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Controlling the Overfitting of 
Heritability in Genomic Selection 
through Cross Validation
Zhenyu Jia

In genomic selection (GS), all the markers across the entire genome are used to conduct marker-
assisted selection such that each quantitative trait locus of complex trait is in linkage disequilibrium 
with at least one marker. Although GS improves estimated breeding values and genetic gain, in most 
GS models genetic variance is estimated from training samples with many trait-irrelevant markers, 
which leads to severe overfitting in the calculation of trait heritability. In this study, we demonstrated 
overfitting heritability due to the inclusion of trait-irrelevant markers using a series of simulations, and 
such overfitting can be effectively controlled by cross validation experiment. In the proposed method, 
the genetic variance is simply the variance of the genetic values predicted through cross validation, the 
residual variance is the variance of the differences between the observed phenotypic values and the 
predicted genetic values, and these two resultant variance components are used for calculating the 
unbiased heritability. We also demonstrated that the heritability calculated through cross validation 
is equivalent to trait predictability, which objectively reflects the applicability of the GS models. The 
proposed method can be implemented with the Mixed Procedure in SAS or with our R package “GSMX” 
which is publically available at https://cran.r-project.org/web/packages/GSMX/index.html.

Plant breeding is to produce desired characteristics by changing the traits of plants. Traditionally, we directly 
selected plants with desirable characteristics for propagation. In the past two decades, molecular techniques have 
been used for indirectly selection1–5, for example, marker assisted selection (MAS). Markers (e.g., DNA/RNA 
variations), which are in linkage disequilibrium (LD) with quantitative trait loci (QTL), are used for indirect 
selection of genetic determinants of traits of interest. Linear regression models can be used to assess the associa-
tion between the traits and the markers using training sample in which the phenotypes and genotypes are known 
for each subject6,7. Phenotypic values are regressed on the genotypic values of markers, and statistical hypothesis 
test is performed on each marker. Criterion, such as threshold in p value or in the logarithm of the odds ratio 
(LOD score), are used for detection of markers/QTL with significant effects8. The selected markers are used to 
form a linear genetic model (e.g., least squares model) which will be used for the recurrent selection process. Two 
criterions are commonly used for evaluating the performance of the genetic models built from training samples, 
i.e., heritability and predictability9,10. The heritability is defined as the proportion of variance that can be explained 
by the genetic model, which is equivalent to the R2 in linear regression analysis. The heritability for the training 
sample can be conveniently calculated with analysis of variance (ANOVA). Whereas, the predictability for the 
training sample is defined as the squared correlation between the observed phenotypes and the predicted pheno-
types that are calculated using the genetic model under consideration. If the size of the training sample is larger 
than the number of the markers (a requirement for regular linear model), the heritability and predictability are 
actually measuring the same quantity. Note that the heritability and the predictability associated with a genetic 
model only reflect the genetic structure for the population from which the training sample has been drawn; much 
lower levels of heritability and predictability may be obtained if this genetic model (developed from training sam-
ple) is applied to a sample which comes from a distinct population, for example, a population with very different 
genetic background.

