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Novel Application of Magnetic 
Protein: Convenient One-Step 
Purification and Immobilization of 
Proteins
Min Jiang1, Lujia Zhang2,3, Fengqing Wang1, Jie Zhang4, Guosong Liu1, Bei Gao1 & Dongzhi Wei1

Recently, a magnetic protein was discovered, and a multimeric magnetosensing complex was validated, 
which may form the basis of magnetoreception. In this study, the magnetic protein was firstly used in 
biotechnology application, and a novel convenient one-step purification and immobilization method 
was established. A universal vector and three linker patterns were developed for fusion expression of 
magnetic protein and target protein. The magnetic protein was absorbed by iron beads, followed by 
target protein aggregation, purification, and immobilization. GFP, employed as a reporter protein, was 
successfully purified from cell lysate. Subsequently, three enzymes (lipase, α-L-arabinofuranosidase, 
pullulanase) with different molecular sizes testified the versatility of this magnetic-based approach. 
The specific activities of the purified enzymes were distinctly higher than those of the traditionally 
purified enzymes using affinity chromatography. The lipase immobilized on iron beads presented 
improved thermostability and enhanced pH tolerance compared to the free enzyme. The immobilized 
lipase could be easily recovered and reused for maximum utilization. After 20 cycles of reutilization, 
the magnetically immobilized lipase retained 71% of its initial activity. This investigation may help 
introduce magnetic protein into biotechnology applications, and the one-step purification and 
immobilization method may serve to illustrate an economically viable process for industry.

Whether animals can detect Earth’s magnetic field, and how can they orient or migrate by sensing magnetic field, is 
one of the most controversial topic. Many researchers have attempted to identify the magnetic sensing and search 
for magnetic receptor1–3. Recently, a magnetic protein biocompass was discovered and reported by Xie, et al.4.  
This biocompass is a multimeric magnetosensing rod-like protein complex, consisting of a novel magnetic recep-
tor and magnetoreception-related photoreceptor cryptochromes. The protein complex has been demonstrated to 
be widely distributed among species, and believed to inspire technology innovation across multiple fields.

Protein separation and purification are important processes in biotechnology5,6. Traditional methods, such 
as isoelectric point, sodium dodecyl sulfate, and gel permeation chromatography have been applied for vari-
ous kinds of proteins. In the case of low-concentration proteins, separation and purification signify challenging 
tasks7,8. Several fusion tags have been developed and the affinity chromatography has provided an efficient way 
to purify target fusion proteins9–11. Whereas, the high-cost of affinity column and time-consuming manipulation 
restrict the large-scale usability of this technique. Immobilization of proteins, especially enzymes, is routinely 
performed since it facilitates the recovery and reuse of expensive enzymes and improves cost-effectiveness12,13. 
Although many attempts have been made to exploit and optimize immobilization methods14–16, iron oxide nano-
particles with uniquely large surface-to-volume ratio and quantum size effects offer a quick, convenient, and eco-
nomical method for immobilizing enzymes17,18. Nevertheless, prior enzyme purification is necessary, followed by 
magnetic immobilization, which places a heavy burden on industrial application. Consequently, one-step purifi-
cation and immobilization has emerged as required. Ni2+-functionalized Fe3O4@polydopamin nanoparticles were 
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developed for his-tagged proteins19. Amino-functionalized MCFs were produced and adhered to aldehyde-tagged 
enzyme20. DNA aptamer-linked magnetic beads were obtained and applied to β-glucuronidases21. However, 
appropriate surface modification of iron oxide nanoparticles or mesocellular siliceous foam should be completed 
and evaluated before purification and immobilization, and the instability of modified nanoparticles restrict their 
repeated use.

In this study, the magnetic protein was used in biotechnology application for the first time. A universal vector 
for fusion expression of magnetic protein and target proteins was constructed, and a method using iron beads 
(no need for modification) for purification and immobilization of fusion proteins was developed, followed by 
experimental validation with GFP. Furthermore, several enzymes with different molecular sizes were employed 
to testify the versatility of this method. The detailed characteristics of immobilization enzyme were investigated as 
well. Our work provides a novel convenient method that can be exploited for numerous other protein purification 
and immobilization applications.

Results
Heterologous expression and purification of clMagR and dMagR.  Recombinant strains (BL21-
pET28a-clMagR, BL21-pET28a-dMagR) were grown in LB medium supplemented with appropriate antibiotic. 
After induction for 18 h, the recombinant clMagR and dMagR were overexpressed as soluble proteins (Fig. 1). 
Fe3O4-SiO2 nanoparticles were used to absorb and purify the clMagR and dMagR proteins. As shown in Fig. 1, 
both the purified clMagR and dMagR migrated as a single band on SDS-PAGE with an apparent molecular mass 
of about 14.6 kDa, which was identical to the calculated value. This result demonstrated the high specificity of the 
magnetic protein binding to iron beads.

Linker selection and purification of the fusion protein (clMagR-GFP).  Since clMagR and dMagR 
exhibited a similar expression level, clMagR was used to construct a universal vector (Fig. 2). In addition, three 
linker patterns were designed to purify fusion protein. Figure 3 illustrated that clMagR-GFP, clMagR-flexible 
linker-GFP, clMagR-rigid linker-GFP were all highly expressed in E. coli, and mainly in soluble forms. After 

Figure 1.  SDS-PAGE analysis of the recombinant MagR and the purified MagR. lane M: standard marker 
proteins; lane 1: supernatant of cell lysate (BL21-pET28a); lane 2: precipitation of cell lysate (BL21-pET28a); 
lane 3: supernatant of cell lysate (BL21-pET28a-clMagR); lane 4: precipitation of cell lysate (BL21-pET28a-
clMagR); lane 5: the purified clMagR protein; lane 6: supernatant of cell lysate (BL21-pET28a-dMagR); lane 7: 
precipitation of cell lysate (BL21-pET28a-dMagR). lane 8: the purified dMagR protein.

