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MMP proteolytic activity regulates 
cancer invasiveness by modulating 
integrins
Alakesh Das, Melissa Monteiro, Amlan Barai, Sandeep Kumar   & Shamik Sen

Cancer invasion through dense extracellular matrices (ECMs) is mediated by matrix metalloproteinases 
(MMPs) which degrade the ECM thereby creating paths for migration. However, how this degradation 
influences the phenotype of cancer cells is not fully clear. Here we address this question by probing the 
function of MMPs in regulating biophysical properties of cancer cells relevant to invasion. We show that 
MMP catalytic activity regulates cell spreading, motility, contractility and cortical stiffness by stabilizing 
integrins at the membrane and activating focal adhesion kinase. Interestingly, cell rounding and cell 
softening on stiff gels induced by MMP inhibition is attenuated on MMP pre-conditioned surfaces. 
Together, our results suggest that MMP catalytic activity regulates invasiveness of cancer cells by 
modulating integrins.

The mechanical properties of the extracellular matrix (ECM), especially stiffness, have been shown to regulate a 
gamut of cellular processes including cell proliferation, migration and differentiation1,2. In addition, disease states 
are often associated with increase in ECM stiffness, as reported in multiple cancers3. In breast cancer, increased 
deposition of collagen I and its crosslinking induces a nearly 10-fold stiffening of the mammary stroma4. Increase 
in ECM stiffness is associated with formation of stable adhesions, increased cell spreading and motility, increase 
in generation of cell-substrate traction forces, and increase in cell stiffness5. Cancer invasion through these dense 
matrices is associated with matrix-metalloproteinase (MMP)-mediated ECM degradation generating paths for 
migration6–8. Seminal work by Weaver and co-workers has shown that increase in ECM stiffness causes increased 
invadopodia-mediated ECM degradation, thereby establishing a link between increased ECM density and cancer 
invasiveness9.

In addition to ECM degradation, MMPs play diverse roles in regulating cell behavior. For example, it has 
been shown that outside-in signaling mediated by membrane anchored MT1-MMP is critical for regulation of 
the fate of skeletal stem cells10. The transmembrane/cytoplasmic domain of MT1-MMP has been also shown to 
interact with integrin β1 and regulate mammary morphogenesis via the MAPK pathway11. Remarkably, lack of 
MT1-MMP catalytic activity induced cytoskeletal and nuclear defects in fibroblasts and caused cellular senes-
cence12. In melanoma cells, MMP 9 was shown to bind to CD44 and drive protease-independent migration 
through modulation of cell contractility13. MMPs have also been implicated in regulating matrix contraction by 
fibroblasts and keratinocyte migration during wound healing14,15. Together, these results highlight the diverse 
functions of MMPs in regulating cell behavior. However, outside of ECM degradation, the extent to which MMPs 
regulate cell biophysical properties relevant to invasion, remains incompletely understood.

In this study, we have probed the role of MMP catalytic activity in regulating ECM stiffness-dependent mech-
anoadaptation responses. Using less invasive MCF-7 cells, and highly invasive MDA-MB-231 and HT-1080 
cells, we illustrate the role of MMP catalytic activity in regulating cell mechanics in the invasive cancer cells. We 
first show ECM stiffness modulates MMP activity in MDA-MB-231 and HT-1080 cells, but not in MCF-7 cells. 
Inhibition of MMP activity in the invasive cells by the broad spectrum MMP inhibitor GM6001 leads to loss of 
cell spreading and migration, suppression of traction forces, and cortical softening. These effects are induced by 
altered localization and expression of integrins, and decrease in phosphorylated focal adhesion kinase (FAK). 
Re-establishment of normal cell spreading on MMP-pre-conditioned substrates even in the presence of GM6001 
illustrates the role of MMP catalytic activity in mediating ECM stiffness-dependent responses in highly invasive 
cancer cells via modulation of integrins.
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Materials and Methods
Cell culture. MCF-7, MDA-MB-231 and HT-1080 cancer cell lines were obtained from National Center for 
Cell Science (NCCS) (Pune, India) and cultured in high glucose Dulbecco’s Modified Eagle Medium DMEM 
(Invitrogen, Cat # 11965084) containing 10% fetal bovine serum (FBS, Hi-media, Cat # RM9952) and main-
tained at 37 °C at 5% CO2 humidified atmosphere. Cells were maintained in 60 cm2 culture dishes (Tarsons) and 
passaged when 80–90% confluent using 0.25% trypsin-EDTA (Hi-media, Cat # TCL099). For culturing MCF-7 
breast cancer cells, human recombinant insulin (Hi-Media, Cat # TC190) was added to the medium at a concen-
tration of 0.01 mg/ml. For experiments, cells were first synchronized in serum free media for 18–20 hrs. prior to 
seeding. Further, all experiments were performed at 2% FBS concentration.

Polyacrylamide gel (PA) preparation and ECM coating. Studies were performed with polyacrylamide 
gels (PA) of increasing stiffness. Gels were polymerized on circular glass coverslips of either 12 mm, 18 mm or 22 
mm (Blue-star), as described elsewhere16. For functionalization, Sulfo-SANPAH (Thermo-scientific, Cat # 22589) 
at a concentration of 0.1 mM in 50 mM HEPES buffer (SRL chemicals, Cat # 63732) was added onto the surface 
of PA gels for 30 min under UV light at 360 nm. Gels were washed 3 times with 50 mM HEPES, and then collagen 
type I from rat tail (Sigma, Cat # C3867) dissolved in 1x phosphate buffer saline (PBS) was added at a concentra-
tion of 1 µg/cm2 overnight at 4 °C to obtain uniform surface coating.

Cell spreading and 2D motility experiments. For stiffness dependent cell responses, cells were cultured 
on PA gels at a seeding density of 2 × 103 cells/cm2 for 12-15 hrs. For cell spreading measurements, cells were fixed 
with 4% paraformaldehyde (PFA) (Sigma, Cat # 158127) and then stained for F-actin and nucleus using fluo-
rescently labeled phalloidin (Invitrogen, Cat #s A-12379, A-34055) and DAPI (4′, 6-diamidino-2-phenylindole, 
Sigma, Cat # D9542). Fluorescent images of F-actin and nucleus were acquired using inverted microscope 
(Olympus IX71) at 20x magnification. Quantification of spreading analysis was done using Fiji-Image J software. 
Briefly, after background subtraction, images were thresholded and then cell spread area were obtained using 
the ImageJ-Analyze Particle tool. For probing the effect of MMPs on cell spreading, cells were allowed to adhere 
on to the gels for 20 mins, after which GM6001 (Abcam, Cat # ab120845) was added at a concentration of 10 μM 
for 12–15 hrs. Untreated cells and DMSO (MP biomedical, Cat # 02196055) treated cells served as controls. For 
integrin blocking experiments along with cells, RGD peptide (Sigma, Cat # G4391) at 0.2 mg/ml conc. was added 
in the media and incubated for 12–15 hrs. For 2D motility experiments, motility videos were acquired after 8 hrs 
of incubation. Time lapse imaging was performed for every 10 mins for 3 hrs duration using a temperature and 
CO2 control stage (Nikon Eclipse Ti, 20x objective). Cell speed was measured using the manual tracking plugin 
in Fiji-ImageJ. Directionality ratio was measured from the individual cell trajectories as described elsewhere17.

Immunocytochemistry (ICC). For immunostaining, cells were fixed after 12 hrs of culture using 4% PFA 
in 1x PBS for 20–25 mins, washed 3 times with 1x PBS solution to removes traces of paraformaldehyde, and per-
meabilized with 0.1% Triton-X 100 (Sigma, Cat # 93443) in 1x PBS solution for 3 mins. Cells were blocked with 
2% BSA (Sigma, Cat # A2058) for 45 mins at room temperature (RT) before being incubated with one of the fol-
lowing primary antibodies overnight at 4 °C: anti-vinculin mouse monoclonal antibody (Abcam, Cat # ab18058), 
anti-integrin β1 rabbit polyclonal antibody (Abcam, Cat # ab155145) and anti-integrin β3 rabbit polyclonal anti-
body (Abcam, Cat # ab75872). The following day, cells were washed 3 times with 1x PBS and then incubated with 
one or more of the following secondary antibodies at room temperature (RT) for minimum 1–2 hrs: Alexa-fluor 
488 anti-mouse IgG (Invitrogen, Cat # A-32723), Alexa-fluor 555 anti-rabbit IgG (Invitrogen, Cat # A-21422). 
Nuclei were stained with DAPI for 15 mins at RT. Finally, after washing, cells were mounted on glass-slides using 
Eukitt quick-hardening mounting medium (Sigma, Cat # 03989). Cells were imaged at 63x magnification using 
Scanning Probe Confocal Microscope (Zeiss, LSM 780) for probing integrin β1 and integrin β3 localization at 
cell membrane and for visualizing vinculin-stained focal adhesions. Quantification of number and size of focal 
adhesions (FAs) is detailed in Supplementary Method Section.

Western blotting. For westerns, cells were lysed using RIPA buffer (Sigma, Cat # R0278) mixed with cock-
tail of protease and phosphatase inhibitors (Sigma, Cat # MSSAFE). Protein concentration of cell lysates were 
determined using Bradford assay. After loading equal amount of protein per lane, SDS-PAGE was performed. 
The proteins were transferred onto 0.22 μm nitrocellulose membranes (PALL Life Sciences, Cat # 66485) under 
ice-cold condition. Following transfer, the membranes were blocked using either 10% BSA (Sigma, Cat # A2058) 
or 5% skimmed milk powder (Hi-media, Cat # GRM1254) in 1x TBST (Tris-Buffered Saline and Tween-20) for 
1 hr at RT, and incubated with the following primary antibodies overnight at 4 °C under mild shaking condition: 
anti-integrin β1 rabbit monoclonal antibody (Abcam Cat # ab155145), anti-integrin β3 rabbit polyclonal antibody 
(Abcam, Cat # ab75872), anti-phospho-FAKY397 rabbit monoclonal antibody (Sigma, Cat # F7926), anti-β-tubulin 
rabbit polyclonal antibody (Abcam, Cat # ab6046), anti-β-actin mouse monoclonal antibody (Abcam, Cat # 
ab8226). After washing three time with 1x TBST, membranes were incubated with one of the following second-
ary antibodies at RT for 1 hr: HRP-conjugated anti-Rabbit IgG (Abcam, Cat # ab6721) and HRP-conjugated 
Anti-Mouse IgG (Abcam, Cat # ab6789). Subsequently, after washing 3 times with 1x TBST, blots were developed 
on X-ray films (Kodak) using a chemiluminiscent ECL kit (Pierce, Cat # 32106). Quantification of immunoblots 
were performed using the densitometric tool of Fiji-ImageJ software.

Gelatin zymography. For zymography experiments, cells were cultured on soft and stiff PA gels at a seed-
ing density of 3 × 103 cells/cm2. Conditioned media (CM) was collected after 30 hrs of culture, and concentrated 
using a protein concentrator (PALL Life Sciences, Cat # MAP010C37) of 10 kDa cut-off. Zymography was per-
formed using 8% SDS-PAGE co-polymerized with 1.5 mg/ml gelatin (Sigma, Cat # G2500). For experiments, 
equal amount of protein was loaded per condition and the gels were run under ice cold condition. After running, 
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the gels were incubated with 1x renaturation buffer (2.5% Triton X-100 in distilled H2O) for 45 min, and equili-
brated with 1x developing buffer (50 mM Tris-base, 50 mM Tris-HCL, 0.2 mM NaCl, 5 mM CaCl2, distilled H2O 
and pH adjusted to 7.8–8) for 45 min at RT. Next, gels were dipped in 1x developing buffer, incubated inside water 
bath maintained at 37 °C for minimum 20 hrs, and then stained with Coomassie Brilliant Blue (0.5% in H2O) till 
clear bands (representing protease activity) were observed. Densitometric quantification of secreted MMP levels 
was performed using Fiji-ImageJ software.

Atomic Force Microscopy (AFM). For measuring stiffness of cells and gels, pyramidal AFM probes of 
nominal spring constant 30 pN/nm (10 kHz, Cat # TR400PB, Olympus) were used. Exact values of cantilever 
stiffness were obtained using thermal calibration method. For obtaining estimates of PA gel stiffness, indentation 
curves were fitted till 2000 nm using Hertz model for pyramidal probe:
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where, F represents the indentation force, E is the elastic modulus of the material, α is tip half angle, δ is inden-
tation depth and υ is Poisson ratio of the elastic material (assumed to be 0.45 for cells and 0.5 for gels)18. For stiff-
ness measurements, cells were cultured on stiff PA gels in the absence (i.e., DMSO only) and presence of GM6001 
for 12–15 hrs duration. For measuring cell cortical stiffness, cells were probed slightly off their center to get the 
best estimate of cortical stiffness, and the first 500 nm of indentation data was fit using the above Hertz model.

Adhesion experiments. For AFM based RGD-integrin binding measurements, cells were cultured on stiff 
PA gels in the absence (i.e., DMSO only) and presence of GM6001 for 12–15 hrs duration. Spherical probes 
(67 kHz, Novascan), 4.5 μm in diameter were coated with 10 μg/ml solution of poly-L-lysine (Sigma, Cat # P4707) 
for 20 mins and then treated with 0.5% glutaraldehyde (Sigma, Cat # G7651) for 20 mins19. Next, probes were 
dipped in 0.1 mg/ml solution of RGD peptide (Sigma, Cat # G4391) for 30 mins, washed 3–4 times in distilled 
H2O, and then dried in a vaccum dessicator for 30 mins. After tip calibration using thermal noise method, 
RGD-integrin binding studies were performed. While indenting, probe was held at the cell surface for 10 secs to 
allow formation of integrin-RGD bonds, and then retracted at a tip speed of 3–4 μm/sec. Analysis of maximum 
adhesion force was performed using Igor Pro 6.22 A software.

Traction force Microscopy (TFM). For TFM studies, cells were seeded sparsely (1000 cells/cm2) on col-
lagen coated stiff PA gels co-polymerized with 1 μm fluorescent beads (Sigma, Cat # L9654), and cultured in the 
absence (i.e., DMSO only) and presence of GM6001 for 12–15 hrs duration. Images of beads were acquired at 20x 
magnification (using a Nikon Eclipse Ti inverted microscope) before and after bursting cells using 0.1% Triton 
X-100 in H2O. Data analysis was done using custom written codes in MATLAB 7.8 as described elsewhere20.

Preparation and characterization of 3D collagen gels. For collagen gel preparation, high protein col-
lagen type I solution (Corning, Cat # 354236) was mixed with 10x PBS kept at 4 °C. Next, ice cold plain DMEM 
was added and pH was adjusted to 7.2–7.4 using 1 N NaOH solution. After adjusting pH, collagen gel mixture 
was kept on ice for 10 mins, then 2 × 103 cells were mixed with collagen gel mixture and immediately kept inside 
CO2 incubator for 1 hr. to allow gel formation. After that 10% DMEM was added and allowed the cell to accli-
matize for minimum 4 hrs inside CO2 incubator. Then, time lapse movies of untreated, DMSO treated, GM6001 
treated (10 µM) cells inside collagen gel were captured for 12 hrs at 20 mins interval using temperature and CO2 
controlled stage (Nikon Eclipse Ti, 10x objective). Cell speed and directionality ratio was obtained as mentioned 
above. For characterization, collagen hydrogels were snap frozen with liquid N2 mounted on the Cryo-unit 
(PP3000T, Quorum) and fractured with a blade. The frozen samples were then sputter coated with a thin layer of 
platinum, and Cryo-SEM images obtained with a JSM-7600F FEG-SEM with an acceleration voltage of 5 kV. Pore 
area of hydrogels was quantified by using Analyse-particle tool of Fiji-ImageJ software.

Statistics. For statistical analysis, data was first tested for normality using Kolmogorov-Smirnov normality 
test in Origin 9.1. Based on the outcome of the normality tests, either parametric or non-parametric statistical 
test were performed. For parametric data, one-way ANOVA/two-way ANOVA was performed to assess statistical 
significance, and Fisher post-hoc test was used to compare the means. For non-parametric data, Kruskal-Wallis 
ANOVA/Mann-Whitney test was performed. All statistical analysis was performed using Origin 9.1 with p 
value < 0.05 considered to be statistical significant.

Results
MMP activity is essential for eliciting ECM stiffness-dependent responses in invasive cancer 
cells. Most epithelial cancers are associated with increase in ECM stiffness driven by increased deposition and 
crosslinking of collagen I21. Since increase in ECM stiffness has been associated with increased invasiveness22, we 
hypothesized that ECM stiffness positively regulates MMP activity. To test this, experiments were performed on 
collagen-coated soft (0.46 kPa) and stiff (4.6 kPa) PA gels (Supp. Figure 1A,B) using the less invasive MCF-7 cells 
(henceforth MCF7)23 and two highly metastatic cell lines (MDA-MB-231 and HT1080 (henceforth MDAMB and 
HT, respectively) (Fig. 1A). MMP activity on these gels was assessed using gelatin zymography using conditioned 
media collected from cells cultured on the gels for 30 hrs. Zymography revealed stiffness-dependent increase 
in MMP 2 and MMP 9 activity in MDA and HT cells; in contrast, in MCF7 cells, very low MMP activity was 
detected (Fig. 1B).

To next probe the influence of stiffness-dependent increase in MMP activity on stiffness-dependent cell 
spreading, experiments were performed with untreated cells, vehicle treated cells (DMSO), and cells cultured in 
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the presence of the broad spectrum MMP inhibitor GM6001 (GM). Cell spreading was assessed after culturing 
on PA gels for 12–15 hrs. On soft gels, all the three cell types cells exhibited rounded morphology consistent with 
previous studies24, with GM treatment having no effect (Fig. 1C,D). While cell spreading increased on the stiff 
gels, GM treatment significantly suppressed cell spreading of invasive MDAMB and HT cells, with ~40% drop in 
spreading of MDAMB cells and ~50% drop in spreading of HT cells. In contrast, there was no significant change 
in MCF7 cell spreading. Collectively, these results suggest that ECM stiffness-induced increase in MMP activity 
is essential for cell spreading of MDAMB and HT cells on stiff gels.

Figure 1. Influence of MMP inhibition on stiffness-dependent cell spreading. (A) MCF-7, MDA-MB-231 and 
HT-1080 cells were cultured sparsely on collagen type I-coated soft and stiff polyacrylamide (PA) hydrogels 
for desired time duration. (B) Assessment of stiffness-dependent activity of matrix metalloproteinases 
(MMPs) (MMP 2, and 9) using gelatin zymography. Conditioned medium was collected after 30 hrs of 
incubation. Densitometric quantification of secretion levels of soluble MMPs in conditioned media by MCF-7, 
MDA-MB-231 and HT-1080 cells seeded on soft and stiff substrates reveals increase in MMP activity on stiffer 
gels (n = 2). (C) Representative F-actin (green) and DAPI (blue) stained images of untreated, DMSO treated 
and GM6001 treated MCF-7, MDA-MB-231, and HT-1080 cells seeded on soft and stiff gels. Scale bar = 50 μm. 
(D) Quantitative analysis of cell spreading of untreated, DMSO treated and GM6001 (GM) treated MCF-7, 
MDA-MB-231 and HT-1080 cancer cells seeded on soft and stiff gels (n = 2–3, at least 90–140 cells per condition). 
Stars denote statistical significance (***p < 0.001, ns: not significant). Statistical significance was determined using 
Kruskal-Wallis ANOVA/Mann-Whitney test. Error bars represent standard error of mean (±SEM).
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MMP activity regulates cell adhesion and motility. To probe the mechanism by which MMP inhibi-
tion leads to reduction in cell spreading, cells on stiff gels were stained for the focal adhesion protein (FA) vinculin 
(Fig. 2A). Quantitative analysis of the number and size of focal adhesions (method of quantification detailed in 
Supp. Methods and Supp. Figure 2) revealed that GM treatment led to reduction in both size and number of FAs 
in MDAMB and HT cells, but not in MCF7 cells (Fig. 2B,C). Taking the product of the average FA number and 
the average FA size allowed us to compare the total focal adhesion area in untreated, DMSO treated and GM 
treated cells. Quantification revealed ~40–50% drop in in GM treated cells (Fig. 2D), which was comparable to 
the drop in cell spreading (Fig. 1C,D).

Next, to determine if GM induced loss of focal adhesions led to motility defects, random cell motility experi-
ments were performed on stiff gels with untreated, DMSO treated, and GM treated cells. For these experiments, 
untreated, DMSO treated and GM treated cells were allowed to spread for 8 hrs, and then cell motility exper-
iments were performed for 3 hrs (Supp. Videos V1–V6). As seen from the representative cell trajectories, GM 
treatment had negligible effect on the motility of MCF7 cells (Fig. 2E). However, in both MDAMB and HT cells, 
the lengths of the traces of GM treated cells were significantly smaller than those of untreated cells (Fig. 2E); 
quantification of cell trajectories revealed significant suppression in cell speed (Fig. 2F) and directionality ratio 
(Fig. 2G) in GM treated invasive cells.

Next, to probe the importance of MMP activity is mediating 3D cell invasion, we performed 3D invasion assay 
by using collagen 3D gels (Supp. Figure 3). Specifically, cells were encapsulated in 1 mg/ml collagen gels with aver-
age pore area of ~4 μm2 (Supp. Figure 3A,B). Since nuclear translocation is rate limiting for migration under con-
finement25, and the pore size of these gels (~2–4 μm in diameter, obtained by approximating the pore as a circle) 
was smaller than nuclear width of all the three cell types (Supp. Figure 3C,D), this gel concentration was enough 
to inhibit cell migration by providing steric hindrance. Cell invasiveness was measured by tracking motility of 
untreated, DMSO treated and GM treated cells for 12 hrs duration. Similar to our 2D results, both MDAMB and 
HT cells exhibited faster motility than MCF7 cells in 3D collagen gels, with GM treatment inhibiting cell motility 
and persistence of MDAMB and HT cells (Supp. Figure 3E–G). Our results are consistent with findings by others 
groups who have shown that MMP mediated ECM degradation is critical for 3D invasion through matrices with 
sub-nuclear sized pores26–28.

The combination of loss of focal adhesions, reduction in motility in 2D, and reduction in invasion in 3D 
induced by GM treatment suggests that MMP activity is critical for cell spreading, migration and invasion. To 
probe if these alterations can be correlated with alterations in the phosphorylation levels of focal adhesion kinase 
(FAK)—a key signaling molecule involved in cell adhesion and migration29–31, levels of phosphorylated FAK 
(pFAKY397) were assessed in MDAMB, HT and MCF7 cells. Densitometric analysis of immunoblots revealed a 
significant drop in the expression level of pFAKY397 in GM treated MDAMB and HT cells, but not in MCF7 cells 
(Fig. 2H).

Collectively, these results indicate that MMP activity regulates spreading and motility of MDAMB and HT 
cells on stiff gels at least in part via formation of focal adhesions and FAKY397 phosphorylation.

Inhibition of MMP activity suppresses cell-ECM tractions and induces cell softening in invasive 
cancer cells. Thus far, our results suggest that in highly invasive MDAMB and HT cells, MMP inhibition 
induces loss of focal adhesions and downregulates pFAKY397. Next to probe the impact of this perturbation on 
cytoskeletal organization, we used traction force microscopy (TFM) (Fig. 3A) and AFM to measure cell generated 
tractions and cell cortical stiffness, respectively. Strikingly, GM treatment was found to inhibit cell-ECM tractions 
significantly in MDAMB and HT cells, but not in MCF7 cells (Fig. 3B,C). In addition, analysis of cortical stiffness 
of cells by AFM revealed significant cortical softening in both MDAMB and HT cells, but not in MCF7 cells 
(Fig. 3C,D). Taken together, these results indicate that inhibition of MMP activity in invasive cancer cells perturbs 
cell mechanical properties via reduction in cell-ECM traction and by inducing cell cortical softening.

Inhibition of MMP activity perturbs integrin β1 levels and its membrane localization. Since 
MMPs are known to bind to integrins32, and their association is crucial for various cellular processes including 
cell migration33, we hypothesized that inhibition of MMP activity perturbs integrins levels and/or its localization 
at the membrane thereby influencing cell spreading and motility. Indeed, inhibition of integrins by soluble RGD 
peptide34–36 led to reduction in cell spreading across all the three cell types, and also induced cell softening (Supp. 
Figure 4A–C). To probe if cell rounding observed by GM treatment can be attributed to perturbed expression 
and/or localization of integrin β1, levels of integrin β1were compared between DMSO treated and GM treated 
cells. Western blots of cell lysates collected from DMSO treated and GM treated samples revealed suppression 
of integrin β1 in all the cells, with maximal drop in HT cells and minimal drop in MCF7 cells (Fig. 4A). To see if 
integrin localization was also perturbed by GM treatment, cells were immunostained with an integrin β1 anti-
body that binds to the extracellular domain and 3D imaging was performed to determine the membrane local-
ization of integrin β1. Confocal imaging revealed suppression of integrin β1 localization at the basal cell-ECM 
contact surface in GM treated MDAMB and HT cells (Fig. 4B). This was also quantitatively confirmed by com-
paring the mean fluorescence intensity in the region of interest (ROI) (i.e., basal surface) shown in the zoomed-in 
inset images (Fig. 4B inset). Tracking the mean intensity automatically corrected for differences in the extent of 
cell spreading between DMSO treated and GM treated conditions. Plotting of the mean normalized intensity, 
i.e., mean intensity normalized with respect to the DMSO treated condition, revealed ~20–40% drop in integrin 
membrane localization in GM treated cells (Fig. 4C).

To functionally probe the effect of drop in integrin levels and its altered localization at the cell membrane, an 
adhesion assay was performed wherein a RGD functionalized spherical AFM tip was brought in contact with a 
cell, adhesive bonds were allowed to form for 10 secs, after which the tip was retracted (Fig. 4D). The maximum 
adhesive force, i.e., the peak force observed during retraction, is indicative of the maximum number of bonds 
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Figure 2. Influence of MMP inhibition on focal adhesion and cell motility of MCF-7, MDA-MB-231 and 
HT-1080 cells. (A) Immunostained images of the focal adhesion protein vinculin (green) and F-actin (red) 
in untreated, DMSO treated and GM treated cells cultured on stiff PA gels. Scale bar = 20 μm. (B,C,D) 
Quantitative analysis of size, number of focal adhesion and focal adhesion area per cell in untreated, DMSO 
treated and GM treated cells (n = 2, at least 30–35 cells per condition; **p < 0.01, *p < 0.05, ns: not significant). 
Statistical significance was determined by one-way ANOVA/Fisher test. Error bars represent standard error 
of mean (±SEM). (E) Representative random cell migration trajectories of untreated, DMSO treated and GM 
treated cells cultured on stiff PA gels. (F,G) Quantitative analysis of cell speed (n = 2, 45–50 cells per condition; 
***p < 0.001, ns: not significant) and directionality ratio (n = 2, 35–45 cells per condition; ***p < 0.001; 
*p < 0.05; ns: not significant) of untreated, DMSO treated and GM treated cells cultured on stiff PA gels. 
Statistical significance was determined by one-way ANOVA/Fisher test. Error bars represent standard error of 
mean (±SEM). (H) Western blot analysis of phosphorylated-focal adhesion kinase (pFAKY397) in untreated, 
DMSO treated and GM treated cells cultured on stiff PA gels. β-tubulin served as a loading control (n = 2).
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Figure 3. Influence of MMP inhibition on cell-ECM tractions and cortical stiffness of MCF-7, MDA-MB-231 
and HT-1080 cells. (A) Schematic of traction force microscopy (TFM). Forces exerted by the cells are calculated 
based on deformations of beads embedded in the gel. The ‘constrained’ condition corresponds to the case when 
the cell is attached to the substrate and exerting tractions. The ‘unconstrained’ condition corresponds to the case 
when the cell is removed and the beads relax to their original positions. (B) Representative traction force maps of 
DMSO and GM treated cells grown on stiff PA gels (Scale bar = 20 µm). (C) Quantitative analysis of root mean 
square traction (RMS traction) of DMSO treated and GM6001 treated cells grown on stiff PA gels (n = 3, 35–45 
cells per condition). Stars denote statistical significance (***p < 0.001, ns: not significant). Statistical significance 
was determined by one-way ANOVA/Fisher test. Error bars represent standard error of mean (±SEM). (D) 
Representative force-indentation curves of DMSO treated and GM treated cells. First 500 nm of the force curves 
were fit with Hertz equation to obtain estimates of cortical stiffness. (E) Quantitative analysis of cell cortical stiffness 
of DMSO treated and GM treated cells (n = 3–4, 100–140 cells per condition; ***p < 0.001, *p < 0.05). Statistical 
significance was determined by Mann-Whitney test. Error bars represent standard error of mean (±SEM).
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Figure 4. Influence of MMP inhibition on integrin expression levels and its membrane localization in MCF-7, 
MDA-MB-231 and HT-1080 cells. (A) Western blot analysis of integrin β1 in DMSO treated and GM treated 
cells cultured on stiff PA gels. β-actin served as a loading control (n = 2). (B) Representative maximum intensity 
projection images (along the height of the cells (YZ plane)) of DMSO treated and GM treated cells stained for 
integrin β1 (red) and DNA binding dye DAPI (blue) (Scale bar = 8 µm). Insets show localization of integrin β1 
at the basal cell-ECM interface (ROI, region of interest). (C) Quantification of mean integrin β1 intensity at 
the basal surface in DMSO treated and GM treated cells (normalized with respect to mean intensity of DMSO 
treated cells) (n = 2, 25 cells per condition, ***p < 0.001, *p < 0.05). Statistical significance was determined 
by one-way ANOVA/Fisher test. Error bars represent standard error of mean (±SEM). (D) Quantification of 
membrane-localized integrins using Atomic Force Microscopy (AFM). Schematic shows probing of cells using 
0.1 mg/ml RGD-functionalized spherical probes of diameter 4.5 µm. For this experiment, after indentation, tip 
was held in position for 10 secs (i.e., dwell time = 10 secs) to allow formation of integrin-RGD bonds, and then 



www.nature.com/scientificreports/

9Scientific REPORTS | 7: 14219  | DOI:10.1038/s41598-017-14340-w

formed (Fig. 4D), and provides a way of quantifying the extent of GM-induced loss of integrin activity near cell 
membrane. Tracking of the maximum adhesive force thus allowed us to estimate the extent of integrin activity in 
DMSO treated and GM treated cells. In DMSO treated cells, maximum adhesive forces observed in MDAMB and 
HT cells were upto 2-fold higher than those observed in MCF7 cells (Fig. 4E,F). While no significant differences 
in the maximum adhesive force was observed between untreated and GM treated MCF7 cells, GM treatment 
led to significant decrease in the maximum adhesive force in both MDAMB and HT cells, with maximum effect 
observed in MDAMB cells (Fig. 4E,F). Together, these results suggest that GM induced defects in cell spreading 
and motility in highly invasive cells is associated with loss of integrin levels and its localization at the plasma 
membrane.

MMP proteolytic activity enables mechanoadaptation via integrins. While our results clearly 
demonstrate that GM treatment leads to alterations in focal adhesions and cell biophysical properties, it remains 
unclear if the effects are purely a consequence of extracellular protease activity or can be attributed to other 
functions of MMPs. To address this question, conditioned media (CM) collected from cells cultured on stiff gels 
for 48 hrs was added onto fresh Col I coated stiff gels and incubated at 37 °C under sterile conditions (Fig. 5A). 
After 48 hrs, the CM was washed out and fresh cells were seeded onto the pre-conditioned surfaces for 12–15 hrs 
in the presence of DMSO/GM/RGD. While GM treated cells spread to the same extent as that of DMSO treated 
cells, RGD treatment induced cell rounding on the pre-conditioned surfaces (Fig. 5B,C) similar to RGD induced 
cell rounding observed on un-conditioned stiff gels (Supp. Figure S4). Consistent with similar spreading between 
DMSO treated and GM treated cells on pre-conditioned surfaces, integrin expression was nearly identical in 
DMSO treated and GM treated cells (Fig. 5D). Furthermore, basal localization of integrin β1 remained unchanged 
in both MDAMB and HT cells across the two conditions (Fig. 5E,F).

To further probe the mechanism by which MMP proteolytic activity influences cell adhesion and spreading, 
we hypothesized that ECM degradation exposes hidden RGD like motifs of collagen type I thereby allowing other 
integrin sub-types to engage37,38. Since integrin β3 can bind to RGD39, we probed expression levels of integrin β3 
in DMSO and GM treated MDAMB and HT cells cultured on Col I-coated stiff gels as well as on pre-conditioned 
surfaces. While integrin β3 expression was found to be significantly lower in GM treated cells compared to DMSO 
controls on Col I-coated surfaces, robust spreading of GM treated cells on pre-conditioned surfaces was associ-
ated with more than 2-fold integrin β3 expression compared to that on Col I-coated gels (Fig. 5G). In line with 
higher integrin β3 expression observed on pre-conditioned surfaces, immunostaining revealed increased integrin 
β3 localization at the cell-ECM interface in both DMSO treated and GM treated cells on the pre-conditioned 
surfaces compared to that on Col I-coated surfaces (Fig. 5H,I).

In line with normal cell spreading and robust F-actin staining observed in GM treated cells on the 
pre-conditioned surfaces, probing of cell mechanical properties revealed no differences in cortical stiff-
ness of DMSO treated and GM treated cells (Fig. 5H). Collectively, our results suggest that MMP mediated 
pre-conditioning of collagen type I enables cell mechanoadaptation via integrins.

Discussion
In this work, we have demonstrated the role of MMPs in regulating stiffness-dependent responses in invasive 
cancer cells. Our results reveal that stiffer substrates enhance MMP activity. Interestingly, inhibition of MMP 
activity induces cell rounding through loss of focal adhesions, suppresses traction generation, cell motility and 
cell invasiveness, and softens cells. These phenotypic defects could be rescued if cells were seeded on MMP 
pre-conditioned surfaces. Overall, our results suggest that ECM stiffening-induced up-regulation of MMP extra-
cellular proteolytic activity contributes to maintenance of invasive phenotype in MDAMB and HT cancer cells.

Epithelial cancers are associated with ECM stiffening40. Such stiffening, achieved by increased deposition and 
crosslinking of fibrillar ECM proteins including collagen, leads to reduction in pore size21,41. This should ide-
ally limit cancer invasiveness by providing increased steric hindrance; instead, cells become more invasive5,22,42. 
Together, our 2D cell motility and 3D invasion experiments suggest that increased invasiveness is a consequence 
of increased MMP activity in invasive MDAMB and HT cells. The absence of stiffness-dependent changes in 
MMP activity observed in non-metastatic MCF7 cells suggests that stiffness-dependent modulation of MMP 
activity is a property of highly invasive cancer cells. Our results further suggest that MMP activity mediates stiff-
ness adaptation by modulating integrins, with inhibition of MMP activity suppressing mechanosensing leading 
to defective cell spreading and motility.

Previous studies have shown that extracellular activity of MMPs generates cleaved fragments of ECM com-
ponents43, which serve as chemotactic cues and stimulate directed migration of fibroblasts44 and keratinocytes 
during wound healing and tissue repair processes45. In addition, MMP mediated cleavage of laminin-5 and col-
lagen IV have also been shown to expose cryptic binding sites which aid in cell migration46,47. MMP 1 mediated 
collagen I degradation is also crucial for epithelial cell migration during wound closure48. GM-induced loss of 
cell spreading and motility defects may be attributed to the absence of cleaved ECM fragments and/or exposure 
of cryptic domains, as cell spreading is rescued on MMP pre-conditioned matrices even in the presence of GM. 
Consistent with this, we observe increase in integrin β3 localization in MDAMB and HT cells at the basal cell 
surface on MMP pre-conditioned surfaces.

retracted. Representative force curve showing indentation of cell and breakage of integrin-RGD bonds during 
retraction. Maximum adhesive force corresponds to the maximum number of bonds formed. (E) Representative 
retraction curves in DMSO treated and GM treated cells cultured on stiff PA gels. (F) Histogram of maximum 
adhesive force in DMSO treated and GM treated cells cultured on stiff PA gels (n = 3–4, 100 cells per condition).
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Figure 5. Rescue of invasive phenotype of MDA-MB-231 and HT-1080 cancer cells on MMP pre-conditioned 
surfaces. (A) Schematic of generating pre-conditioned surfaces. Conditioned media (CM) was collected from 
MDA-MB-231 and HT-1080 cancer cells cultured for 48 hrs on Col I coated stiff gels. Fresh Col I coated stiff 
gels were then incubated with the collected CM for 48 hrs at 37 °C. Subsequently, the gels were washed and 
a fresh batch of MDA-MB-231 and HT-1080 cells were cultured in the presence of DMSO/GM/RGD for 
12–15 hrs. (B) Representative fluorescent images of DMSO treated, GM treated and RGD treated cells on pre-
conditioned surfaces (Scale bar = 50 µm). Cells were stained for F-actin (green) and DAPI (blue) respectively. 
(C) Quantitative analysis of spreading of DMSO treated, GM treated cells and RGD treated cells (along with 
RGD peptide, equivalent amount of DMSO was also added) on MMP-pre-conditioned surfaces (n = 2, 150–170 
cells per condition; ***p < 0.001, ns: not significant). Statistical significance was determined by Kruskal-Wallis 
ANOVA/Mann-Whitney test. Error bars represent standard error of mean (±SEM). (D) Western blot analysis 
of integrin β1 in DMSO treated and GM treated cells cultured on pre-conditioned surfaces. β-actin served as 
loading control (n = 2). (E) Representative maximum intensity projection of DMSO treated and GM treated 
cells (along the height of the cells (YZ plane)) cultured on pre-conditioned surfaces and stained for integrin 
β1 (red) and DNA binding dye DAPI (blue) (Scale bar = 10 µm). Insets show localization of integrin β1 at 
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Several reports have documented regulation of outside-in signaling by MMPs. For example, Weiss and 
co-workers have shown that catalytic activity of MT1-MMP regulates skeletal stem cell fate via integrin β1 sign-
aling10. Another group has shown that MMP 1 activity at the cell surface of platelets can induce thrombosis via 
PAR1 (protease activated receptor) signaling49. MMP substrate specificity is not just limited to ECM components, 
but also includes growth factors such as TGF-β50, which is known to play a significant role in cancer progression51. 
Studies suggest that MMP 9 and MMP 2 can proteolytically activate TGF-β at the cell periphery and induce angi-
ogenesis and tumor invasion52. In our study, MMP inhibition-induced downregulation of pFAKY397, suppression 
of cell-ECM tractions, softening of cell cortex and loss of integrins at the cell surface in invasive MDAMB and 
HT cancer cells illustrates the importance of MMP activity in regulating localization of cell surface receptors and 
its downstream signaling processes. However, the exact mechanism of modulation of integrin stability by MMP 
activity remains unknown. Recent studies have shown that co-localization and interaction between MT1-MMP 
and integrin β1 is essential for mammary morphogenesis, with perturbation of either one of the two suppress-
ing morphogenesis11. In addition, both MMP 2 and MMP 9 have also been shown to interact with integrins53. 
Therefore, GM-induced alterations in cell phenotype are probably brought about by alterations in the interaction 
between integrins and MMPs.

Recent studies in fibroblasts have established a mechanistic link between MT1-MMP mediated extracellu-
lar proteolysis and cytoskeletal and nuclear organization12. Similarly, in skeletal stem cells, ECM remodeling 
has been shown to regulate RhoGTPase signaling and pericellular rigidity10. Previously, Sheetz and co-workers 
have demonstrated the role of integrin β1 in determining adhesion strength and integrin β3 in regulating mech-
anotransduction54. In our study, cell rounding on stiff surfaces in the presence of GM and phenotypic rescue 
of MDAMB and HT cells on MMP pre-conditioned surfaces even in the presence of GM suggests that MMP 
pre-conditioning exposes hidden RGD-like motifs in collagen37,55–57. Subsequently, exposure of these RGD-like 
motifs induce expression of other integrin sub-types (integrin β3 in our case)39 thereby regulating mechanoad-
aptation on stiff collagen coated surfaces. Overall, our results thus illustrate the existence of a crosstalk between 
MMP mediated ECM remodeling and cell mechanical properties mediated via integrins.

In summary, our results demonstrate ECM stiffness-dependent modulation of MMP activity in invasive can-
cer cells, and the role of this increased MMP activity in sustaining the invasive phenotype of cancer cells through 
modulation of integrins. Future studies will specifically focus on understanding the contributions of distinct 
soluble and membrane bound MMPs in regulating cell biophysical properties.
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