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A Fully-Automatic Multiparametric 
Radiomics Model: Towards 
Reproducible and Prognostic 
Imaging Signature for Prediction 
of Overall Survival in Glioblastoma 
Multiforme
Qihua Li1, Hongmin Bai2, Yinsheng Chen3, Qiuchang Sun1, Lei Liu1, Sijie Zhou2, Guoliang 
Wang2, Chaofeng Liang  4 & Zhi-Cheng Li  1

In fully-automatic radiomics model for predicting overall survival (OS) of glioblastoma multiforme 
(GBM) patients, the effect of image standardization parameters such as voxel size, quantization method 
and gray level on model reproducibility and prognostic performance are still unclear. In this study, 45792 
multiregional radiomics features were automatically extracted from multi-modality MR images with 
different voxel sizes, quantization methods, and gray levels. The feature reproducibility and prognostic 
performance were assessed. Multiparametric and fixed-parameter radiomics signatures were 
constructed based on a training cohort (60 patients). In an independent validation cohort (32 patients), 
the multiparametric signature achieved better performance for OS prediction (C-Index = 0.705, 95% 
CI: 0.672, 0.738) and significant stratification of patients into high- and low-risk groups (P = 0.0040, 
HR = 3.29, 95% CI: 1.40, 7.70), which outperformed the fixed-parameter signatures and conventional 
factors such as age, Karnofsky Performance Score and tumor volume. This study demonstrated that 
voxel size, quantization method and gray level had influence on reproducibility and prognosis of 
radiomics features for GBM OS prediction. An automatic method to determine the optimal parameter 
settings was provided. It indicated that multiparametric radiomics signature had the potential of 
offering better prognostic performance than fixed-parameter signatures.

Glioblastoma multiforme (GBM), the most frequent malignant primary brain tumor in adults, remains a 
big therapeutic challenge. The median survival is only 12–14 months1. The poor prognosis is mainly due to 
the intra-tumor heterogeneity. The heterogeneity poses clear challenge to target therapies based on invasive 
biopsy-based genomics. This challenge can be addressed by medical imaging which is non-invasive, repeatable 
and provides information of the entire tumor2.

Radiomics is an emerging imaging-based technique explicitly designed to extract high-throughput quantita-
tive imaging features from standard of care images, convert the features into minable data, and build predictive 
or prognostic models linking image features to tumor phenotype3. Radiomics provides a tool for comprehensive 
quantification and visualization of intra-tumor heterogeneity at the radiological level. It aims to improve the 
decision-support for cancer therapy with a low-cost and repeatable solution. Recently, several radiomics studies 
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have been conducted in different cancer sites such as lung4, head & neck5, colorectal6,7, and glioma8. For GBM, 
several imaging biomakers have been proposed via radiomics approaches to predict the survival9, treatment 
response8 and molecular characteristics10.

Despite the promising results, current radiomics studies still face challenges. One critical issue is the repro-
ducibility, preventing radiomics techniques from practical use. The factors affecting the reproducibility include 
image acquisition11,12, intra- and inter-rater variations when employing manual or semi-automatic segmenta-
tions5, and image standardization process13. In clinical practice, multi-modality MRI data are acquired from a 
variety of machines with different protocols, hence image standardization should be performed to normalize 
the resolution and intensity prior to radiomics analysis. For radiomics models that employ fully-automatic seg-
mentation, the human factors can be eliminated while the image standardization parameters play a major role 
among factors affecting the reproducibility. On the other hand, the image standardization parameters may also 
affect the prognostic performance. Several studies investigated the effects of CT or PET acquisition parameters on 
reproducibility and prognostic power of radiomics models, in which manual segmentations were employed12,14. 
In fully-automatic radiomics model the effects of the image standardization parameters such as voxel size, quan-
tization method and gray level on model reproducibility and prognostic performance are still unclear. To our best 
knowledge, most current radiomics models extracted image features at fixed image standardization parameters. 
Because for different image features the optimal voxel sizes, quantization methods and gray levels may vary, the 
potential of radiomics models with fixed image standardization parameters may be limited.

In this paper, we proposed a fully-automatic multiparametric radiomics model for prediction of overall sur-
vival (OS) in GBM patients. The effects of image standardization parameters such as voxel size, quantization 
method and gray level on feature reproducibility and prognostic performance were investigated. The prognostic 
performance of multiparametric radiomics signature was compared with fixed-parametric signatures and con-
ventional prognostic factors. The aim was to automatically construct a reproducible and prognostic multi-feature 
radiomics signature for GBM OS prediction, and to determine the optimal voxel size, quantization method and 
gray level for such a model.

Methods
Patients. The patient cohorts involved in this retrospective study consisted of two groups: a training cohort 
and an independent validation cohort. The training cohort consisted of 60 patients from the Cancer Genome 
Archive (TCGA) database. Another 32 patients comprising 11 from Sun Yat-Sen University Cancer Center 
(SYSUCC), 10 from Guangzhou General Hospital of Guangzhou Military Command, and 11 from The 3rd 
Affiliated Hospital of Sun Yat-sen University were used for independent validation. The imaging procedure, data 
processing and experiment design were approved by Sun Yat-Sen University Cancer Center Ethics Committee, 
Guangzhou General Hospital of Guangzhou Military Command Ethics Committee, and The 3rd Affiliated 
Hospital of Sun Yat-sen University Ethics Committee. All methods were performed in accordance with the rel-
evant guidelines and regulations. Because the patient data in TCGA was deidentified, institutional review board 
approval for the training data was not required. For the validation data, informed consent was obtained from all 
subjects.

The demographic and clinical characteristics of the patients is listed in Table 1. The inclusion criteria were: 
(1) newly diagnosed and treatment-naive GBM, (2) availability of overall survival information, (3) availability of 
pre-treatment MR imaging including T1-weighted, T1-weighted Gadolinium contrast-enhanced, T2-weighted, 
and T2-weighted FLAIR images (T1, T1C, T2, and FLAIR), (4) MR images with diagnostic image quality. The 
exclusion criteria were patients with a history of treatment and patients missing survival information. The MRI 
data of the training cohort was obtained from the Cancer Imaging Archive (TCIA) that include imaging data 
corresponding to TCIA patients. Overall survival is calculated from the initial pathologic diagnosis date to death 
or censored point if still alive.

Parameters Training Data Set Validation Data Set

No. of Patients 60 32

Sex

  Male 35 16

  Female 25 16

Age(y)

  Range 10–81 31–84

  Median 57.5 57.0

  Mean 54.9 56.4

KPS

  Mean 80.9 82.6

OS(d)

  Range 30–1561 36–1642

  Median 427 442

  Mean 488 545

Table 1. Demographic and Clinical Characteristics of Patients in the Training and Validation Data Set.
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MR Imaging. All local MR images were acquired with 3.0-T MR imaging systems (Magnetom Verio or Trio 
TIM, Siemens Healthcare, Erlangen, Germany) using standard head coils. T1 and T1C images were acquired 
with magnetization prepared rapid gradient echo sequence with: repetition time msec/echo time msec, 210-
1710/4-20; section thickness, 2.0–5.0 mm; intra-section spacing, 0.37–1.02 mm. T2 images were obtained with: 
repetition time msec/echo time msec, 6000-10000/95-140; section thickness, 3.0–5.0 mm; intra-section spacing, 
0.39–1.00 mm. FLAIR sequence was performed with: repetition time msec/echo time msec, 8500-10000/85-135; 
section thickness, 2.5–6.0 mm; intra-section spacing, 0.36–1.02 mm.

Image Preprocessing and Automatic Segmentation. Based on T1, T1C, T2 and FLAIR images, we 
aimed to automatically segment the images into five classes: the non-tumor region and four tumor subregions 
including necrosis, edema, non-enhancing area, and enhancing area. Detailed definition of these subregions can 
be found in15. First, the images were preprocessed, encompassing N4 correction of bias field16, skull stripping, 
image resampling, rigid registration using T1C image as a template with the mutual information similarity met-
ric, and intensity normalization by histogram matching. All preprocessing was done using the ITK software tool17.

Then, a voxel-wise random forest model with a conditional random field spatial regulation was used to classify 
the images into five classes. The random forest can efficiently solve multi-class correlated-feature problems with 
a probabilistic output instead of hard classification labels. To train the random forest classifier, real patient MR 
data sets from the 2015 brain tumor segmentation challenge (BRATS 2015) were used. For each training sample 
100,000 randomly sampled voxels were used to train the random forest, while for each testing sample all voxels 
were used. The number of trees was set to 100. The automatic segmentation was implemented using Matlab soft-
ware. Details of the automatic segmentation method can be found in Supplementary Method 1.

High-throughput Radiomics Features Extraction. Within the segmented tumor subregions 
high-throughput imaging features can be extracted. To fully characterize the intra-tumor heterogeneity, we 
extracted 45792 first-order and high-order texture features from 6 extraction subregions, including necrosis, 
enhancing area, non-enhancing area, edema, solid core (the whole tumor except edema) and whole tumor. The 
features extracted were summarized in Supplementary Table 1.

