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Heterogeneous circRNA expression 
profiles and regulatory functions 
among HEK293T single cells
Chaofang Zhong1, Shaojun Yu1, Maozhen Han1, Jiahuan Chen2 & Kang Ning  1

The single-cell analysis is becoming a powerful method for early detection of the abnormal variant 
in tissues, especially for profiling a small number of heterogeneous cells. With the advancement of 
sequencing technologies, many types of non-coding elements including miRNAs and lncRNAs which 
shed light on their heterogeneous patterns and functions among cells, have been profiled at the 
single-cell level. However, the complete picture of circRNA profile at single-cell level is still lacking. In 
this study, RNA-Seq data obtained from single HEK293T cells have been used to analyze expressions 
and functions of heterogeneous circRNA profiles. The enrichment patterns of circRNAs, interactions 
with miRNAs and pathways such as ErbB signaling pathway and protein processing in endoplasmic 
reticulum, have also been investigated. The results showed that circRNAs had a specific distribution 
pattern which was implicated with expression, miRNA and functional profiles at single-cell level. 
This assessment study of the expressions and functions of circRNAs at single-cell level shed light on 
heterogeneities among single cells.

In recent years, with the advancement of next generation sequencing technologies, great progress has been made 
in transcriptome researches1–3, most of which were paid attention to bulk samples. However, intrinsic hetero-
geneity has been identified to be widespread within the transcriptomes of different individual cells, even within 
the same types of cells4,5. Moreover, previous investigations showed that these genetic heterogeneities might be 
averaged out in bulk sequencing6,7, especially for those rare non-coding RNAs who are dynamically expressed 
in cells8. The single-cell technology can profile heterogeneities within the same tissue at the single-cell level 
and serve as a powerful method to identify specific properties of each cell9. Due to the superiority in detect-
ing single-cell heterogeneity, single-cell technology has become the focus in many fields9–11. And a variety of 
single-cell sequencing methods, such as CEL-seq12, Quartz-Seq13, Smart-seq14, MATQ-seq15, make the detection 
of transcriptional variation in single cells accessible and meet the demand for anatomical resolution. In particular, 
the study of non-coding RNA at single-cell level has attracted extensive attention16,17.

Circular RNA (circRNA) is one of the new members of the non-coding RNA family, forms in a covalently 
closed continuous loop and isn’t terminated at 5′ and 3′ ends18. With the development of high-throughput RNA 
sequencing technology, abundant circRNAs have recently been identified in many kinds of species and implicated 
in important functions in physiological and disease process19–21. Hence, several comprehensive databases such as 
CircBase, Circ2Traits22, circRNABase23, deepBase24, and circRNADb25, have been developed to merge and unify 
information of published circRNAs and provide a series of online alignment tools to maintain structure and func-
tion prediction. To meet the demand of comprehensive detection of circRNAs, several different pipelines with 
better performance in circRNA analysis have been developed, including find_circ19, CIRI26, circRNAFinder27, 
CIRCexplorer28, UROBORUS29, etc., for further study of circRNAs. However, most of existing work on circRNA 
is based on bulk sequencing, in which individual cell properties and heterogeneities are hidden. Furthermore, 
although so much progress has been made in circRNA analysis, neither the circRNA expression pattern nor the 
specific circRNA function at the single-cell level has been reported. CircRNA analysis at single cell level can yield 
more detailed and accurate genetic information, and provide a clue for dynamic variation of circRNAs and a new 
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approach for illustrating mechanism and function. To fully reveal the complexity of circRNAs, the circRNA anal-
ysis is desirable to be performed at single-cell level.

