing Sze
    • , Nathaniel J. Szewczyk
    • , Anna Tabęcka-Łonczynska
    • , Claudio Tabolacci
    • , Frank Tacke
    • , Heinrich Taegtmeyer
    • , Marco Tafani
    • , Mitsuo Tagaya
    • , Haoran Tai
    • , Stephen W. G. Tait
    • , Yoshinori Takahashi
    • , Szabolcs Takats
    • , Priti Talwar
    • , Chit Tam
    • , Shing Yau Tam
    • , Davide Tampellini
    • , Atsushi Tamura
    • , Chong Teik Tan
    • , Eng-King Tan
    • , Ya-Qin Tan
    • , Masaki Tanaka
    • , Motomasa Tanaka
    • , Daolin Tang
    • , Jingfeng Tang
    • , Tie-Shan Tang
    • , Isei Tanida
    • , Zhipeng Tao
    • , Mohammed Taouis
    • , Lars Tatenhorst
    • , Nektarios Tavernarakis
    • , Allen Taylor
    • , Gregory A. Taylor
    • , Joan M. Taylor
    • , Elena Tchetina
    • , Andrew R. Tee
    • , Irmgard Tegeder
    • , David Teis
    • , Natercia Teixeira
    • , Fatima Teixeira-Clerc
    • , Kumsal A. Tekirdag
    • , Tewin Tencomnao
    • , Sandra Tenreiro
    • , Alexei V. Tepikin
    • , Pilar S. Testillano
    • , Gianluca Tettamanti
    • , Pierre-Louis Tharaux
    • , Kathrin Thedieck
    • , Arvind A. Thekkinghat
    • , Stefano Thellung
    • , Josephine W. Thinwa
    • , V.P. Thirumalaikumar
    • , Sufi Mary Thomas
    • , Paul G. Thomes
    • , Andrew Thorburn
    • , Lipi Thukral
    • , Thomas Thum
    • , Michael Thumm
    • , Ling Tian
    • , Ales Tichy
    • , Andreas Till
    • , Vincent Timmerman
    • , Vladimir I. Titorenko
    • , Sokol V. Todi
    • , Krassimira Todorova
    • , Janne M. Toivonen
    • , Luana Tomaipitinca
    • , Dhanendra Tomar
    • , Cristina Tomas-Zapico
    • , Sergej Tomić
    • , Benjamin Chun-Kit Tong
    • , Chao Tong
    • , Xin Tong
    • , Sharon A. Tooze
    • , Maria L. Torgersen
    • , Satoru Torii
    • , Liliana Torres-López
    • , Alicia Torriglia
    • , Christina G. Towers
    • , Roberto Towns
    • , Shinya Toyokuni
    • , Vladimir Trajkovic
    • , Donatella Tramontano
    • , Quynh-Giao Tran
    • , Leonardo H. Travassos
    • , Charles B. Trelford
    • , Shirley Tremel
    • , Ioannis P. Trougakos
    • , Betty P. Tsao
    • , Mario P. Tschan
    • , Hung-Fat Tse
    • , Tak Fu Tse
    • , Hitoshi Tsugawa
    • , Andrey S. Tsvetkov
    • , David A. Tumbarello
    • , Yasin Tumtas
    • , María J. Tuñón
    • , Sandra Turcotte
    • , Boris Turk
    • , Vito Turk
    • , Bradley J. Turner
    • , Richard I. Tuxworth
    • , Jessica K. Tyler
    • , Elena V. Tyutereva
    • , Yasuo Uchiyama
    • , Aslihan Ugun-Klusek
    • , Holm H. Uhlig
    • , Marzena Ułamek-Kozioł
    • , Ilya V. Ulasov
    • , Midori Umekawa
    • , Christian Ungermann
    • , Rei Unno
    • , Sylvie Urbe
    • , Elisabet Uribe-Carretero
    • , Suayib Üstün
    • , Vladimir N Uversky
    • , Thomas Vaccari
    • , Maria I. Vaccaro
    • , Björn F. Vahsen
    • , Helin Vakifahmetoglu-Norberg
    • , Rut Valdor
    • , Maria J. Valente
    • , Ayelén Valko
    • , Richard B. Vallee
    • , Angela M. Valverde
    • , Greet Van den Berghe
    • , Stijn van der Veen
    • , Luc Van Kaer
    • , Jorg van Loosdregt