To test the effects of image standardization parameters, the features were extracted at different combinations 
of voxel size, quantization method and gray level, as shown in Supplementary Figure 1. Before features extraction 
all voxels were isotropically rescaled into three vixel sizes of 1, 2, and 3 mm. From all 6 subregions in 4 modalities, 
totally 864 first-order features were extracted for each patient, where each first-order feature had 3 measures at 
voxel size = 1, 2, and 3 mm. Before the high-order texture feature extraction, the intensities were required to be 
quantized to a certain number of gray levels. Here we tested three quantization methods (uniform quantization, 
the equal-probability quantization, and the Lloyd-Max quantization18) and four gray levels including (32, 64, 
128 and 256). Therefore, we had 36 combinations of different parameter settings, yielding 36 measures for each 
high-order texture feature. Totally we extracted 44928 high-order texture features from all 6 subregions in 4 
modalities.

Statistical Analysis. All statistical analysis was done with R software, version 3.4.0 (https://www.r-project.
org/) and X-tile software, version 3.6.1 (Yale University School of Medicine, New Haven, Conn)19. The statistical 
significance levels were set at 0.05.

Clinical Characteristics and survival. The differences in age, sex, tumor volume, KPS, mean follow-up time and 
mean survival between the training and the validation data sets were assessed using an independent sample t test, 
Mann-Whitney U test or χ2 test, where appropriate.

Reproducibility of Radiomics Features. The reproducibility was assessed by measuring the agreement in features 
extracted at different parameter settings using the overall concordance correlation coefficient (OCCC)20. OCCC 
was designed to assess the agreement among multiple observations, where it was the case here of multiple param-
eter settings.

For each first-order feature, an OCCC index can be computed among its 3 measures at voxel size = 1, 2, and 
3 mm. Each high-order texture feature had 36 measures corresponding to 36 parameters settings, varying 3 voxel 
sizes, 3 quantization methods and 4 gray levels. Instead of computing the OCCC over all possible combination of 
the 36 measures, we separately assessed the effect of varying one parameter on a feature while fixing the other two 
parameters. The advantage was that we can separately quantify the effect of each parameter on the reproducibility 
of each high-order feature. The R packages epiR was used for calculating OCCC.

Prognostic Performance of Radiomics Features. The univariate prognostic performance of each feature measure 
was assessed using the concordance index (C-Index), a generalization of the area under the receiver operat-
ing characteristic (ROC) curve (AUC)21. Univariate C-Index was calculated for each measure of a feature. Each 
first-order texture feature had 3 measures, so 3 C-Indices were calculated. Each high-order texture feature had 36 
measures and therefore 36 C-Indices can be calculated. The R packages Hmisc was used for calculating C-Index.

Feature Selection and Multiparametric Radiomics Signature Construction. From all 864 first-order features, fea-
tures with OCCC ≥ 0.85 were considered as reproducible and were selected. While from all high-order features, 
we aimed to select features with high OCCCs in the tests. For each high-order feature if 10 (or more) out of 33 
OCCCs were greater than 0.85, that feature was considered as reproducible against the vary parameters and were 
selected. We next selected features with better prognostic value. Features with univariate C-Index ≥ .0 60 (positive 
association) or 0 40≤ .  (negative association) were selected as better prognostic factors. Furthermore, correlation 
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coefficient between each pair of features was calculated. For feature pair with correlated coefficient 0 90≥ . , the 
more prognostic feature was retained and the other was removed. Finally, the selected features were regarded as 
reproducible, prognostic and nonredundant.

Based on the selected radiomics features, we aimed to construct a multiparametric signature using multivari-
ate Cox regression for OS prediction. Here multiparametric meant that the features used for signature construc-
tion were extracted at multiple image standardization parameters. Note that there were more features than 
patients. According to the Harrell guideline22, a multivariate regression model is likely to be reliable when the 
number of included covariates is less than 1/10 of samples. Therefore, the least absolute shrinkage and selection 
operator (LASSO) Cox regression model was used on the training data set for prognostic signature construc-
tion23. Depending on the weight λ, LASSO shrinks all regression coefficients towards zero and set the coefficients 
of many irrelevant features exactly to zero. To find an optimal λ, 10-fold cross validation with minimum criteria 
was employed, where the final value of λ gave minimum cross validation error. The retained features with nonzero 
coefficients were used for regression model fitting and combined into a radiomics signature. The R package glm-
net was used for LASSO Cox regression modeling.

Fixed-parameter Radiomics Signatures Construction. The fixed-parameter radiomics signatures were con-
structed similarly. At each fixed parameter settings (voxel size, quantization method and gray level), we had 1536 
features (288 first-order features and 1248 high-order features). Features with C-Index ≥ .0 60 or ≤ .0 40 were 
selected. Then, the LASSO Cox model was used on the training data set for signature construction. As we totally 
had 36 parameter settings, finally 36 fixed-parameter radiomics signatures were constructed.

Validation of the Multiparametric Radiomics Signature. The association of the multiparametric radiomics signa-
ture with OS was assessed on the training data set and validated on the validation data set by using Kaplan-Mier 
survival analysis. The C-Index was used to assess the prognostic performance of the radiomics signature. 
According to a threshold estimated based on the radiomics score by using an optimal cutpoint analysis with 
X-tile software19, patients were stratified into high-risk and low-risk groups. The threshold was calculated on the 
training data and tested on the validation data. A weighted log-rank test (G-rho rank test, rho = 1) was used to 
test the significant difference between the high- and low-risk groups. The R package survcomp was used for the 
survival analysis.

Prognostic Performance Comparison of Multiparametric and Fixed-parameter Signatures. The prognostic per-
formance of the multiparametric signature was compared with 36 fixed-parameter signatures and 3 conventional 
prognostic factors such as age, Karnofsky Performance Score (KPS) and tumor volume. The association of each 
fixed-parameter signature and each conventional factor with OS were assessed on the training data set, and fur-
ther tested on the validation data by using Kaplan-Mier survival analysis. The prognostic performance compari-
sons were conducted on the validation data set.

Results
There was no significant difference in clinical and follow-up data between the training and validation data sets 
(P = 0.558 to 0.977).

Segmentation Results. The segmentation performance was reported by the BRATS online evaluation sys-
tem15 and summarized in Supplementary Table 2. One example of the segmentation results from our SYSUCC 
validation data set is shown in Fig. 1. Subregions were shown in red (necrosis), green (enhancing region), yellow 
(non-enhancing region) and blue (edema). All images were skull-stripped and registered using T1C as a template.

Effects of Image Standardization Parameters on Feature Reproducibility. Figure 2a shows 
the OCCCs of the first-order texture features, indicating the effect of voxel size on the reproducibility of the 
first-order features. The green line indicates OCCC = 0.85. The OCCC indices of 195 first-order features were 
greater than 0.85, demonstrating the high reproducibility of these features against varying voxel sizes.

Figure 2b shows the OCCC map for the high-order texture features. The effects of voxel size, quantization 
method and gray level on OCCCs (i.e. feature reproducibilities) were separately measured in part (a,b,c) in Fig. 2b. 

Figure 1. Segmentation results overlap on T1, T1C, T2 and FLAIR images.
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We can see no feature had high OCCC in all 33 tests (there is not a “red row” across all three parts (a,b,c)). It indi-
cated that no feature was highly reproducible against the three tested image standardization parameters. It can be 
observed that the high OCCC values were naturally clustered (red areas) along the horizontal axis. Specifically, 
there are many red rows across about 10 or more tests in parts (a,b,c). Therefore, the selected high-order feature 
with 10 or more OCCCs greater than 0.85 was more likely to be reproducible against one varying parameter with 
the other two parameters fixed.

Effects of Image Standardization Parameters on Feature Prognosis. Figure 3 are heat maps show-
ing the C-Indices for the selected first- and high-order features, respectively. The three columns in Fig. 3a indicate 
the C-Indices for all selected first-order features measured at voxel size = 1, 2, and 3 mm, respectively. Each col-
umn in Fig. 3b indicates C-Indices for all selected high-order features measured at one of 36 parameter settings. 
It was clear that the image standardization parameters had impact on the C-Indices.

Construction of the Multiparametric Radiomics Signature. 884 features (195 first-order features and 
689 high-order features) were selected as reproducible features, as summarized in Supplementary Table 3. From 
these features, the most prognostic 163 features were selected, including 12 first-order features and 151 high-order 
features. After correlation removal, 97 out 163 features remained for the multivariate model building 
(Supplementary Figure 2 shows the heat map for the spearman correlation coefficients of the 163 features). The 
optimal λ selection in LASSO Cox regression model for the multiparametric signature is shown in Supplementary 
Figure 3, where the Cox partial likelihood deviance was plotted versus log( )λ . At the optimal λ = .0 179, as shown 
at the dotted vertical line, the 10-fold cross validation error was minimum. The selected λ resulted in 4 features 
with nonzero regression coefficients. By linearly combining the four features weighted by their coefficients, the 
multiparametric radiomics signature can be constructed. The multiparametric radiomics score can be computed 
as

= − . ⋅ + . ⋅ + . ⋅ − . ⋅f f f fRad Score 0 6708511 0 6671869 0 5214041 0 1500439 , (1)1 2 3 4

where f f f f, , ,1 2 3 4 were the four selected features, as shown in Table 2 with their weights and image standardiza-
tion parameters. Here GLCM_IDMN was short for Inverse Difference Moment Normalized calculated based on 
Gray Level Co-occurrence Matrix. GLRLM_HGRE meant High Gray-level Run Emphasis calculated based on 
Gray Level Run Length Matrix. GLSZM_GLN represented Gray Level Non-uniformity based on Gray Level Size 
Zone Matrix. GLCM_IMC2 represented Informational Measure of Correlation based on Gray Level 
Co-occurrence Matrix. The univariate C-Indices were calculated based on validation data. Based on the 

Figure 2. (a) OCCCs of the first-order features. (b) OCCC heat map of high-order features, where OCCCs 
(z-score: −1 to 1) were clustered along y axis. The brighter the red (green) color, the higher (lower) the OCCC 
value. The OCCCs were calculated over different image standardization parameters. Part (a) OCCCs measured 
among three voxels sizes with fixed quantization method and gray level. Part (b) OCCCs measured among three 
quantization methods with fixed voxel size and gray level. Part (c) OCCCs measured among four gray levels 
with fixed voxel size and quantization method. VS, QM, GL, Uf, Eq and Ld are short for voxel size, quantization 
method, gray level, uniform, equal-probability, and Lloyd-Max, respectively.
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radiomics score of patients in the training data set, the optimal cutoff calculated by the X-tile plot was −19.57. 
Then, patients in both the training and validation data sets were stratified into low-risk (Rad Score_ 19 57< − . ) 
and high-risk ( ≥ − .Rad Score_ 19 57) groups.

Construction of the Fixed-parameter Radiomics Signatures. The selected features, their individual 
nonzero coefficients, image standardization parameters and corresponding optimal λ in the LASSO models of the 
36 fixed-parameter radiomics signature are listed in Supplementary Table 4. The formulas for calculating the 
radiomics score can then be known by linearly combining the features weighed by their coefficients. The optimal 
cutoff points calculated by using the X-tile plot are also listed in Supplementary Table 4. The number of nonzero 
features varied from 1 to 7 among the 36 signatures. The type of nonzero features also varied greatly across these 
signatures.

Validation of the Multiparametric Radiomics Signature. The C-Index of the multiparametric signa-
ture achieved 0.726 (95% confidence intervals [CI]: 0.698, 0.754) for the training data, and 0.705 (95% CI: 0.672, 
0.738) for the independent validation data. It demonstrated the prognostic performance of the model. The asso-
ciation of the multiparametric signature with OS was significant in the training data set (P < 0.001, hazard ratio 
[HR] = 3.063, 95% CI: 1.643, 5.721). The significant association was confirmed in the validation data set 

Figure 3. (a) C-Index heat map of reproducible first-order texture features. (b) C-Index heat map of 
reproducible high-order texture features. C-Indices (z-score: −1 to 1) were clustered along both x and y axes. 
The brighter the red (green) color, the higher (lower) the C-Index.

No. Feature Weight Extraction Parameters C-Index on Validation Data

f1 T1_wholetumor_GLCM_IDMN −0.67085113 VS = 1, QM = Ld, GL = 128 0.397

f2 T1C_solidecore_GLRLM_HGRE 0.66718691 VS = 1, QM = Ld, GL = 32 0.582

f3 T1_wholetumor_GLSZM_GLN 0.52140412 VS = 1, QM = Eq, GL = 32 0.605

f4 T1C_nonenhancing_GLCM_IMC2 -0.15004393 VS = 1, QM = Eq, GL = 64 0.401

Table 2. The image features selected by LASSO Cox model for construction of multiparametric radiomics 
signature. The features were ranked by their contribution to the signature. The feature was named as 
modality_region_matrix_title, where title can be found in Supplementary Table 1. Note that there were two 
different calculations for GLCM_IMC, which can be found in4. Here GLCM_IMC2 indicated the second 
calculation listed in4.
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(P = 0.004, HR = 3.292, 95% CI: 1.401, 7.702), as shown in Fig. 4. The log-rank test revealed the significant differ-
ence in OS distributions of the low- and high-risk groups.

Prognostic Performance Comparison. The prognostic performance for the 36 fixed-parameter signa-
tures are listed in Supplementary Table 5. The Kaplan-Meier curves for OS in the validation data set using the 36 
fixed-parameter radiomics signatures were shown in Supplementary Figure 4. The patients were stratified by the 
cutoff point of each fixed-parameter signature. 12 fixed-parameter signatures succeeded to stratify the patients 
in the validation data set into high-risk and low-risk groups, while the others failed. The prognostic value of the 
multiparametric radiomics signature and conventional factors in the validation data is shown in Table 3. The 
multiparametric signature outperformed all the fixed-parameter signatures and all the conventional factors.

Discussion
This study presented a fully-automatic multiparametric radiomics model for preoperative prediction of OS in 
GBM patients. This study had several unique features and interesting findings as follows.

First, this study offered a fully-automatic way to build a multiparametric imaging signature for OS prediction, 
where the most reproducible and prognostic features and their corresponding image standardization parameters 
can be determined automatically. In fully-automatically models, the effect of image standardization parame-
ters such as voxel size, quantization method and gray level on reproducibility and prognostic performance are 
still unclear. Most radiomics models extracted feature at fixed image standardization parameters5–9, which may 
not be optimal. Different from most existing radiomics models, the presented model allowed for extraction of 
high-throughput features with different parameter settings, and further selected the most reproducible and prog-
nostic features for signature construction. This may offer potential to improve the model reproducibility and 
prognostic power.

Second, it was demonstrated that voxel size, intensity quantization method and gray level had significant 
influence on the reproducibility of imaging features (Fig. 2). It was also found that no texture feature was stable 
over all tested parameter settings. The reproducibility relied on parameter settings. This was partially similar 
with the effect of the reconstruction parameters on the PET imaging feature reproducibility14. However, they 
only investigated a relatively small number of features. In our results, part of GLRLM-based texture features were 
more reproducible against varying voxel sizes, but less reproducible against different quantization methods and 
gray levels. In contrast, most GLRLM LGRE, GLRLM LRLGE and GLRLM SRLGE-based texture features (Find 

Figure 4. Kaplan-Meier survival curves for patients in the training data set (a) and the independent validation 
data set (b). The patient cohorts were stratified into low- and high-risk groups according to the radiomics score. 
The significant association of the radiomics signature with overall survival was confirmed in both data sets. The 
numbers of patients at risk for each time step are shown in the bottom.

Factors C-Index P Value Hazard Ratio

Multiparametric 
Radiomics Signature 0.705 0.004 3.292 (1.401, 7.702)

Age 0.595 0.350 1.664 (0.814, 4.261)

KPS 0.605 0.220 2.090 (1.082, 8.232)

Tumor Volume 0.603 0.235 1.851 (1.013, 9.633)

Table 3. Prognostic value comparison of the proposed multiparametric radiomics signature and conventional 
factors on the validation data. The data in parentheses are 95% confidence intervals.
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the abbreviations of the image features in Supplementary Table 1) were more robust against varying quantiza-
tion methods and gray levels, but less robust over varying voxel sizes. Most GLCM-based texture features were 
stable over different quantization methods, but had low repeatability at varying voxel sizes and gray levels. We 
also observed that a number of NGTDM-based texture features achieved high reproducibility at gray level of 128 
(three short red vertical lines in Fig. 3), but had relatively low reproducibility at other parameter settings. It was 
clear that one feature may be highly reproducible under certain parameter settings, but acted differently under 
other parameter settings. This highlighted the need to extract features at their own optimal parameter settings 
rather than at fixed parameters.

Third, the image standardization parameters also had significant influence on the prognostic performance 
of the extracted features. Different from the CT reconstruction parameters12, we observed that the influence of 
image standardization parameters on feature prognosis did not exhibit regular patterns. We also observed that 
no feature was highly prognostic in all parameter settings, and no parameter setting was optimal for all features. 
Therefore, our findings suggest that in radiomics study it is better to extract image features at multiple image 
standardization parameter settings according to their reproducibility and prognostic performance.

Fourth, a multiparametric radiomics signature was constructed and succeeded to stratify GBM patients into 
high- and low-risk groups with significant differences in OS. It outperformed all 36 fixed-parameter signatures 
in terms of prognostic performance. We believe the reason was that the features used for building the multipar-
ametric signature were more informative than the traditional fixed-parameter features. On the other hand, 12 
out of 36 fixed-parameter signatures also succeeded to stratify the patients into high- and low-risk groups. The 
best fixed-parameter signature was the 11th one built at voxel size = 1mm and gray level = 128 with uniform 
quantization. Its C-Index on validation data set was 0.701 (P = 0.008, HR = 4.297, 95% CI: 1.879, 9.830), which 
was slightly lower than the multiparametric signature. Although the performance of the best fixed-parameter 
signature may approximate the multiparametric signature, it could be a heavy and tedious task to find out the best 
fixed-parameter signature among a number of candidates. The proposed method to obtain the multiparametric 
signature was more straightforward.

Fifth, the identified multiparametric signature comprised 4 image features shown in Table 2. Interestingly, 
they were all high-order texture features, extracted with different image standardization parameters combinations 
from the whole tumor in T1 images, and from the tumor core and non-enhancing area in T1C images. We believe 
it was because high-order texture features reflected more nonrandom patterns (more reproducible) and captured 
more imaging heterogeneity (more prognostic) compared with first-order features. Specifically, f1 measured the 
textural smoothness of the whole tumor area; f2 characterized the distribution of gray levels of runs in the solid 
tumor core; f3 described the texture homogeneity of the whole tumor area; f4 quantified the informational corre-
lation of voxel pairs in the non-enhancing area. This result was similar to several previous studies in5,9. However, 
the selected 4 features were different from the results in previous work8,9. One reason was that previous studies did 
not use multiple image standardization parameters. Note that the feature f4 from non-enhancing area was finally 
selected, indicating its better univariate prognostic value. Similarly, the study in24 demonstrated that morphologic 
imaging features and hemodynamic parameters obtained from the non-enhancing area correlated with patient 
survival. Our finding implied that the non-enhancing area could provide useful prognostic information. One 
possible reason was that the texture of non-enhancing area may reflect the aggressiveness and invasiveness of the 
tumor. From the radiomics hypothesis, imaging heterogeneity could be the expression of genetic heterogeneity 
which could indicate poorer prognosis10. The interpretation of association between radiomics features and genetic 
characteristics is still challenging, which is related to complex underlying biological processes25. To address this 
radiogenomics studies are required in future.

Sixth, in addition to assess the univariate reproducibility and prognostic power of individual feature, the 
impact of different voxel sizes, quantization methods and gray levels on the prognostic performance of radiomics 
signatures was also investigated in detail, which has never been studied. The results in Supplementary Table 5 
and Supplementary Figure 4 indicated that fixed-parameter signatures based on voxel size of 1mm were found to 
perform better than those built at larger voxels. For the multiparametric signature, all 4 non-zero features were 
also built at voxel size of 1mm. This finding was similar with previous radiomics studies based on CT images12. 
One possible reason was that larger voxel size could affect the spatial distributions of the intensities, thusly reduce 
the value of high-order texture features extracted.

This study still had several limitations. First, this was a retrospective study with relatively small patient cohort, 
although independent validation cohort was used. The bias was controlled and patients with loss of follow-up 
were excluded. In future, large-scale multicenter study is required. Second, the association between imaging fea-
tures and underlying genetic characteristics was not assessed. In future, our radiogenomics study will involve sev-
eral well-studied genomic signatures for GBM, such as the O6-methylguanine-DNA methyltransferase (MGMT) 
methylation status and the isocitrate dehydrogenase (IDH) 1/2 mutations.

In conclusion, this paper presented a radiomics model that offered a fully-automatic workflow to generate 
reproducible and prognostic multiparametric imaging signature. The proposed multiparametric signature pre-
dicted OS in GBM patients with better performance compared with the fixed-parameter radiomics signatures and 
conventional prognostic factors. Despite the limitations, the proposed method had the potential to facilitate the 
preoperative patient care and made a step forward radiomics-based precision medicine of GBM patients.

References
 1. Dolecek, T. A., Propp, J. M., Stroup, N. E. & Kruchko, C. Cbtrus statistical report: primary brain and central nervous system tumors 

diagnosed in the united states in 2005–2009. Neuro-oncology 14(suppl 5), v1–v49 (2012).
 2. Reardon, D. A. & Wen, P. Y. Glioma in 2014 unravelling tumour heterogeneity-implications for therapy. Nat. Rev. Clin. Oncol. 12, 

69–70 (2015).
 3. Gillies, R. J., Kinahan, P. E. & Hricak, H. Radiomics: images are more than pictures, they are data. Radiol. 278(2), 563–577 (2015).

http://1
http://5
http://4


www.nature.com/scientificreports/

9SCIENTIfIC REPORTS | 7: 14331  | DOI:10.1038/s41598-017-14753-7

 4. Aerts, H. J. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. communications 
5 (2014).

 5. Huang, Y.-q et al. Radiomics signature: A potential biomarker for the prediction of disease-free survival in early-stage (i or ii) non—
small cell lung cancer. Radiol. 281, 947–957 (2016).

 6. Huang, Y.-q et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in 
colorectal cancer. J. Clin. Oncol. 34, 2157–2164 (2016).

 7. Nie, K. et al. Rectal cancer: Assessment of neoadjuvant chemoradiation outcome based on radiomics of multiparametric mri. Clin. 
Cancer Res. 22, 5256–5264, https://doi.org/10.1158/1078-0432.CCR-15-2997 (2016).

 8. Kickingereder, P. et al. Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-
angiogenic treatment response. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-16-0702 (2016)

 9. Kickingereder, P. et al. Radiomic profiling of glioblastoma: Identifying an imaging predictor of patient survival with improved 
performance over established clinical and radiologic risk models. Radio. 280, 880 (2016).

 10. Kickingereder, P. et al. Radiogenomics of glioblastoma: Machine learning–based classification of molecular characteristics by using 
multiparametric and multiregional mr imaging features. Radiology 281, 907–918 (2016).