With the emergence of the low-cost but high-throughput sequencing technologies, we can easily increase the 
number of markers and their density to enjoy increased resolution of QTL mapping11–13. In many MAS or QTL 
mapping studies, the number of markers is much larger than the number of individuals, i.e., p ≫ n, where p is the 
number of markers (or parameters in the regression models) and n is the sample size. Under this circumstance, 
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the least squares estimation does not work; likewise, ANOVA cannot be directly applied to the data. Rather, 
sophisticated strategies should be used to reduce the dimensionality of the analysis. To fit ANOVA, one can first 
reorganize the data by categorizing subjects in the sample into groups based on their genotypes (for example, 
recombinant inbred lines (RILs)), and then analyze the variances between these groups (or lines). Note we used 
‘reorganization of data’ to represent rearrangement of the data using a newly defined independent/predictive var-
iable, i.e., we used the RILs (groups defined based on genotypes) as an independent variable for the ANOVA anal-
ysis. Nevertheless, samples with similar genotypes may be placed into different groups, yielding too many groups 
(or parameters) for the model and therefore overfitting the data. This is similar to the situation where too many 
‘leaves’ are used to overly fit a ‘tree’ classification model. Therefore, the heritability calculated using this strategy 
through ANOVA is likely to be overestimated. Alternatively, variable selection strategies can be used in regres-
sion models to substantially reduce the number of parameters by assuming that most markers are irrelevant14–17. 
However, it has been commonly accepted that quantitative traits are determined by many genes including some 
major genes as well as a large number of genes with small effects. Major QTL only explain part of the total varia-
tion; on the other hand, significant portion of variation is attributed to many QTL with small or even tiny effects 
across genome which usually do not survive the statistical selection criterion. ‘Complete modeling’ by consid-
ering all QTL on the genome including those with small effects has potential to improve the performance of the 
genetic models. It is worthy of noting here that the heritability calculated through ANOVA using reorganized data 
is no longer equivalent to the predictability calculated using regression models since ANOVA analyzes the param-
eters that are derived from the genotypes rather than genotypes themselves. However, correlations are expected 
between the heritability from ANOVA (with rearranged data) and the predictability from regression models.

Genomic selection (GS) provides solutions to ‘complete modelling’. GS is a form of MAS in which genetic 
markers covering the whole genome are used so that all QTL are in linkage disequilibrium with at least one mar
ker9,10,16,18,19. Models including random effects (e.g., mixed models) are used to reduce the dimensionality of the 
analysis. In GS, the effects of all markers, including the markers with major effects as well as many more markers 
with small effects, are first estimated from training sample, and then are used to form a genetic model for predict-
ing genetic values for unphenotyped individuals. It has been indicated that GS models are more predictive and 
potentially more effective than classical MAS schemes or use of pedigree; therefore, the studies on GS become 
more and more popular. However, in GS analyses, the whole-genome markers are used to fit the regression model 
and estimate the covariance (kinship) between individuals in the training set; such information is subsequently 
used to calculate the parameters including variance components which are used to calculate trait heritability. 
The majority of the loci on the genome are neutral to the trait of interest; only causative loci (small portion of the 
genome) are contributing to the variation of the trait. Including the large number of the neutral loci in the regres-
sion model likely overfits the data. In the current study, we used intensive simulated studies to demonstrate that 
the genetic variance is overestimated using regular GS settings and trait heritability is thereafter exaggerated. In 
order to realistically reflect the applicability of the GS models that are developed using training samples, cross val-
idation should be used to control such overfitting. In the study, we proposed a simple algorithm to calculate unex-
aggerated trait heritability in GS analysis. Our new method echoes the previous studies where cross validation has 
been used to reduce the bias of estimation of the predictability (or prediction accuracy) due to the environmental 
sampling error, genotypic sampling error, or both20,21. Compared with the previous efforts, our focus is to provide 
an effective control on the overfitting of heritability incurred by the excessive non-relevant markers included in 
the GS analysis, which has been overlooked in the literature. In the new method, a simple solution was proposed 
to estimate genetic covariance and eventually trait heritability using the variance of the genetic values predicted 
through cross validation. Hence, the aims of the study include (1) proof of the overfitting due to the inclusion of 
a large number of trait-irrelevant loci in the GS analyses and the similar overfitting in ANOVA approaches, (2) 
demonstration of effective control of such overfitting by the new method, and (3) showing that the heritability 
is equivalent to the predictability (or accuracy of prediction) when such overfitting is controlled. The proposed 
new method provides an accurate estimation of trait heritability or trait predictability, and objectively reflects 
the applicability of the GS models when they are applied to independent populations. The algorithms can be 
conveniently implemented using the Mixed Procedure in SAS or can be implemented using a newly developed 
R package “GSMX” (https://cran.r-project.org/web/packages/GSMX/index.html). The proposed method in this 
study has been demonstrated by a series of Monte Carlo simulation experiments and a real data analysis in rice.