    • , Sjoerd J.L. van Wijk
    • , Wim Vandenberghe
    • , Ilse Vanhorebeek
    • , Marcos A. Vannier-Santos
    • , Nicola Vannini
    • , M. Cristina Vanrell
    • , Chiara Vantaggiato
    • , Gabriele Varano
    • , Isabel Varela-Nieto
    • , Máté Varga
    • , M. Helena Vasconcelos
    • , Somya Vats
    • , Demetrios G. Vavvas
    • , Ignacio Vega-Naredo
    • , Silvia Vega-Rubin-de-Celis
    • , Guillermo Velasco
    • , Ariadna P. Velázquez
    • , Tibor Vellai
    • , Edo Vellenga
    • , Francesca Velotti
    • , Mireille Verdier
    • , Panayotis Verginis
    • , Isabelle Vergne
    • , Paul Verkade
    • , Manish Verma
    • , Patrik Verstreken
    • , Tim Vervliet
    • , Jörg Vervoorts
    • , Alexandre T. Vessoni
    • , Victor M. Victor
    • , Michel Vidal
    • , Chiara Vidoni
    • , Otilia V. Vieira
    • , Richard D. Vierstra
    • , Sonia Viganó
    • , Helena Vihinen
    • , Vinoy Vijayan
    • , Miquel Vila
    • , Marçal Vilar
    • , José M. Villalba
    • , Antonio Villalobo
    • , Beatriz Villarejo-Zori
    • , Francesc Villarroya
    • , Joan Villarroya
    • , Olivier Vincent
    • , Cecile Vindis
    • , Christophe Viret
    • , Maria Teresa Viscomi
    • , Dora Visnjic
    • , Ilio Vitale
    • , David J. Vocadlo
    • , Olga V. Voitsekhovskaja
    • , Cinzia Volonté
    • , Mattia Volta
    • , Marta Vomero
    • , Clarissa Von Haefen
    • , Marc A. Vooijs
    • , Wolfgang Voos
    • , Ljubica Vucicevic
    • , Richard Wade-Martins
    • , Satoshi Waguri
    • , Kenrick A. Waite
    • , Shuji Wakatsuki
    • , David W. Walker
    • , Mark J. Walker
    • , Simon A. Walker
    • , Jochen Walter
    • , Francisco G. Wandosell
    • , Bo Wang
    • , Chao-Yung Wang
    • , Chen Wang
    • , Chenran Wang
    • , Chenwei Wang
    • , Cun-Yu Wang
    • , Dong Wang
    • , Fangyang Wang
    • , Feng Wang
    • , Fengming Wang
    • , Guansong Wang
    • , Han Wang
    • , Hao Wang
    • , Hexiang Wang
    • , Hong-Gang Wang
    • , Jianrong Wang
    • , Jigang Wang
    • , Jiou Wang
    • , Jundong Wang
    • , Kui Wang
    • , Lianrong Wang
    • , Liming Wang
    • , Maggie Haitian Wang
    • , Meiqing Wang
    • , Nanbu Wang
    • , Pengwei Wang
    • , Peipei Wang
    • , Ping Wang
    • , Ping Wang
    • , Qing Jun Wang
    • , Qing Wang
    • , Qing Kenneth Wang
    • , Qiong A. Wang
    • , Wen-Tao Wang
    • , Wuyang Wang
    • , Xinnan Wang
    • , Xuejun Wang
    • , Yan Wang
    • , Yanchang Wang
    • , Yanzhuang Wang
    • , Yen-Yun Wang
    • , Yihua Wang
    • , Yipeng Wang
    • , Yu Wang
    • , Yuqi Wang
    • , Zhe Wang
    • , Zhenyu Wang
    • , Zhouguang Wang
    • , Gary Warnes
    • , Verena Warnsmann
    • , Hirotaka Watada
    • , Eizo Watanabe
    • , Maxinne Watchon
    • , Anna Wawrzyńska
    • , Timothy E. Weaver
    • , Grzegorz Wegrzyn
    • , Ann M. Wehman
    • , Huafeng Wei
    • , Lei Wei
    • , Taotao Wei
    • , Yongjie Wei
    • , Oliver H. Weiergräber
    • , Conrad C. Weihl
    • , Günther Weindl
    • , Ralf Weiskirchen
    • , Alan Wells
    • , Runxia H. Wen
    • , Xin Wen
    • , Antonia Werner