In this study, to get a high-resolution profile of circRNAs for describing the distribution at the single-cell level, 
single-cell sequencing datasets were collected. Firstly, we performed expression profile and heterogeneity pattern 
analysis at single-cell level. Secondly, we elucidated the correlation between the expression of circRNAs and their 
host genes. Thirdly, by implementing GO analysis, we were interested in the functional enrichment and pathways 
of the circRNA host genes. Furthermore, we examined the potential function of miRNAs as sponges by inference 
of circRNA regulatory networks. Our data provided a novel basis for circRNA research in single cells. It was found 
that the single-cell circRNA profiles might have a specific distribution pattern which was implicated with expres-
sion, miRNA and functional profiles at the single-cell level.

Results
Detection results of general circRNA by using different methods. We obtained four sets of detec-
tion results generated by CIRI2, circRNAFinder, find_circ and CIRCexplorer, respectively. The number of cir-
cRNAs ranged from 1,111 to 6,493 in 38 single cells, in which only 410 circRNAs were predicted by all the four 
methods. In addition, we also detected 68 circRNAs in 7 another single cells from GSE53386. To avoid the tech-
nical bias, we focused on the 410 circRNAs found by all the four methods, and also the 68 circRNAs in 7 another 
single cells were taken into account.

Among circRNAs, heterogeneity was found in each cell. The number of circRNAs in these single cells was 
significantly different (t-test, p = 7.338e-15), and the types of circRNAs were also quite different. To characterize 
the level of heterogeneity, Manhattan distance was used to calculate the distances from the pairwise single cells 
(Supplementary Fig. 1A). Moreover, heterogeneity was indicated by the hierarchical comparison in each cell and 
hierarchical clustering showed that heterogeneities of circRNA expression were distinct among cells. In particular, 
single-cell samples such as SRR5091997 and SRR5091976, which had the similar quantity of sequencing reads, 
were quite different in circRNAs. Due to the differences of samples, the correlation of samples was analyzed and 
the hierarchical clustering method was applied to group circRNAs. Samples had only weak correlation or the cor-
relation was not statistically significant (Pearson correlation coefficient (PCC) < 0.32) (Supplementary Fig. 1B), 
which indicated that circRNAs were fairly independent in single cells.

The overview of the circRNA distribution and its possible enrichment can be obtained from the circRNA 
frequencies on each chromosomes. By calculating the ratio of the circRNA counts to the length of chromosome 
(circRNA-Freq, refer to Formula (1) in the Materials and Methods), the distribution of the circRNAs on the 
chromosomes was depicted based on the results from the 38 single cells (Fig. 1A). The Heatmap showed that the 
distribution of circRNAs on chromosomes was not uniform and enriched on chr22 (p < 2.86e-24). In addition, 
cellular heterogeneity was found among samples, although the cells considered here were cultured in the same 
condition. The same result was found in 7 single cells from GSE53386 (Supplementary Fig. 2A).

Comparisons of circRNA and SNP profiles of single cells. To find an overview of the SNP distribution 
and the possible enrichment of SNPs on chromosomes, the SNP frequency on each chromosome was normalized 
by the quantity of the SNPs and the length of chromosomes (SNP-Freq, refer to Formula (2) in the Materials and 
Methods). Each SNP-Freq was calculated and clustered into a heatmap (Fig. 1B). SNPs were distributed widely 
on 24 chromosomes and enriched on chr16, chr17, chr19 and chr22 (p < 4.09e-18). The accumulation of SNPs 
on chromosomes, accompanied by some genes generating circRNAs such as CRKL and PIK3R3, were detected to 
harbor SNPs at different degrees. Obviously, heterogeneity of SNPs was also found among samples. Furthermore, 
we also analyzed the possible correlation between SNP-Freq and circRNA-Freq, and the result suggested that 
there was no linear correlation between them (Fig. 2A). The similar SNP profiles and correlation were also found 
from the GSE53386 (Supplementary Fig. 2B).

Further investigations of correlation of circRNAs and their host genes were discussed based on the expres-
sion levels. First, by analyzing the relationship between the circRNA-gene ratio (CGR, refer to Formula (3) 
in the Materials and Methods) and their host gene expression, a strongly negative correlation was presented 
(PCC = −0.754, p < 2.2e-16) (Fig. 2B). Second, the expression levels of circRNAs and their host genes were nor-
malized by FPKM (refer to Formula (4) in the Materials and Methods). A similar result was observed when we 
tried to analyze the relationship between gene expression and circRNA expression (PCC = −0.870, p < 2.2e-16) 
(Fig. 2C). Such expamles might indicate that those genes who produced circRNAs with high expression gave rise 
to the relatively lower expression of circRNAs.

Gene Set Enrichment Analysis (GSEA) was used to demonstrate the enrichment patterns of genes which 
produced circRNAs. The distribution of circRNA host gene set in three ranked list genes (expressed genes ranked 
by FPKM, genes with SNPs ranked by quantity of SNP, genes with miRNAs ranked by counts of miRNA) was 
performed to explore whether these three sets reflect a common distribution of circRNA host genes or not. Firstly, 
gene expression patterns focused on groups of genes which produced circRNAs from 38 single cells were exam-
ined. We observed a significant enrichment of circRNA host genes within highly expressed genes (Fig. 2D), which 
indicated that the expression patterns of circRNA host genes were consistent and the expression of circRNA host 
genes was higher than those without circRNA. In contrast, GSEA of circRNA host genes in the gene list with SNP 
was randomly distributed with poor scores (Fig. 2E), which reflected the relative random of mutation in circRNA 
host genes. Moreover, circRNA host genes in the gene list with miRNA were enriched at the top of the gene list 
(Fig. 2F), which mean that genes with circRNAs collectively harbored more miRNA binding sites. A similar con-
clusion was obtained from the GSE53386 (Supplementary Figs 3, 4).

Functions of circRNA host genes in single cells. Gene Ontology annotation can evaluate the function 
enrichment, as well as to gain an insight into functions of all genes harboring circRNAs. Each gene was associated 
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with at least one GO term and had a wide range of biological functions. According to three categories: biological 
processes (BP), molecular function (MF) and cellular component (CC), all of GO terms were classified to point 
out the significantly overlapped functions. In the BP, the circRNA host genes were significantly enriched tran-
scription, DNA−templated, regulation of transcription DNA−templated (p < 1.04e-20) (Fig. 3A). In the MF, 
genes were significantly enriched in protein binding (p < 5.56e-31) (Fig. 3B). In the CC, genes were significantly 
enriched in nucleus, nucleoplasm and cytoplasm (p < 1.97e-28) (Fig. 3C). These GO terms associated with cir-
cRNA host genes were significantly correlated with the transcription, protein binding, ect., which indicated that 

Figure 1. Heatmap of circRNA distribution on the chromosomes in 38 single cells. (A) The circRNA 
enrichment on chromosomes for the 38 single-cell samples; (B) Heatmap of the SNP-Freq on each chromosome 
for 38 single-cell samples obtained by the GATK and Samtools.
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those genes were more likely to undergo circularization, and circRNAs might be crucial in the regulation of these 
functions during embryonic development.

Pathway analysis of circRNA host genes. Genes harboring circRNAs were observed to be involved 
in different pathways (Table 1), even some of which had a high “sample ratio” (a ratio of samples with at least 
one circRNA to the total sample). The circRNA host genes PIK3CB, PTK2, CRKL, PIK3R3, BRAF, ABL2 and 

Figure 2. Different degrees of enrichment of expression between circRNAs and their host genes in 38 single 
cells. (A) Correlation analysis for circRNA-Freq and SNP-Freq in 38 single-cell samples; (B) Correlation of 
circRNA-gene ratio and host gene FPKM; (C) A negative correlation between expression of circRNAs and 
host genes; (D) The expressed enrichment of circRNA host genes. (E) The random distribution of circRNA 
host genes within the sorted list who contained all the genes with SNPs. (F) The enrichment of circRNA host 
genes sorted by counts of miRNA. The horizontal axes in (E), (D) and (F) represent gene list with expressed 
gene, SNPs and miRNAs, respectively. And they were ordered by expression level, counts of SNPs and counts of 
miRNA sites from high to low, respectively. Vertical bars represent the location of circRNA host genes within 
the sorted lists. The ES values were the maximum deviation from zero encountered in the random walk. The 
upper curves represent the dynamic ES value.
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MTOR (Fig. 4A) were assigned to the ErbB signaling pathway, and many of them were linked to the enriched GO 
terms such as protein binding and nucleolus. The ErbB signaling pathway, which regulated diverse physiological 
responses such as cell survival, proliferation and motility. This consistency between the GO terms and the genes 
might indicate the possible regulation of these functions in cell metabolism. CRKL, which regulated cell adhe-
sion, spreading and migration, harbored circRNAs in 12 cells. And CRKL harboring SNP was found in 22 cells. 
Upon testing the relationship between CRKL expression among the cells, we found that the expression of CRKL 

Figure 3. Heatmap of GO terms for the circRNA host genes in 38 single-cell samples. (A) CircRNA host gene 
counts for the GO terms in the Biological Process category; (B) CircRNA host gene counts for the GO terms in 
the Molecular Function category; (C) CircRNA host gene counts for the GO terms in the Cellular Component 
category. Each colored cell in the heatmap represent a standardized number of genes for the GO terms. The cells 
with high counts are marked in red, and those with low counts are marked in blue.
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increased (t-test, p = 0.008) in cells with circRNAs. And also checked the expression of CRKL in cells with SNPs 
and no significant differences existed among the cells. Whether SNPs affected the expression of CRKL or not was 
needed to be further studied.

Another pathway protein processing in endoplasmic reticulum, contained circRNA target genes PDIA6, SEC. 
31B, UBE4B, UBQLN1, UBE2G1, SEC. 62, NPLOC4, AMFR and MAN1A2 (Fig. 4B). These genes which played an 
important role in protein folding, translocation, and degradation, had varying degrees of sample ratios. Among 
these genes, MAN1A2 which had Alpha-mannosidases function during the N-glycan maturation process also 
harbored circRNAs in 12 cells with comparatively higher expression. This circularization in checkpoint genes 
might have potential effects on their expression regulation and was likely to be important factors in maintaining 
normal physiological function.

CircRNA-miRNA-mRNA associations. Interactions, which indicate the functions of circRNAs, between 
circRNAs and their target miRNAs were predicted according to complementary conserved seed sequence matches. 
A total of 249 miRNAs could be combined with 406 circRNAs. Among them, the hsa-miR-15a, hsa-miR-15b, 
hsa-miR-16, hsa-miR-195, hsa-miR-424 and hsa-miR-497 regulated the largest number of circRNAs. Furthermore, 
investigations on the associations between each potential complementary binding miRNA and their target genes of 
human diseases were performed. Among the potential complementary binding miRNAs of circRNAs, 120 miRNAs 
could be associated with a broad spectrum of diseases by acting on 305 disease-related genes. Thus, an entire net-
work of circRNA-miRNA-mRNA interactions was delineated by using Cytoscape (Fig. 5A).

Further, the potential relevance of circRNA and mRNA was established by miRNA to analyze the molecu-
lar mechanism. It was predicted that circMAN1A2 could harbor hsa-miR-494, hsa-miR-491-5p, hsa-miR-433, 
hsa-miR-384, hsa-miR-543, hsa-miR-107, hsa-miR-301b, hsa-miR-329, hsa-miR-152, and hsa-miR-362-3p by 
miRNAs seed sequence matching, respectively. Moreover, DIANA-miRPath analysis revealed that a total of genes 
could be regulated by these ten potential miRNAs (Supplementary Table S1), and these target genes were associ-
ated with ErbB signaling pathway. As a result, a network of circRNA-miRNA-mRNA interactions in ErbB signa-
ling pathway was established (Fig. 5B).

ErbB signaling pathway network containing 33 genes on circMAN1A2 mediated by hsa-miR-494, hsa-miR-
491-5p, hsa-miR-433, hsa-miR-384, hsa-miR-543, hsa-miR-107, hsa-miR-301b, hsa-miR-329, hsa-miR-152, and 
hsa-miR-362-3p was also established (Fig. 6A). TGFA could be targeted by hsa-miR-384, hsa-miR-543, hsa-miR-
301b, hsa-miR-329, hsa-miR-152 and hsa-miR-362-3p in the network, which mean that it might be a crucial factor 
mediated by circMAN1A2. These findings suggested that circMAN1A2 should participate in the ErbB signaling 
pathway. When we linked these targeted genes to their GO terms, the GO annotation for target genes revealed that 
these genes were significantly correlated with pigmentation and biological regulation in BP, cell and intracellular in 
CC, protein binding in MF (Fig. 6B). This consistency between the GO terms and the ErbB signaling pathway related 
genes might indicate the possible regulation of these functions in embryonic development at single cells.

Discussions
In the past few years, circRNA was identified to be highly abundant in mammals based on the study of population 
cells30. However, analysis of population cells could only detect the characteristics of the average, which limited to 
obtain clues to the differences among each cell31. Fortunately, the advent and utilization of single-cell sequencing 
facilitated the research on heterogeneity and functions of circRNA. In an analysis of publicly available RNA-Seq 
data from HEK293T single cells, we found that circRNAs were dynamically expressed in single cells.

In this study, we reported the heterogeneity patterns of circRNAs at the single-cell level as well as gene expres-
sions. We obtained 410 circRNAs in 38 single cells, and found that cell-level heterogeneity of circRNAs was obvious, 
which indicated that circRNA exhibited different expression patterns. These data provided a more comprehensive 
view into circRNAs than that in published reports in bulk sequencing32. The distribution on chromosomes pro-
files revealed circRNAs were distributed on all chromosomes except for Y chromosome. This distribution was not 
uniform on the chromosomes and got an enrichment on chr22. And SNPs were widely distributed on 24 chromo-
somes and were enriched on chr16, chr17, chr19 and chr22. Especially, the possible correlation of circRNA-Freq 
and SNP-Freq suggested that no correlation between them though SNPs was detected in 166 circRNA host genes. 
Whether they were relevant or not was still to be further studied. The expression of circRNA had recently been 

Pathway circRNA host genes

Lysine degradation** HADH, ASH1L, SETD2, WHSC1, NSD1, WHSC1L1, EHMT1

Ubiquitin mediated proteolysis** HUWE1, SMURF1, TRIM37, UBE4B, UBE2G1, CUL5, BIRC6, UBE2I, UBR5, MID1

ErbB signaling pathway** PIK3CB, PTK2, CRKL, PIK3R3, BRAF, ABL2, MTOR

Protein processing in endoplasmic reticulum** PDIA6, SEC31B, UBE4B, UBQLN1, UBE2G1, SEC62, NPLOC4, AMFR, MAN1A2

Insulin signaling pathway** PIK3CB, CRKL, PIK3R3, BRAF, ACACB, ACACA, PRKAG2, MTOR

RNA transport* NUP214, RANGAP1, KPNB1, CASC3, UBE2I, EIF4G3, NUP205, NDC1

Amoebiasis* PIK3CB, PTK2, PLCB1, PIK3R3, ADCY1, RAB7A

Selenocompound metabolism* MTR, PAPSS1, MARS

Bacterial invasion of epithelial cells* PIK3CB, PTK2, CRKL, PIK3R3, CD2AP

AMPK signaling pathway* PIK3CB, PIK3R3, ACACA, PRKAG2, PPARG, MTOR

Table 1. Representative circRNA host genes in the pathway analysis. Note: Genes harboring circRNAs were 
observed to be involved in ten pathways by p-value cutoff at 0.05. (*p < 0.05, **p < 0.01).
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identified to be correlated with that of linear host mRNA, and even for regulate transcription of their host genes28,33. 
In the present study, we had calculated the Pearson correlation coefficient between the expression levels of circR-
NAs and their host genes. The results showed that a strongly negative correlation between circRNAs and their host 
mRNA existed, which suggested that those circRNAs have potential influence on the transcription of their host 
genes. Meanwhile, SNP heterogeneity was also found in 7 single cells from GSE53386.

GSEA was used to reflect enrichment situation of circRNA host genes in three ranked gene lists, including 
all expressed genes, all genes harboring SNPs and miRNAs. GSEA walked down the ranked list, and the enrich-
ment score was increased if the gene was present in a gene set, otherwise, decreased34. The magnitude of the 
increase or decrease was determined by the correlation of genes with expression level, SNPs and miRNAs. For 
both GSE78968 and GSE53386 datasets, there were three patterns of circRNAs: (i) the expression of circRNA host 
genes was higher than those without circRNA; (ii) random distribution in SNPs of the circRNA host genes was 

Figure 4. ErbB signaling pathway and its circRNA-related genes. (A) The ErbB signaling pathway and its gene 
interactions; (B) Protein processing in endoplasmic reticulum and its gene interactions. The light green boxes 
represent circRNA-free genes among all single cells, the yellow boxes represent genes harboring circRNAs appearing 
in only a single cell and the orange boxes represent genes harboring circRNAs appearing in multi-samples.
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observed; (iii) circRNA host genes contained more targeted miRNAs. The common features of the tendency in 
expression level and miRNA counts had a potential impact on RNA circularization. Therefore, we might conclude 
that circRNAs might function as miRNA sponges to improve target host gene expression.

Results from GO function annotation and KEGG pathway help to enrich and identify important genes 
generating circRNAs. GO function annotations for those target genes revealed that they were significantly 
implicated in protein binding, nucleus, nucleoplasm and cytoplasm, which provided evidence for embryonic 
development-related circRNA accumulation. Considering KEGG pathway, those circRNA host genes involved 
important physiological pathways such as ErbB signaling pathway, and protein processing in endoplasmic retic-
ulum, which reflected their importance in embryonic development. Circularization in these checkpoint genes 
might have potential effects on the ErbB signaling pathway and protein processing in endoplasmic reticulum, 
which suggested that circRNAs be likely to play regulatory roles in development. As stated in the published study, 
circRNAs could be correlated with regulation mechanisms of embryonic development8.

In addition, we discovered that circRNAs harbored substantially miRNA target sites based on conserva-
tive seed sequence matches. Hundreds of circRNA-miRNA interactions were predicted, which would supply 
new discernment for the underlying mechanisms. CircRNAs could be correlated with disease miRNAs and the 
circRNA-miRNA axes might participate in disease-related pathways35,36. The circRNA-miRNA-mRNA network 
could serve as the powerful regulation pathway for the cascade amplification effect of circRNA-miRNA and 
miRNA-mRNA37. The best-known biological impact of circRNAs was playing miRNA sponge effects19. Therefore, 
we speculated that circMAN1A2 might competitively bind with hsa-miR-494, hsa-miR-491-5p, hsa-miR-433, 
hsa-miR-384, hsa-miR-543, hsa-miR-107, hsa-miR-301b, hsa-miR-329, hsa-miR-152, and hsa-miR-362-3p, and 
had effects on associated target genes. DIANA-miRPath determined the candidate miRNAs of circMAN1A2 
which were involved in the ErbB signaling pathway. These miRNA target genes were enriched for functional 
annotations relating to biological regulation, protein binding, as well as development. Previous studies had 
revealed that abnormal ErbB signaling in humans was associated with the development of neurodegenerative 
diseases or a wide variety of types of solid tumor38–40. Thus, we predicted that circMAN1A2 could act as a regula-
tor of the ErbB signaling pathway.

CircRNA within single-cells represented one type of the non-coding elements among heterogeneous cells, 
and we believed that more interesting finding for non-coding element analysis might be revealed based on more 
complete and accurate single-cell sequencing data. Thus, it was quite promising that the single-cell sequencing 
was allowing scientists to explore non-coding small molecules diversity in cell populations.

Conclusion
In this single-cell RNA-Seq analysis of HEK293T cells, not only the circRNA distribution patterns but also the 
single-cell SNP, gene expression and function profile were profiled. It was found that circRNAs were dynamically 
expressed in single cells and had obvious heterogeneity by the analysis of distribution patterns. These circRNAs 
were potentially involved in transcription, DNA−templated, protein binding, and nucleus. Moreover, these cir-
cRNAs had a specific distribution pattern which was not associated with SNPs but was implicated with gene 
expressions or functional profiles at the single-cell level. In addition, the circMAN1A2 might serve as a regulator 
of the ErbB signaling pathway. These data laid a foundation for further decipher characteristics and regulation 
mechanisms of circRNAs in single cells.

Figure 5. circRNA-miRNA-mRNA networks. (A) The circRNA-miRNA-mRNA network, which consists of 
406 circRNAs (orange nodes), 249 miRNAs (blue nodes) and 305 disease genes (green); (B) The prediction of 
circMAN1A2 target genes related to ErbB signaling pathway. A total of 44 nodes and 72 edges were constructed.
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Materials and Methods
RNA-Seq data for the single-cell samples. Two data sets of single HEK293T cells were downloaded 
from NCBI GEO database (Supplementary Table S2), the first data set (GEO ID: GSE78968) had 38 single cells, 
which were all obtained from a same HEK293T clone and performed by MATQ-seq. Second data set (GEO ID: 
GSE53386) had 7 single HEK293T cells, which were performed by SUPeR-seq. Reads of both two data sets were 
used for the following analyses of circRNA and SNP.

CircRNA detection. Quality filtering on these reads was performed using Parallel-QC41 and sequences 
which did not fulfill the following criteria were discarded: reads with quality score ≥ 20, the GC proportion 
ranged from 0.4 to 0.6. All the downstream analyses were based on clean data.

Figure 6. Function annotations for target genes mediated by circMAN1A2-miRNA axes. (A) ErbB signaling 
pathway network containing thirty-three genes on circMAN1A2 mediated by its target miRNAs. The yellow 
boxes represented target genes containing only one miRNA, the orange boxes represented target genes 
contained multi-miRNAs; (B) GO annotation for the circMAN1A2 targeted genes of the ErbB signaling 
pathway. Only the most significantly enriched clusters were included.

http://S2
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The reference genome and annotation used in the following analyses were downloaded from UCSC Genome 
Browser (http://genome.ucsc.edu) (hg19 version). Four pipelines, including CIRI, version 2.0.1, circRNAFinder, 
version 0.1.0, find_circ and CIRCexplorer, version 1.1.10, were introduced to detect the circRNA for the sake of 
higher accuracy and sensitivity since no specific circRNA detection method has been customized for single-cell 
RNA-Seq data. All the four pipelines were used the default parameters.

Manhattan distance calculation. To calculate the degree of heterogeneity in each cell, the Manhattan 
distance was based on the absence or presence of each circRNA. For each cell, a full (all circRNAs by all cells) 0/1 
matrix was built, with “1” denoting presence (defined as the detection of circRNA) and “0” denoting no presence 
of the corresponding circRNA. Thus, Manhattan distance was used to calculate the distance from the matrix.

CircRNA enrichment on chromosomes. For circRNA enrichment on chromosomes, the circRNA fre-
quency on each chromosome was normalized by the following formula:

− = ×circRNA Freq circRNA counts Chromosome
chromosome length

10 /
(1)

8

Where circRNA counts/Chromosome was the quantity of the circRNAs detected on one chromosome, and chro-
mosome length was the length of this chromosome. The factor 108 was chosen as the denominator to leverage the 
circRNA-Freq values for a fair and easy comparison.

SNP identification. Reads were mapped to the human genome using BWA software, version 0.7.1542. The 
variants calling was performed in GATK43 and Samtools, version 1.344. HaplotypeCaller was used for variant 
calling in GATK while mpileup and view were used in Samtools. The overlaps of GATK and Samtools results were 
considered as candidates, which were subjected to additional filtering to remove SNPs with low-quality value 
(QUAL < 30), low QD (QD < 20.0), low read coverage (DP < 8) and Strand Bias (FS > 30.0).

For SNP enrichment on chromosomes, the SNP frequency on each chromosome was normalized using the 
following formula:

− = ×SNP Freq SNP counts Chromosome
chromosome length

10 /
(2)

6

Where SNP counts/Chromosome was the quantity of the SNPs detected on one chromosome, and chromo-
some length was the length of this chromosome. The factor 106 was chosen as the denominator to leverage the 
SNP-Freq values for a fair and easy comparison.

Expression analysis. RNA-seq libraries were mapped to the reference genome using tophat, version 
2.1.045, after that the FPKM values for each gene were calculated by cufflinks, version 2.2.046 and reads mapped 
to genomic features were counted using htseq-count. Therefore, to estimate abundance of circRNAs, the 
circRNA-gene ratio (CGR) was quantified using the following formula:

=CGR circRNA junction spanning reads
host gene

( )
reads (3)

To generate an overview of circRNA expression profiles among the single cells, the hierarchical clustering 
analysis was performed based on expression value of all target circRNAs. Expression levels of circRNAs were 
quantified by the number of junction spanning reads. To obtain an estimate of relative expression, the number 
was normalized to the total number of reads in the library and the host gene FPKM. The FPKM of circRNA was 
calculated using the following formula:

FPKM circRNA junction spanning reads
mapped reads millions host gene FPKM

( )
( ) (4)

=
×

Where junction spanning reads was the amount of the circRNAs detected on one site, and million mapped reads 
were the total reads which mapped to reference genomes.

miRNA analysis. For miRNA analysis, microRNA target prediction in human was available on Miranda 
database (http://www.microrna.org/microrna/home.do), which was downloaded to evaluate all instances of 
conservative sites in each gene. The miRNA-disease associations were predicted in the Human MiRNA Disease 
Database (HMDD http://cmbi.bjmu.edu.cn/hmdd). All mature miRNA sequences were downloaded from miR-
Base (http://www.mirbase.org), each circRNA was scanned to identify miRNA target sites based on conserved 
seed sequence matches. The miRNA pathway investigating was carried out based on DIANA-miRPath by p-value 
cutoff at 0.05. The graphs of the circRNA-miRNA and circRNA-miRNA-gene networks were visualized on 
Cytoscape, version 3.3.047.

Functional enrichment analysis. The function of those target genes was predicted and annotated in the 
network by Database for Annotation, Visualization and Integrated Discovery (DAVID https://david.ncifcrf.
gov), P < 0.05 was used as the criterion for statistical significance. Gene Ontology (GO) that describes genes 
from any organism were used. GO Terms were classified into three categories: biological processes (BP), cellular 

http://genome.ucsc.edu
http://www.microrna.org/microrna/home.do
http://cmbi.bjmu.edu.cn/hmdd
http://www.mirbase.org
https://david.ncifcrf.gov
https://david.ncifcrf.gov
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component (CC) and molecular function (MF). Pathway analysis was carried out for a functional analysis of 
mapping genes to KEGG48 pathways.
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