Materials and Methods
Mixed Model. Mixed model is a specially designed method to include fixed and random effects in a single 
regression model. Fixed effects represent factors that experimenters directly manipulate and are often repeatable, 
whereas random effects represent the outcome due to random selection of a sample from the entire population 
(sources of random variation)20. Mixed model is commonly described using the following regression model

β γ ε= + +y X Z , (1)

where y is the observed response (univariate) of n individuals, X is a n × q design matrix for the fixed effects β 
(q × 1 vector), Z is an n × p design matrix for the random effects γ (p × 1 vector), and ε is an n × 1 vector of ran-
dom errors. The random effects are assumed to be independently and normally distributed, as indicated by 

σγ γ~ , IN(0 )2 . The residual errors are also normally distributed σε ~ , IN(0 )2 . The expectation of y is β=y XE( )  
and the variance-covariance matrix of y is

σ σ= = +γy V ZZ IVar( ) (2)
T 2 2

https://cran.r-project.org/web/packages/GSMX/index.html


www.nature.com/scientificreports/

3Scientific RepoRts | 7: 13678  | DOI:10.1038/s41598-017-14070-z

The variance components, θ σ σ= γ{ , }2 2 , can be estimated using the restricted maximum likelihood (REML) 
method whose log likelihood function is defined by

θ β β= − − − − −− −ˆ ˆV X V X y X V y XL( ) 1
2

ln 1
2

ln 1
2

( ) ( ), (3)
T T1 1

where β = − − −ˆ X V X X V y( ) ( )T T1 1 1 . Alternatively, the maximum likelihood (ML) method can be used to estimate 
the parameters,

θ β β= − − − − .−ˆ ˆV y X V y XL( ) 1
2

ln 1
2

( ) ( ) (4)
T 1

Numerous algorithms can be used to maximize the above likelihood functions and get the REML or ML esti-
mates of the parameters.

The Best Linear Unbiased Prediction (BLUP). Various approaches (e.g., G-BLUP23, BayesB10, and 
MIXTURE24) may be used for estimation of the genetic effects and development of a prediction model; however, 
BLUP based method generally gave the higher prediction accuracy due to the fact that a complex trait is usually 
explained by many genes21. In the study, we mainly focus on the BLUP approach on the basis of mixed model. In 
the general situation, if covariance among genomic loci and covariance of residual errors are considered (in con-
trast to the independent random effects and independent residual errors described in Eq. (2)), we assume the 
random effects follow a normal distribution as denoted by σγ γ~ 0 GN( , )2  and the residual errors follow a normal 
distribution as denoted by σε ~ 0 RN( , )2 , where G is a variance-covariance structure for the random effects and 
R is a variance-covariance structure for the residual errors. In this case, the variance of the model becomes

σ σ= = +γy V ZGZ RVar( ) (5)
T 2 2

The random and fixed effects are estimated from Henderson’s mixed model Eq. 21,
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where λ σ σ= γ /2 2. The BLUE (best linear unbiased estimation) and BLUP (best linear unbiased prediction) of the 
fixed effects and random effects are obtained via
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The variance-covariance matrix of the BLUE and BLUP is
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Genomic Selection Model. We adopted the mixed model to describe the variation of phenotypic values 
in genomic selection, where the fixed effects usually represent controllable and repeatable factors, such as age, 
location, treatment etc., and the random effects represent the genetic effects for the loci/markers on the genomes. 
The effects of most loci are close to zero; thus, the normal distribution of random effects are suitable to model the 
behavior of the genetic effects.