    • , Beatrice Weykopf
    • , Sally P. Wheatley
    • , J. Lindsay Whitton
    • , Alexander J. Whitworth
    • , Katarzyna Wiktorska
    • , Manon E. Wildenberg
    • , Tom Wileman
    • , Simon Wilkinson
    • , Dieter Willbold
    • , Brett Williams
    • , Robin S.B. Williams
    • , Roger L. Williams
    • , Peter R. Williamson
    • , Richard A. Wilson
    • , Beate Winner
    • , Nathaniel J. Winsor
    • , Steven S. Witkin
    • , Harald Wodrich
    • , Ute Woehlbier
    • , Thomas Wollert
    • , Esther Wong
    • , Jack Ho Wong
    • , Richard W. Wong
    • , Vincent Kam Wai Wong
    • , W. Wei-Lynn Wong
    • , An-Guo Wu
    • , Chengbiao Wu
    • , Jian Wu
    • , Junfang Wu
    • , Kenneth K. Wu
    • , Min Wu
    • , Shan-Ying Wu
    • , Shengzhou Wu
    • , Shu-Yan Wu
    • , Shufang Wu
    • , William K.K. Wu
    • , Xiaohong Wu
    • , Xiaoqing Wu
    • , Yao-Wen Wu
    • , Yihua Wu
    • , Ramnik J. Xavier
    • , Hongguang Xia
    • , Lixin Xia
    • , Zhengyuan Xia
    • , Ge Xiang
    • , Jin Xiang
    • , Mingliang Xiang
    • , Wei Xiang
    • , Bin Xiao
    • , Guozhi Xiao
    • , Hengyi Xiao
    • , Hong-tao Xiao
    • , Jian Xiao
    • , Lan Xiao
    • , Shi Xiao
    • , Yin Xiao
    • , Baoming Xie
    • , Chuan-Ming Xie
    • , Min Xie
    • , Yuxiang Xie
    • , Zhiping Xie
    • , Zhonglin Xie
    • , Maria Xilouri
    • , Congfeng Xu
    • , En Xu
    • , Haoxing Xu
    • , Jing Xu
    • , JinRong Xu
    • , Liang Xu
    • , Wen Wen Xu
    • , Xiulong Xu
    • , Yu Xue
    • , Sokhna M.S. Yakhine-Diop
    • , Masamitsu Yamaguchi
    • , Osamu Yamaguchi
    • , Ai Yamamoto
    • , Shunhei Yamashina
    • , Shengmin Yan
    • , Shian-Jang Yan
    • , Zhen Yan
    • , Yasuo Yanagi
    • , Chuanbin Yang
    • , Dun-Sheng Yang
    • , Huan Yang
    • , Huang-Tian Yang
    • , Hui Yang
    • , Jin-Ming Yang
    • , Jing Yang
    • , Jingyu Yang
    • , Ling Yang
    • , Liu Yang
    • , Ming Yang
    • , Pei-Ming Yang
    • , Qian Yang
    • , Seungwon Yang
    • , Shu Yang
    • , Shun-Fa Yang
    • , Wannian Yang
    • , Wei Yuan Yang
    • , Xiaoyong Yang
    • , Xuesong Yang
    • , Yi Yang
    • , Ying Yang
    • , Honghong Yao
    • , Shenggen Yao
    • , Xiaoqiang Yao
    • , Yong-Gang Yao
    • , Yong-Ming Yao
    • , Takahiro Yasui
    • , Meysam Yazdankhah
    • , Paul M. Yen
    • , Cong Yi
    • , Xiao-Ming Yin
    • , Yanhai Yin
    • , Zhangyuan Yin
    • , Ziyi Yin
    • , Meidan Ying
    • , Zheng Ying
    • , Calvin K. Yip
    • , Stephanie Pei Tung Yiu
    • , Young H. Yoo
    • , Kiyotsugu Yoshida
    • , Saori R. Yoshii
    • , Tamotsu Yoshimori
    • , Bahman Yousefi
    • , Boxuan Yu
    • , Haiyang Yu
    • , Jun Yu
    • , Jun Yu
    • , Li Yu
    • , Ming-Lung Yu
    • , Seong-Woon Yu
    • , Victor C. Yu
    • , W. Haung Yu
    • , Zhengping Yu
    • , Zhou Yu
    • , Junying Yuan
    • , Ling-Qing Yuan
    • , Shilin Yuan
    • , Shyng-Shiou F. Yuan
    • , Yanggang Yuan
    • , Zengqiang Yuan
    • , Jianbo Yue
    • , Zhenyu Yue
    • , Jeanho Yun
    • , Raymond L. Yung
    • , David N. Zacks
    • , Gabriele Zaffagnini