 11. Zhao, B. et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci. reports 6 (2016).
 12. He, L. et al. Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance 

of radiomics signature in solitary pulmonary nodule. Sci. Reports 6 (2016).
 13. Vallières, M., Freeman, C., Skamene, S. & El Naqa, I. A radiomics model from joint fdg-pet and mri texture features for the 

prediction of lung metastases in soft-tissue sarcomas of the extremities. Phy. medicine biology 60, 5471 (2015).
 14. Lu, L. et al. Robustness of radiomic features in 11c choline and 18 f fdg pet/ct imaging of nasopharyngeal carcinoma: impact of 

segmentation and discretization. Mol. Imaging Biol. 18, 935–945 (2016).
 15. Menze, B. H. et al. The multimodal brain tumor image segmentation benchmark (brats). IEEE transactions on medical imaging 34, 

1993–2024 (2015).
 16. Tustison, N. J. et al. N4itk: improved n3 bias correction. IEEE transactions on medical imaging 29, 1310–1320 (2010).
 17. Ibanez, L., Schroeder, W., Ng, L. & Cates, J. The itk software guide (2005).
 18. Han, J., Pei, J. & Kamber, M. Data mining: concepts and techniques (Elsevier, 2011).
 19. Camp, R. L., Dolled-Filhart, M. & Rimm, D. L. X-tile: A new bio-informatics tool for biomarker assessment and outcome-based 

cutpoint optimization. Clin. cancer research 10, 7252–7259 (2004).
 20. Barnhart, H. X., Haber, M. & Song, J. Overall concordance correlation coefficient for evaluating agreement among multiple 

observers. Biom. 58, 1020–1027 (2002).
 21. Pencina, M. J. & D’Agostino, R. B. Overall c as a measure of discrimination in survival analysis: model specific population value and 

confidence interval estimation. Stat. medicine 23, 2109–2123 (2004).
 22. Harrell, F. Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis 

(Springer, 2015).
 23. Tibshirani, R. et al. The lasso method for variable selection in the cox model. Stat. medicine 16, 385–395 (1997).
 24. Jain, R. et al. Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: Focus on the 

nonenhancing component of the tumor. Radiol. 272, 484–493 (2014).
 25. Gatenby, R. A., Grove, O. & Gillies, R. J. Quantitative imaging in cancer evolution and ecology. Radiol. 269, 8–14 (2013).

Acknowledgements
The authors would like to thank the National Natural Science Foundation of China (No. 61571432), National 
High-Tech R&D Program of China for Young Scientist (863 program, No. 2015AA020933), and National Basic 
Research Program of China (973 Program, No. 2015CB755500).

Author Contributions
Z.-C.L. and Q.L. conceived the computational part, H.B., Y.C., G.W. and C.L. conceived the clinical part. Z.-C.L. 
supervised the research. Q.L. programmed the entire workflow. Q.L., Q.S and L.L. performed the data processing 
and analysis. Y.C., J.Z. and C.L. collected the clinical data. Q.L and Z.-C.L. wrote the manuscript. All authors 
reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-14753-7.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1158/1078-0432.CCR-15-2997
http://dx.doi.org/10.1158/1078-0432.CCR-16-0702
http://dx.doi.org/10.1038/s41598-017-14753-7
http://creativecommons.org/licenses/by/4.0/

	A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of  ...
	Methods
	Patients. 
	MR Imaging. 
	Image Preprocessing and Automatic Segmentation. 
	High-throughput Radiomics Features Extraction. 
	Statistical Analysis. 
	Clinical Characteristics and survival. 
	Reproducibility of Radiomics Features. 
	Prognostic Performance of Radiomics Features. 
	Feature Selection and Multiparametric Radiomics Signature Construction. 
	Fixed-parameter Radiomics Signatures Construction. 
	Validation of the Multiparametric Radiomics Signature. 
	Prognostic Performance Comparison of Multiparametric and Fixed-parameter Signatures. 


	Results
	Segmentation Results. 
	Effects of Image Standardization Parameters on Feature Reproducibility. 
	Effects of Image Standardization Parameters on Feature Prognosis. 
	Construction of the Multiparametric Radiomics Signature. 
	Construction of the Fixed-parameter Radiomics Signatures. 
	Validation of the Multiparametric Radiomics Signature. 
	Prognostic Performance Comparison. 

	Discussion
	Acknowledgements
	Figure 1 Segmentation results overlap on T1, T1C, T2 and FLAIR images.
	Figure 2 (a) OCCCs of the first-order features.
	Figure 3 (a) C-Index heat map of reproducible first-order texture features.
	Figure 4 Kaplan-Meier survival curves for patients in the training data set (a) and the independent validation data set (b).
	Table 1 Demographic and Clinical Characteristics of Patients in the Training and Validation Data Set.
	Table 2 The image features selected by LASSO Cox model for construction of multiparametric radiomics signature.
	Table 3 Prognostic value comparison of the proposed multiparametric radiomics signature and conventional factors on the validation data.