In genomic selection, we rewrite Eq. (1) as the following linear model,

∑ γβ ε= + +
=

y X Z ,
(9)k

m

k k
1

where Zk is a column vector of genotype indicators for marker k and γk is the marker effect. The genotypic value 
of marker k for individual j in a F2 population is defined as

=










−
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0
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where = …j n1 , A1 is the reference allele, and A2 is minor allele. We assume that γ σγ~ N(0, )k
2  for all 

p = 1 … m, , , and σε ~ 0 IN( , )2  so that

∑ ∑σ σ σ σ σ σ= + = + = ′ +γ γ
= =m

my Z Z I Z Z I K IVar( ) 1 ( ) ,
(11)k
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∑′ =
=m

K Z Z1
(12)k

m

k k
T

1

is a marker-inferred kinship matrix22 and

σ σ= γm (13)A
2 2

is called the polygenic variance. Let us define γξ = ∑ = Zk
m

k k1  as the polygene and rewrite the mixed model (9) 
using

β ξ ε= + + .y X (14)

The variance of y is

σ σξ ε= + = +y K IVar( ) Var( ) Var( ) , (15)A
2 2

where K is rescaled version of ′K  in order to make sure that σA
2 is comparable with σ2, i.e.,

=
′
′

=
′
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.
n

nK K
K

K
Ktr( )/ tr( ) (16)

Note that the estimation of this relationship matrix (or kinship matrix) K is central to the BLUP based GS 
analyses (GBLUP). In genetics, the heritability of the trait under study is defined as

σ
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The Henderson’s mixed model Eq. (6) becomes
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in genomic selection, where λ = σ

σ
A
2

2 . The BLUE and BLUP of the fixed effects and polygenic effect are obtained via
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The variance-covariance matrix of the BLUE and BLUP is
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Prediction of Genetic Value. Suppose we hope to utilize the GS model developed as above to predict the 
genetic values of a new cohort of individuals (for example, in adolescent stage where phenotype of interest has not 
been fully developed). Let y1 be the phenotypic values for the individuals that have been used for developing the 
GS model and let y2 be the individuals for which the phenotypic values or genetic values will be predicted. We 
rewrite the model (14) as,
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The variance-covariance matrix is also partitioned similarly,
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To predict the trait values or genetic values in the test sample, we use the conditional expectation of y2 given y1 
(also called BLUP) which is expressed as



www.nature.com/scientificreports/

5Scientific RepoRts | 7: 13678  | DOI:10.1038/s41598-017-14070-z

σ σ σ

β β

β β

= | = + −

= + + −

−

−

ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ

y y y X G V y X

X K K I y X

E( ) ( )

( ) ( ) (24)A A

2 2 1 2 21 11
1

1 1

2 21
2

11
2 2 1

1 1

Information used for the prediction mainly comes from G21, the covariance between individuals in the train-
ing sample and individuals in the test sample. The model predictability is defined as the squared correlation 
between the observed and the predicted ξ2, which is

ξ ξ
ξ ξ

=
ξ ξ

ˆ
ˆˆr Cov ( , )

Var( )Var( )
,

(25)
2

2
2 2

2 22 2

where

ξ β ξ β= − = −ˆ ˆ ˆ ˆy X y Xand (26)2 2 2 2 2 2

with fixed effects being removed.

Cross Validation. We often name the sample that is used for developing GS model as training set. In litera-
tures, the variance components (σA

2 and σ2) derived using the entire training set have been commonly used for 
calculating the heritability (using Eq. 17) which is usually used for assessing the performance of the GS model. 
However, using over-saturated markers along genome will overestimate the genetic variance (σA

2), leading to 
exaggerated heritability (overfitting) in GS analysis. Here, we propose an objective evaluation of GS model by 
estimating the heritability through cross validation.