    • , Vanessa O. Zambelli
    • , Isabella Zanella
    • , Qun S. Zang
    • , Sara Zanivan
    • , Silvia Zappavigna
    • , Pilar Zaragoza
    • , Konstantinos S. Zarbalis
    • , Amir Zarebkohan
    • , Amira Zarrouk
    • , Scott O. Zeitlin
    • , Jialiu Zeng
    • , Ju-deng Zeng
    • , Eva Žerovnik
    • , Lixuan Zhan
    • , Bin Zhang
    • , Donna D. Zhang
    • , Hanlin Zhang
    • , Hong Zhang
    • , Hong Zhang
    • , Honghe Zhang
    • , Huafeng Zhang
    • , Huaye Zhang
    • , Hui Zhang
    • , Hui-Ling Zhang
    • , Jianbin Zhang
    • , Jianhua Zhang
    • , Jing-Pu Zhang
    • , Kalin Y.B. Zhang
    • , Leshuai W. Zhang
    • , Lin Zhang
    • , Lisheng Zhang
    • , Lu Zhang
    • , Luoying Zhang
    • , Menghuan Zhang
    • , Peng Zhang
    • , Sheng Zhang
    • , Wei Zhang
    • , Xiangnan Zhang
    • , Xiao-Wei Zhang
    • , Xiaolei Zhang
    • , Xiaoyan Zhang
    • , Xin Zhang
    • , Xinxin Zhang
    • , Xu Dong Zhang
    • , Yang Zhang
    • , Yanjin Zhang
    • , Yi Zhang
    • , Ying-Dong Zhang
    • , Yingmei Zhang
    • , Yuan-Yuan Zhang
    • , Yuchen Zhang
    • , Zhe Zhang
    • , Zhengguang Zhang
    • , Zhibing Zhang
    • , Zhihai Zhang
    • , Zhiyong Zhang
    • , Zili Zhang
    • , Haobin Zhao
    • , Lei Zhao
    • , Shuang Zhao
    • , Tongbiao Zhao
    • , Xiao-Fan Zhao
    • , Ying Zhao
    • , Yongchao Zhao
    • , Yongliang Zhao
    • , Yuting Zhao
    • , Guoping Zheng
    • , Kai Zheng
    • , Ling Zheng
    • , Shizhong Zheng
    • , Xi-Long Zheng
    • , Yi Zheng
    • , Zu-Guo Zheng
    • , Boris Zhivotovsky
    • , Qing Zhong
    • , Ao Zhou
    • , Ben Zhou
    • , Cefan Zhou
    • , Gang Zhou
    • , Hao Zhou
    • , Hong Zhou
    • , Hongbo Zhou
    • , Jie Zhou
    • , Jing Zhou
    • , Jing Zhou
    • , Jiyong Zhou
    • , Kailiang Zhou
    • , Rongjia Zhou
    • , Xu-Jie Zhou
    • , Yanshuang Zhou
    • , Yinghong Zhou
    • , Yubin Zhou
    • , Zheng-Yu Zhou
    • , Zhou Zhou
    • , Binglin Zhu
    • , Changlian Zhu
    • , Guo-Qing Zhu
    • , Haining Zhu
    • , Hongxin Zhu
    • , Hua Zhu
    • , Wei-Guo Zhu
    • , Yanping Zhu
    • , Yushan Zhu
    • , Haixia Zhuang
    • , Xiaohong Zhuang
    • , Katarzyna Zientara-Rytter
    • , Christine M. Zimmermann
    • , Elena Ziviani
    • , Teresa Zoladek
    • , Wei-Xing Zong
    • , Dmitry B. Zorov
    • , Antonio Zorzano
    • , Weiping Zou
    • , Zhen Zou
    • , Zhengzhi Zou
    • , Steven Zuryn
    • , Werner Zwerschke
    • , Beate Brand-Saberi
    • , X. Charlie Dong
    • , Chandra Shekar Kenchappa
    • , Zuguo Li
    • , Yong Lin
    • , Shigeru Oshima
    • , Yueguang Rong
    • , Judith C. Sluimer
    • , Christina L. Stallings
    •  & Chun-Kit Tong

    Autophagy (2021)

  • Emerging roles of ATG proteins and membrane lipids in autophagosome formation

    • Taki Nishimura
    •  & Sharon A. Tooze

    Cell Discovery (2020)

  • Atg3 promotes Atg8 lipidation via altering lipid diffusion and rearrangement

    • Shen Wang
    • , Yun Li
    •  & Cong Ma

    Protein Science (2020)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing