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Nonreciprocal light propagation 
in coupled microcavities system 
beyond weak-excitation 
approximation
Anshou Zheng1, Guangyong Zhang1, Hongyun Chen1, Tingting Mei1 & Jibing Liu2

We propose a scheme for nonreciprocal light propagation in two coupled cavities system, in which a 
two-level quantum emitter is coupled to one of the optical microcavities. For the case of parity-time 
(PT ) symmetric system (i.e., coupled active-passive cavities system), the cavity gain can significantly 
enhance the optical nonlinearity induced by the interaction between a quantum emitter and cavity field 
beyond weak-excitation approximation. The increased optical nonlinearity results in the non-lossy 
nonreciprocal light propagation with high isolation ratio in proper parameters range. In addition, our 
calculations show that nonreciprocal light propagation will not be affected by the unstable output field 
intensity caused by optical bistability, and we can even switch directions of nonreciprocal light 
propagation by appropriately adjusting the system parameters.

Achieving rapid development in integrated photonic circuits depends on the all-optical elements, which are 
essential for high-speed processing of light signals. Nonreciprocal light propagation is an indispensable com-
mon trait for some optical elements, such as optical diodes, optical isolator, circulator, etc. For example, optical 
diode permits the light transport in only one direction but not the opposite direction. The successful design of 
nonreciprocal light propagation devices relies on the breaking of time-reversal symmetry. Thus, nonreciprocal 
light propagation is inherently difficult, even in theory because of time-reversal symmetry of light-matter inter-
action1. Motivated by the tremendous application of nonreciprocal electrical current propagation, an immense 
attention has been paid to the study of nonreciprocal light propagation. As a traditional method, a material with 
strong magneto-optical effects (faraday rotation) is often used to break time-reversal symmetry for some optical 
devices2–4. However, unfortunately the requirement of the magneto-optical effect is the big size components and 
strong external magnetic fields, which are harmful for the on-chip optical nonreciprocal devices. Beyond that, 
one can also break time-reversal symmetry and design the nonreciprocal optical devices by time-dependent 
effects5,6, unbalanced quantum coupling7–10 or optical nonlinearity11–17. The ubiquitous optical nonlinearity in dif-
ferent optical systems has been extensively studied and further adopted in design of nonreciprocal light propaga-
tion devices. For example, many schemes have been reported through the nonlinearity of the waveguides, such as 
the second order nonlinearity χ(2)11–14, dispersion-engineered chalcogenide15, Raman amplification16 and so on.

On the other hand, due to the high-quality factor Q and small mode volume V of optical microcavities18–21, it 
has attracted considerable interest for implementing nonreciprocal light propagation devices22–31. For instance, 
Fan et al. achieved the experiment of nonreciprocal light propagation with the Kerr and thermal nonlinearity in 
silicon microring resonators22. Based on the nonlinearity of an optomechanical system, some schemes of nonre-
ciprocal behaviour have also been reported26–29. The strong nonlinearity required for nonreciprocal light propa-
gation is not easy to obtain, especially for few-photon situations. Recently, some works show that the nonlinearity 
in coupled resonators can be greatly enhanced by introducing optical gain in one resonator of the PT -symmetric 
system23–25,32,33. And an immense attention has been attracted to PT -symmetric system which has an interesting 
feature that non-Hermitian Hamiltonian can still have an entirely real spectrum34,35. In addition, two coupled 
resonators can be processed as a PT -symmetric system24,25,36–39. More recently, a few schemes of nonreciprocal 
light propagation have been proposed with PT -symmetric coupled resonators system23–25. For example, based on 
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the inherent nonlinearity (i.e., gain-induced nonlinearity) of the PT -symmetric system, successful experiments 
have been carried out for nonreciprocal light propagation with two coupled whispering-gallery-mode (WGM) 
microresonators24,25. Note that through mechanical Kerr nonlinearity, a theory scheme is also proposed for non-
reciprocal phonon propagation with coupled mechanical resonators23. The weak mechanical Kerr nonlinearity is 
greatly improved by the gain in one mechanical resonator of the PT -symmetry.

Based on two-level quantum emitters coupled to waveguides or microcavities, asymmetric light transmission 
has been experimentally observed40–43. In these schemes, the breaking of the time-reversal symmetry relies on 
the chiral (direction dependent) light-matter interaction. For example, in40, the input photons from the opposite 
directions are in completely different polarized states. The polarized photons are coupled to the spin-polarized 
atom in microcavity with entirely different coupling strengths. Its chiral coupling leads to nonreciprocal behav-
iour. Different from these schemes, we explore the optical nonreciprocal behaviour in a system of two coupled 
cavities and a single quantum emitter coupled to one of the cavities. Our scheme is based on the optical non-
linearity breaking time-reversal symmetry and the optical nonlinearity is induced by a single quantum emitter 
coupled to a microcavity beyond weak-excitation approximation. We first consider the passive-passive case (i.e., 
without cavity gain, two cavities are directly coupled to each other and a quantum emitter is coupled to the first 
cavity). Without the cavity gain, however, the nonlinearity of the system is weak. After replacing the first cavity 
with a gain cavity, the system becomes the active-passive case. The nonlinearity, which is enhanced by the cav-
ity gain, leads to the remarkable nonreciprocal effect. The scheme reported here has some important features. 
(i) The optical nonlinearity of the hybrid system is greatly enhanced by the cavity gain. (ii) Through adjusting 
parameters, one can switch between the blocking and allowing directions. For the active-passive case, one can all 
obtain the non-lossy transmission with high isolation ratio in allowing directions. (iii) Optical bistability or even 
optical multistability behaviour is often induced by optical nonlinearity, and it will lead to the instability of the 
output field. When the disturbance and perturbation of the system parameters are strong enough, the output field 
intensity will skip back and forth between the different metastable values of the optical bistability. However, via 
choosing proper parameters range, one can avoid the interference from the instability of output field intensity and 
obtain certain output intensity even for the strong disturbance of parameters.

Results
Theoretical model.  We consider the setup as shown in Fig. 1, where two single-mode optical microcavities 
of frequencies ω1(2) are directly coupled to each other with strength J. The coupling strength J is very sensitive to 
the distance between the two cavities. The optical cavities are denoted by bosonic annihilation and creation oper-
ators âj and =ˆ†a j( 1, 2)j , respectively. A two-level quantum emitter with transition frequency ωe is embedded in 
the first (j = 1) cavity, and the cavity mode ˆ ˆ †a a( )1 1  is coupled to the quantum emitter transition |e〉 ⇔ |g〉 with the 
coupling strength g. We take the input probe field as ε= ω−S ein p

i tp , where ωp and εp is the carrier frequency and 
the amplitude of the probe field propagating in the waveguide. The amplitude of the input probe field εp is nor-
malized to a photon flux at the input of the cavity and the directly related power is ω ε=P p p

2 . Under the rotat-
ing-wave and the electric-dipole approximation, the effective Hamiltonian of the hybrid optical system is written 
in the rotating frame at the frequency of the probe field ωp as44,45
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where the Hamiltonian Ĥe
R
 and Ĥe

L
 stand for the cases of forward and backward incidence, respectively. The sym-

bol σ σˆ ˆ( )ge eg  stands for the emitter descending (ascending) Pauli operator and σ̂ee is the population operator. We 

Figure 1.  Schematic diagram of the hybrid optical system. The hybrid optical system consists of two coupled 
cavities and a two-level quantum emitter coupled to one of them.
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assume the two cavities have the same resonant frequencies ω1 = ω2 = ωc. Δ1 = ωc − ωp (Δ2 = ωe − ωc) is the fre-
quency detuning of the cavity field frequency from the probe field frequency (the quantum emitter transition 
frequency). The coupling parameter κe describes the coupling loss rate between each cavity and the correspond-
ing taper waveguide. The different directions of the input beam will lead to an entirely different evolution of the 
optical system. The phenomenon of direction-dependent evolution of the optical system can be displayed in the 
output field, which can be obtained through the following input-output relation46,47

κ=S a , (3)out
R

e
R
2

κ= .S a (4)out
L

e
L

1

Non-reciprocal light propagation.  In the scheme, the strong nonlinearity of the system plays a significant 
role in enhancing the ability of nonreciprocity light propagation. And it is induced by the interaction between an 
optical cavity and an quantum emitter. In Eqs (7–14), which describe the evolution of the hybrid optical system, 
we focus on the nonlinear terms σ⁎ga ge1 , σ⁎ga ge1  and −2ga1σz. With the weak-excitation approximation, these non-
linear terms are always discarded and the optical system will evolve in linear regime. In our scheme, the nonlinear 
terms are essential and lead to the optical bistable state, as shown in48. Then with the parameters in the bistable 
region, the considered optical system may have two different metastable output values. Once the disturbance and 
perturbation of the system parameters become strong, the output field will switch between the different metastale 
values. The uncertainty of the output field is detrimental to nonreciprocal light propagation.

Based on the above analysis, we explore the relationship between the output and input intensity for the for-
ward and backward propagation cases. The transmission coefficients are defined as

=T S
S

,
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and the isolation ratio is
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which quantifies the isolation performance of the system. Figure 2(a,b) correspond to the passive-passive case 
and active-passive case, respectively. In the color-code region of Fig. 2(a), the maximum isolation ratio is approx-
imately 14 dB. However, in the color-code region (A) of Fig. 2(a), both the forward and backward propagation 
have only one stable output value. Thus, by choosing the system parameters in the color-code region (A) of 
Fig. 2(a), we can overcome the shortcoming of the uncertain output field intensity and also obtain the high isola-
tion ratio. The physical mechanism underlying the nonreciprocal light transport is rooted in the cavity-quantum 
emitter interaction inducing nonlinearity, which significantly increases the field intensity of the first cavity. The 
asymmetrical coupling breaks time-reversal symmetry, which makes the nonreciprocal light transport feasible, 

Figure 2.  The dependence of the output field on the input field for two cases. The output field a R
2

2
 (red solid 

line) and a L
1

2
 (blue dashed line) vary under the input field ε κ/p

2
2 with (a) γ = 0.15 κ2, g = 2κ2, Δ1 = Δ2 = 0, 

κ1 = κ2, κe = 3κ2, and J = 2.5κ2 for the passive-passive case; (b) γ = 0.17κ2, g = 2κ2, Δ1 = Δ2 = 0, κ1 = −7.4κ2, 
κe = 3.2κ2, and J = 3.8κ2 for the unbroken PT  phase (i.e., the active-passive case).
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i.e., the light transport from the cavity 2 to the cavity 1 is allowed and the light transport of the opposite direction 
is blocked. For the passive-passive case, due to the decay rate of the cavities and emitter, the low transmissivity 
(i.e.,weak output field intensity, about 30% of the input field intensity) is another obstacle to realize the nonrecip-
rocal light transport.

In order to enhance the transmissivity, we choose the active-passive case as shown in Fig. 2(b). The gain of the 
first cavity greatly improves the nonlinearity and promotes the field localization in the first cavity. It allows the 
light propagation from the passive cavity to the active cavity and prevents the propagation in the opposite direc-
tion24,25. The gain-loss balance of the PT -symmetric system makes the non-lossy unidirectional light transport 
achievable. As shown in all the color-code areas of Fig. 2(b), we can obtain the nonreciprocal light transport with 
over 99% high transmissivity and about 17 dB isolation ratio. Compared with the color-code areas (A) and (C) of 
Fig. 2(b), the area (B) is more suitable for the unidirectional light transport without the disturbance of the uncer-
tain output field intensity.

With respect to the PT -symmetric system, we analyze the effect of varying the parameters on the unidirec-
tional light transport in detail. When g is close to zero, the linear system allows the non-lossy light propagation in 
both directions with the help of gain of the first cavity, but the isolation ratio declines sharply. With the growing 
coupling strength g, the nonlinearity of the system increases and is greatly enhanced by the gain of the first cavity. 
The large nonlinearity in the first cavity (i.e., the active cavity) promotes the field localization in the active cavity 
and breaks time-reversal symmetry of the considered optical system. As a result, the non-lossy light propagation 
in the backward direction is almost unaffected and the opposite direction propagation is blocked completely. As 
shown in Fig. 3(b), when g approaches 2κ2, the isolation ratio is about 17 dB. Figure 3(c,d) show the influence of 
J on the unidirectional light propagation. The cavity-cavity coupling J and the cavity-quantum emitter coupling g 
compete for the input field of the system. When the cavity-quantum emitter coupling J is in the commanding 
position, the nonlinearity of system decreases sharply. Thus, the light transmissivity in the backward direction 
reduces with the decreasing of cavity-cavity coupling, and the isolation ratio goes down as well. From Fig. 3(e,f), 
we can see that the effect of the change of the input field intensity on the unidirectional light propagation can be 
neglected. In addition, the frequency detunings have a different influence from the cavity-cavity coupling on the 
present scheme. As the frequency detuning increases, the nonlinearity of the system decreases. Figure 4 shows the 
concrete effect of the frequency detunings on the unidirectional light propagation.

The large nonlinearity is essential to the present scheme. The nonlinearity leads to the field localization in the 
nonlinear cavity. Thus, the forward direction is forbidden and the other direction is allowed. For the 
passive-passive case, the transmissivity of the input field is low although one can get the high Isolation Ratio for 
the weak nonlinearity. For the active-passive case, however, the enhanced nonlinearity greatly improves the trans-
mittance and increases the Isolation Ratio at the same time. The above analysis shows that some parameters are 
critical to our scheme. For instance, the nonlinearity increases with the coupling strength g, whereas decreases 
with the frequency detuning. The cavity-cavity coupling J is another key parameter of the system, which has an 
important effect on the system nonlinearity. The system is in unbroken PT -symmetric phase and the field local-
ization effect is permitted to continue when J is big enough. Once the system is at phase transition point or the 
broken phase transition as the coupling J decreases, the flow of the power is suppressed from the passive cavity 
into the active cavity. The effect of field localization will gradually disappear and the optical system will be in the 
(A) region of Fig. 2(b).

Figure 3.  The dependence of nonreciprocal behaviour on some parameters. For the resonant case, the 
transmission coefficient TR (red solid line) and TL (blue dashed line), and the isolation ratio (red dashed line) 
varies under the different values of (a,b) the cavity-quantum emitter coupling strength g/κ2 with J = 3.8κ2, and 
ε κ= .0 3573p 2 ; (c,d) the cavity-cavity coupling strength J/κ2 with ε κ= .0 3573p 2 , and g = 2κ2; (e,f) The 
input field ε κ/p

2
2 with g = 2κ2, and J = 3.8κ2. The other system parameters are chosen as γ = 0.17κ2, κ1 = −7.4κ2, 

and κe = 3.2κ2, respectively.
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Direction-exchange.  We describe an interesting feature of the optical system, i.e., the allowed direction of 
the unidirectional light propagation can be reversed by adjusting the system parameters. On the above analysis, 
the light propagation in backward direction is allowed and the opposite direction is blocked. If only the second 
cavity is pumped as a gain cavity, the allowed direction of the optical nonreciprocity will exchange with the 
blocked direction. The optical nonlinearity is transferred to the cavity with gain. As shown in Fig. 5, one can 
obtain the nonreciprocity with over 20 dB isolation ratio. The similar situations have been considered with dif-
ferent nonlinearities in coupled double-cavity system, including gain-saturation nonlinearity24,25 and mechanical 
nonlinearity23. In these situations, the nonlinearity is transferred from the passive cavity to the one with gain and 
the transferred nonlinearity leads to the field localization in the gain cavity. Compared with the above model, 
the transmissivity is relatively low even with the smaller decay rate γ = 0.1κ1 because of the transferred process.

Discussion
In light of the recent experiment24, our scheme is proposed for optical nonreciprocity with Jaynes-Cummings 
model in coupled double-cavity system in unbroken PT -symmetric phase. However, in24 the nonreciprocal 
transmission is based on the gain-saturation nonlinearity in broken PT -symmetric phase. In this case, the weak 
coupling between the cavities ensures the exponential growth of power in the gain cavity. When the coupling 
increases and the optical system enters into the unbroken PT -symmetric phase, the power will flow fast into the 
passive cavity and the system becomes linear. A linear system, even with balanced gain and loss, cannot have 

Figure 4.  The dependence of nonreciprocal behaviour on frequency detunings. For the off-resonant case, the 
transmission coefficients (a) TL and (b) TR, and (c) isolation ratio vary with frequency detunings Δ1/κ2 and Δ2/κ2. 
The other system parameters are chosen as γ = 0.17κ2, κ1 = −7.4κ2, κe = 3.2κ2, J = 0.8κ2, ε κ= .0 3573p 2 , and 
g = 2κ2, respectively.

Figure 5.  The dependence of the output field on the input field for exchange-directions. a L
1

2
 (blue dashed line) 

and a R
2

2
 (red solid line) vary with the input field ε κ/p

2
2 for the resonant case. The parameters are γ = 0.1κ1, 

g = 2κ1, κ2 = −9κ1, κe = 4κ1, and J = 1.25κ1.
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nonreciprocal response24. For our scheme (Fig. 2(b)), the nonreciprocal behaviour can be observed in unbroken 
PT -symmetric phase for Jaynes-Cummings nonlinearity. When the system is in the broken phase or phase tran-
sition point, the decreased coupling J prevents the flow of power from the passive cavity to the active cavity. The 
effect of the localization of the field will be reduced considerably and nonreciprocal response will disappear. 
Similar to24, our system is also suitable for optical nonreciprocity with Fig. 5 in broken PT -symmetry. When the 
system is unbroken PT -symmetric, the strong coupling J will lead to the fast flow of power from the active cavity 
to the passive cavity. Thus, the effect of field localization will decrease rapidly and nonreciprocal behaviour will 
fade out.

In summary, we have analyzed the nonreciprocal behaviour with the cavity-cavity coupling hybrid system. The 
weak Jaynes-Cummings nonlinearity is greatly enhanced by the cavity gain in the active-passive case (i.e., PT
-symmetric system). With balanced gain and loss, we obtain the non-lossy and high isolation ratio nonreciprocal 
light propagation in the unbroken PT  phase. In contrast to other nonlinear schemes23–25, we eliminate the risk of 
the uncertain output field intensity from optical bistability. In addition, the direction of the nonreciprocal light 
propagation can be switched by changing the cavity gain and other system parameters. Our work provides a 
promising route for the realization of the optical nonreciprocity and has potential applications in implementing 
some essential optical elements like optical diodes and isolator.

Methods
Based on the Hamiltonians [Eqs (1) and (2)], the Heisenberg-Langevin equations, which describe the evolution 
of the optical composite system, can be obtained. We focus on the the mean response of the optical system, then 
the operators are reduced to their expectation values, and the Heisenberg-Langevin equations lead to two groups 
of nonlinear evolution equations. In this work, our goal is to consider the effect of different directions (i.e., for-
ward and backward incidence) of the input field on the output field. With the use of the mean-field assumption 

=ˆ ˆ ˆ ˆmn m n 49, two groups of nonlinear evolution equations of the hybrid system with the forward and back-
ward incidence are given by
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for the forward incidence. In the above equations, x1 = −(iΔ1 + κ1/2 + κe/2), x2 = −(iΔ1 + κ2/2 + κe/2), and 
x3 = −i(Δ1 + Δ2) − γ/2 with γ the spontaneous emission decay rate and κj the cavity intrinsic decay rate. 
σ σ σ= −ˆ ˆ ˆ( )/2z ee gg  denotes the population inversion operator and σ σ= ˆz z . κj > 0 and κj < 0 (j = 1, 2) correspond 
to a passive cavity and an active cavity, respectively. The gain cavity can be fabricated with erbium-doped silica 
film on a silicon wafer. The optical gain is obtained through pumping the erbium ions with a pump laser, whose 
resonant frequency is different from cavity resonant frequency24,25. Thus, the cavity field is only coupled to our 
emitter rather than the erbium ions because of the large frequency detuning.