Cross validation is often used to provide an objective assessment for the performance of a model23, and it has 
been used for MAS analysis and GS analysis to reduce the unwanted bias20,21. In cross validation, data is arbitrarily 
partitioned into two parts: training set and test set. The training set is used to estimate the model parameters 
(model development) and the test set is used for model evaluation regarding the predictability of the model. Thus, 
the test set does not contribute to model development at all; rather, the test set provides an objective evaluation on 
the performance of the model that is developed solely on the training set. In k-fold cross validation, data are ran-
domly partitioned into k equal portions. Each time, k-1 portions are used to develop the model (calculate the 
model parameters); whereas, the remaining 1 portion is used for test. This process is repeated until each portion 
has been exactly used for once as test set. After k-fold cross validation, each subject has an observed phenotype 
and a predicted phenotype. The predicted phenotype is the value calculated when the subject is included in the 
test set during the cross validation. Figure 1 gives an example of 5-fold cross validation which is used in the cur-
rent study. Rather than using the entire data to calculate genetic variance (σA

2) and residual variance (σ2) as in 
regular GS settings, we propose using the predicted genetic values (via cross validation) and the difference 
between the observed phenotype and the predicted genetic values to calculate the genetic variance and the resid-
ual variance, respectively, which are thereafter used to calculate the heritability (using Eq. 17). We will demon-
strate through simulated studies that the heritability calculated using the predicted values through cross 

Figure 1. Demonstration of 5-fold cross validation.
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validation is equivalent to the predictability which is the squared correlation between the predicted phenotypes 
and the observed phenotypes (Eq. 25).

Data set. The rice data used in the study includes 210 recombinant inbred lines (RILs), for each of which four 
traits [yield (YD), 1000 grain weight (GW), tiller number (TN), and grain number (GN)] have been replicated 
4 times in different years and different locations24. High-density markers are used to infer recombination break-
points25, facilitating construction of bins (1619 bins in the study) which are treated as new synthetic markers.

SAS scripts for implementation of GS. The SAS scripts for implementation of GS using Mixed PROC 
is provided in below textbox. We first read in the dataset named ‘data’ that contains the phenotypic data (y) and 
dummy variable (X = 1) for individuals in the sample. The kinship matrix K and the identify matrix for resid-
ual (e) are specified in the general linear covariance structure for estimation of the variance components. The 
residual variance is fixed at 0.0001. Refer to online SAS User’s Guide for detailed instructions of using Mixed 
PROC (https://support.sas.com/documentation/). These SAS scripts need to be built in a MACRO to run a cross 
validation.

proc mixed data=data;
class id;
model y=X/noint solution outp=result_pred;
random id/type=lin(1) ldata=k solution;
repeated/subject=intercept type=lin(2) ldata=e;
parms (1) (1) (0.0001)/lowerb=1e-5,1e-5,1e-5 hold=3;
ods output SolutionR=blup_pred SolutionF=fixed_pred CovParms=covar_pred;
run;

Results and Discussion
Analysis of Rice Data. In the current study, genotype by environment (G × E) interaction was not consid-
ered; thus, for each trait, we treated the four observed phenotypic values for each RIL as four simple replicates. We 
first calculated the average of the 4 values of each trait for each RIL. Using SAS Mixed Procedure or R\GSMX, we 
first analyzed the averaged phenotype using the regular GS analysis (without cross validation). Note that the var-
iances of genetics (σA

2) and residuals (σ2) are calculated using the entire data set. The results are presented in 
Table 1. We then applied the proposed algorithm to estimate the predictability and heritability for each trait using 
predicted genetic values through 10-fold cross validation (repeated 10 times for various data partitioning), which 
are also presented in Table 1.

The results showed that in non-cross-validation setting, the heritability appeared to be unrealistically larger 
than that shown in cross-validation setting. This is because, in non-cross-validation setting, a large number of 
neutral loci are used in regression analysis which overfitted the data and then overestimated genetic variances 
and the heritability. Whereas in cross-validation setting, the genetic variances and residual variance are calculated 
using predicted genetic values through cross validation, which provides a certain level of control for the potential 
overfitting in the training process. Note that, in cross-validation setting, the trait heritability calculated using the 
predicted genetic values is close to the trait predictability.

Analysis of Simulated Data. In order to demonstrate that genetic variances are overestimated in the 
non-cross-validation setting (indicated in Table 1), we did the following simulated studies. We adopted the geno-
types of the 1619 loci for each of the 210 RILs such that the natural genetic relationship between these RILs are 
preserved. For each of the 1619 loci, we simulated a genetic effect which is independently sampled from a normal 
distribution, i.e., ( )N 0, 1

400
. We only consider a single trait, for which the phenotypic values for each of the 210 

RILs were calculated by multiplying the genotypes and the genetic effects plus a random error which is inde-
pendently sampled from a normal distribution, i.e., N(0,1). Note that the ratio of the standard deviation of a 
genetic effect and the standard deviation of the residual was about 1/20 such that the overall heritability (accumu-
lated from 1619 loci) was close to 50%. We calculated the correlation between the genotypes of each locus and the 

GS Method Trait

Variance

Heritability PredictabilityGenetic Residual

Regular

YD 17.63 11.80 0.60 —

GW 10.63 0.55 0.95 —

TN 2.17 0.37 0.85 —

GN 647.85 126.56 0.84 —

Cross validation

YD 17.63 11.8 0.19 (0.01) 0.18 (0.02)

GW 10.63 0.55 0.75 (0.01) 0.75 (0.01)

TN 2.17 0.37 0.52 (0.01) 0.52 (0.02)

GN 647.85 126.56 0.40 (0.01) 0.40 (0.01)

Table 1. Results from the analysis of the rice data for 4 traits: yield (YD), 1000 grain weight (GW), tiller number 
(TN) and grain number (GN). The 10-fold cross validation has been repeated 10 times and the numbers in 
parentheses are the standard deviations of the averages.

https://support.sas.com/documentation/
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simulated phenotypic values; the 1619 loci were then sorted based on the strength of the association with the 
phenotype from the strongest association to the weakest association (the absolute value of Pearson’s correlation 
coefficient: min = 0.00026, median = 0.07707, max = 0.33090). The top 10% of the loci represent the most rele-
vant QTLs (absolute correlation ranges from 0.20677 to 0.33090). We first analyzed the data only with the top 10% 
loci to calculate the heritability with or without cross validation and the predictability with cross validation (the 
initial values for each curves in Fig. 2). Then, we repeated the analysis each time with additional 10% loci in the 
sorted list being added to the data until all 1619 loci were eventually included in the analysis. The results are sum-
marized in Fig. 2. The results show that if the top 30% most relevant loci (absolute correlation ranges from 0.12020 
to 0.33090) have been included in the analysis, the heritability (blue curve) and predictability (green curve) cal-
culated from cross-validation setting do not change very much when additional neutral loci are added to the data. 
On the contrary, with more and more neutral genes being added to the data, the heritability calculated in 
non-cross-validation setting continuously increased (red curve). This results supported our hypothesis that, with-
out the control by the cross-validation in GS analysis, including irrelevant loci will overfit the data, and subse-
quently overestimate the genetic variance and eventually the heritability. If only the top 10% loci were used in the 
GS analysis, Hcv and Pcv could not reach maximum, which indicated that the model is not optimal at this point. 
This is because that many relevant but only weakly associated loci were not included yet, yielding an incomplete 
modeling. When most relevant loci were included in the GS analysis, Hcv and Pcv tend to be quite stable, suggest-
ing that cross validation provides desirable control on overfitting due to the inclusion of neutral loci in the GS 
analysis. In general, the heritability calculated from non-cross-validation setting appeared to be much higher than 
those calculated from cross-validation setting, supporting the speculation of overfitting aforementioned. 
Moreover, the heritability calculated from cross-validation setting is very similar to the predictability that was 
calculated from the cross-validation setting (green and blue curves are close to each other in Fig. 2). An alterna-
tive approach to calculate Hcv is to use the ratio of the variance of the predicted genetic values (via cross valida-
tion) and the variance of the observed phenotypic variance.

We further did the following simulated study to demonstrate the deficiency of ANOVA analysis when com-
pared with the GS analysis with cross validation. We also adopted the genotypes of the 1619 loci for each of the 
210 RILs. Similarly, for each of the 1691 loci, we simulated a genetic effect from a normal distribution, i.e., 
N(0,σ2), where σ was chosen to be 1/10, 1/20, and 1/50, respectively. The phenotypic values for each of the 210 
RILs were calculated with the same manner, i.e., by multiplying the genotypes and the genetic effects plus a ran-
dom error which was independently sampled from a normal distribution, i.e., N(0,1). We chose different σg:σe 
ratios in order to simulate scenarios with various levels of overall or accumulated heritability (ranging from 0.2 to 
0.8). Note that these overall heritability is equivalent to the heritability that is calculated using GS model without 
cross validation. Therefore, the overall heritability only reflects the property of the entire training set; however, it 
does not indicate how well the genetic model developed from this training set would predict when it is applied to 
an independent set. This is the main point that we hope to address in the study. For each of the 210 RILs, we sim-
ulated 4 simple technical replicates (4 replicated measurements without additional block/replicate effect). We 
analyzed the data using three approaches: GS without cross-validation, GS with cross-validation, and ANOVA. 
Using GS analysis (either with or without cross-validation), we were able to analyze the 210 lines in each of the 
four replicated experiments separately, or analyze the average (a single value) of the four replicated measure-
ments. When we analyzed the averaged phenotypes using GS analyses, the sample size appears to be 210; however, 
since the sample mean (sufficient statistic) is used for the GS analysis, the effective sample size for this analysis is 
actually 210 × 4 = 840. However, when we analyzed the 210 lines in each of the four replicated experiments sepa-
rately, the effective sample size is only 210. The heritability without cross validation (H), the heritability with cross 
validation (Hcv), and the predictability with cross validation (Pcv) were calculated for each data analysis. In the 
ANOVA, all 840 phenotype values (210 lines × 4 replicates) were used to fit a linear regression model in R: Y ~ 
as.factor(line) + as.factor(replicate). The results from the three approaches are presented in Table 2.

Figure 2. Analysis of simulated data with loci being continuously added to the GS analysis. X axis in each plot 
represents the percent of the sorted loci that have been included in the analysis. Y axis in each plot represents 
the achieved heritability or predictability with or without cross validation. H: heritability without cross 
validation; Hcv: heritability with cross validation; Pcv: predictability with cross validation.
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The results in Table 2 clearly show that (1) the trait predictability is equivalent to the trait heritability with 
cross validation; (2) the trait heritability calculated with non-cross-validation setting is consistently higher than 
those from cross-validation settings, indicating overfitting due to oversaturated markers in the analysis (proved in 
Fig. 2); (3) trait heritability and trait predictability substantially gained when the average of replicated phenotypes 
are used in GS analysis because the effective sample size becomes larger; (4) the trait heritability calculated from 
the ANOVA is different from the trait heritability calculated from the GS analysis through cross validation; (5) 
with the same effective sample size (840 in this simulated study), using the average trait value in GS analysis with 
cross validation enjoys higher heritability than using the ANOVA analysis.

In the ANOVA analysis, we no longer analyzed the variance based on the genotypes of the markers; rather, we 
analyzed the variance between groups (or RILs) which represent a new independent variable derived from the 
genotype data. This gives a good explanation to the aforementioned observation (4). In addition, another type of 
overfitting is possible if more groups than necessary are used in the ANOVA analysis. For example, samples with 
similar genotypes may be placed into different groups (or RILs). We calculated the pair-wise correlations of gen-
otypes between the 210 RILs. It shows that the absolute correlation coefficient ranges from 0.0000016 to 0.9539, 
with 8 absolute correlation coefficients greater than 0.8. An ANOVA model with more than necessary groups/
parameters certainly overfits the data. This is analogous to the situation where too many ‘leaves’ or ‘branches’ are 
used to fit data with a ‘tree’ classification model. Therefore, the heritability calculated using ANOVA with reor-
ganized data is likely to be overestimated.

We further demonstrated the limitation of ANOVA when compared to the GS analyses using the following 
simulated study. Like the previous simulation, we simulated a genetic effect for each of the 1619 loci. The genetic 
effects were sampled independently from a normal distribution, i.e., ( )N 0, 1

400
. The phenotypic value for each of 

the 210 RILs was calculated by multiplying the genotype and the genetic effect plus a random error which was 
independently sampled from a normal distribution, i.e., N(0,1). The ratio of the standard deviation of a genetic 
effect and the standard deviation of the residual was about 1/20 such that the overall heritability in this simulation 
was about 50%. For each of the 210 RILs, we simulated different numbers of simple replicates, i.e., 10, 50, 100, 500, 
1000, and 5000 replicated measurements. We first analyzed each dataset using ANOVA. The heritability did not 
change as the sample size increases (Haov in Table 3). We then averaged the replicated measurements for each RIL 
and analyzed the averaged phenotype using GS analysis with and without cross validation. The heritability calcu-
lated without cross validation (H), the heritability calculated with cross validation (Hcv), and the predictability 
with cross validation (Pcv) are listed in Table 3. Hcv and Pcv increased as the sample size grew, indicating that 
using larger samples boosts the statistical power for GS analysis. Whereas, increasing sample size does not help 
ANOVA at all. Moreover, ANOVA required replicated measurements to perform the analysis of variances by 
comparing the variance between groups and the variances within groups; increasing the number of replicates 
within groups does not help increase the heritability of the genetic model based on ANOVA. On the contrary, GS 

σσ /g e

Replicate Average ANOVA

1 2 3 4 Rep 1–4 Rep 1–4

Sample Size 210 210 210 210 210 840

1/50 H 0.229 0.449 0.210 0.166 0.670 0.189

Hcv 0.012 0.136 0.008 0.006 0.215 —

Pcv 0.014 0.128 0.001 0.002 0.226 —

1/20 H 0.732 0.728 0.783 0.749 0.921 0.580

Hcv 0.322 0.358 0.440 0.323 0.660 —

Pcv 0.317 0.364 0.447 0.318 0.654 —

1/10 H 0.888 0.941 0.881 0.914 0.977 0.784

Hcv 0.628 0.666 0.588 0.610 0.811 —

Pcv 0.610 0.665 0.584 0.604 0.809 —

Table 2. Analysis of simulated data with different levels of heritability. H: heritability; Hcv: heritability 
calculated through cross validation; Pcv: predictability calculated through cross validation. In this simulation, 
we generated 4 replicates for each of 210 individuals.

Number of Replicates Haov H Hcv Pcv

10 0.5440 0.9707 0.8068 0.8082

50 0.5393 0.9981 0.8756 0.8774

100 0.5324 0.9951 0.8860 0.8894

500 0.5412 0.9999 0.8999 0.9038

1000 0.5424 0.9999 0.9073 0.9099

5000 0.5406 1.0000 0.9126 0.9162

Table 3. Analysis of the simulated data with different numbers of replicates. Haov: heritability calculated using 
ANOVA; H: heritability; Hcv: heritability calculated through cross validation; Pcv: predictability calculated 
through cross validation.
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analyses do not require replicates; high level of statistical power for detecting the genetic effects may be gained by 
scrutinizing the genome-wide high density markers. From Table 3, it is obvious to see the overfitting due to the 
inclusion of neutral loci if cross validation is not applied in GS analysis (H). Also, we have proved again that the 
heritability (Hcv) is equivalent to predictability (Pcv) when cross validation is applied to GS analyses.
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