To end this part, it is instructive to briefly analyze the principal mechanism behind PT - symmetry in our 
studied system. The Hamiltonian of the coupled active-passive double cavities system can be given by

  ω κ κ ω κ κ= − + + − + + +ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †H i a a i a a J a a a a[ ( )] [ ( )] ( ), (15)c e c e1 1 1 2 2 2 2 1 1 2
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As a subsystem of our system, the coupled double cavities have two supermodes and the corresponding eigen 
frequencies are

ω ω κ κ κ
κ κ

= − + + ± −
−

±
i J
4

( 2 ) 1
2

4 ( )
4 (16)c e1 2

2 1 2
2

with ω1 = ω2 = ωc. To balance gain and loss, we set κ1 = −(κ2 + 2κe). When κ κ> +J ( )e
1
2 2 , the system is in the 

PT -symmetric regime, and the supermodes are nondegenerate. The imaginary parts of ω± disappear and one can 

get the real PT  spectra ω ω= ± − κ κ
±

−J4c
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2
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4
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2

. In this case, the real energy spectrums with a zero linew-

idth are displaced at ± − κ κ−J41
2
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2

 away from the central frequency ωc. When J decreases to κ κ+( )e
1
2 2 , the 

two supermodes becomes degenerate and combine into the central frequency ωc. κ κ= +J ( )e
1
2 2  is actually the 

PT -transition point, i.e., exceptional point. The eigen frequencies will become complex and the PT  -symmetric 
phase is broken once κ κ< +J ( )e

1
2 2 . In the broken PT -symmetric regime, one supermode is amplified and the 

other gradually vanishes because of the absorption. It has been confirmed that the PT  phase transition of the 
subsystem has a significant impact on the dynamics of the full system24,25,33,39.

To avoid the negative effect of the inconclusive output field on the nonreciprocal light propagation, we study 
the optical bistable behaviour carefully. By seeking the numerical steady-state solution of Eqs (7–14), we show 
that the steady-state output field intensity ∝P aout

R R
2

2
 and ∝P aout

L L
1

2
 versus the input filed intensity ε∝Pin

L R
p

( ) 2 
under various parametric conditions in Fig. 6. The influence of the cavity-quantum emitter coupling strength g on 
the behaviour of the optical bistability is shown in Fig. 6(a,c). The bistable threshold increases gradually as the 
strength g increases. More importantly, the area of the hysteresis loop becomes broader as the coupling strength g 
increases from 1κ2 to 2κ2. Conversely, the optical bistable regions will disappear when the coupling strength g is 
small enough. It can be explained that the optical bistability is caused by the nonlinear terms σ⁎ga ge1 , σ⁎ga ge1  and 
−2ga1σz, and at a large extent, the nonlinearity of the optical system grows as the coupling strength g increases. 
On the other hand, the cavity-cavity coupling strength J has an opposite influence on the optical bistability. As 
shown in Fig. 6(b,d), there is a competition between the cavity-quantum emitter coupling and the cavity-cavity 
coupling in the input field of the optical system. When g = J, there is a remarkable optical bistable region, which 
quickly becomes narrow as the ratio J/g increases. Once the cavity-cavity coupling has an overwhelming 

Figure 6.  The output field controlled by the coupling strengths. For the passive-passive case, the output field 
a a,R L
2

2
1

2
 as a function of the input field ε κ/p

2
2 with (a,c) J = 2κ2 and (b,d) g = 2κ2. The other system 

parameters are chosen as γ = 0.1κ2, Δ1 = Δ2 = 0, κ1 = κ2, and κe = 3κ2, respectively.
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advantage against the cavity-quantum emitter coupling (i.e., J ≥ 3g), the nonlinearity of the system can be 
neglected and the optical bistable area will disappear completely. Besides the cavity-cavity coupling strength J, the 
frequency detunings Δj(j = 1, 2) also have a significant impact the optical stability. The increasing frequency 
detuning will weaken the cavity-quantum emitter coupling and makes the optical bistable area small. As shown 
in Fig. 7, the optical bistable area gradually becomes narrow until disappears as the frequency detuning increases.
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