Figure 2.  The vector map of p28aMagR.
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purification with iron beads, the fusion proteins showed an apparent single band of 45 kDa according to 
SDS-PAGE analysis, which was consistent with the expected molecular mass of clMagR-GFP. Meanwhile, the 
data from fluorescence microtiter plate reader (Table 1) also indicated that GFP was efficiently expressed and 
displayed activity. These results indicated that the active GFP was successfully purified from cell lysate through 
adsorption of clMagR to iron beads.

Furthermore, as illustrated in Table 1, the fluorescence intensity of clMagR-GFP was similar to that of clMagR- 
flexible linker-GFP, but only a little lower than that of clMagR-rigid linker-GFP. In view of the simplicity and 
convenience of manipulation, no linker was added between the magnetic protein and the target protein in the 
following study.

The versatility of magnetic protein as purified label.  To expand the application of this purification 
method, three enzymes with different molecular sizes (lipase gene 549 bp, α-AF gene 1479 bp, pullulanase gene 
2766 bp) were chosen as target proteins. SDS-PAGE analysis indicated that clMagR-lipase, clMagR-α-AF and 
clMagR-pullulanase fusion proteins were all successfully expressed in E. coli. After absorption with Fe3O4-SiO2 
nanoparticles, these fusion proteins were effectively purified and showed a single band in SDS-PAGE respectively, 
which were in accordance with the expected molecular mass (Fig. 4).

The activities of clMagR-lipase, clMagR-α-AF and clMagR-pullulanase fusion proteins were detected. 
Meanwhile, the activity of free enzymes (without magnetic protein) were purified through Ni-NTA affinity chro-
matography and tested for comparison. Table 2 presented that the specific activities and purification fold of lipase, 
α-AF, and pullulanase (purified by Fe3O4-SiO2 nanoparticles) were much higher than that of free enzymes (puri-
fied by affinity chromatography), confirming the high specificity of magnetic-based method.

The absorption capacity (immobilization efficiency) of iron beads were tested. Different amounts of 
Fe3O4-SiO2 were added into cell lysates for protein purification. Table 3 illustrated that iron beads had the maxi-
mum adsorption capacity of 3.26 mg/g for clMagR-lipase.

Separation of the magnetic protein from the target protein.  Thrombin was added to cleave the 
magnetic protein from target protein. As presented in Fig. 5, after digestion at 37 °C for 1.5 h, or 20 °C for 3.5 h, or 
4 °C for 10 h, clMagR (absorbed with iron beads) was completely isolated from lipase and removed by centrifuga-
tion. The remaining lipase presented a single band on SDS-PAGE with an apparent molecular mass of 20.1 kDa, 
which was identical to the calculated value. The appropriate cutting temperature can be selected according to the 
temperature tolerance of the target protein. The specific activity of the remaining lipase was 1589.1 ± 141.7 U/mg, 
which was higher than that of free lipase (purified by affinity chromatography, without His tag, Table 2). Similarly, 
the clMagR label was successfully cleaved from α-AF and pullulanase, and the specific activities of α-AF and 

Figure 3.  SDS-PAGE analysis of the fusion protein (clMagR-GFP). (a) lane M: standard marker proteins; lane 1: 
supernatant of cell lysate (BL21-pET28a); lane 2: precipitation of cell lysate (BL21-pET28a); lane 3: supernatant 
of cell lysate (BL21-p28aMagR-rigid linker-GFP); lane 4: precipitation of cell lysate (BL21-p28aMagR-rigid 
linker-GFP); lane 5: the purified clMagR-rigid linker-GFP protein (the single band marked with the arrow); 
lane 6: supernatant of cell lysate (BL21-p28aMagR-flexible linker-GFP); lane 7: precipitation of cell lysate 
(BL21-p28aMagR-flexible linker-GFP); lane 8: the purified clMagR-flexible linker-GFP protein (the single band 
marked with the arrow); (b) lane M: standard marker proteins; lane 1: supernatant of cell lysate (BL21-pET28a); 
lane 2: precipitation of cell lysate (BL21-pET28a); lane 3: supernatant of cell lysate (BL21-p28aMagR-GFP); 
lane4: precipitation of cell lysate (BL21-p28aMagR-GFP); lane 5: the purified clMagR-GFP protein (the single 
band marked with the arrow).

Samples
BL21 
(pET28a)

BL21(p28aMagR 
-rigid linker-GFP)

BL21 (p28aMaR 
-GFP)

BL21 (p28aMagR 
-flexible linker-GFP)

Fluorescence intensity 208 ± 10 48094 ± 1265 42809 ± 1130 42632 ± 1072

Table 1.  Fluorescence intensity of clMagR-rigid linker-GFP, clMagR-flexible linker-GFP and clMagR-GFP.
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Figure 4.  SDS-PAGE analysis of clMagR-lipase, clMagR-α-AF, clMagR-pullulanase. (a) lane M: standard 
marker proteins; lane 1: supernatant of cell lysate (BL21-pET28a); lane 2: precipitation of cell lysate (BL21-
pET28a); lane 3: supernatant of cell lysate (BL21-p28aMagR-lipase); lane 4: precipitation of cell lysate (BL21-
p28aMagR-lipase); lane 5: the purified clMagR-lipase protein (the single band marked with the arrow); (b) lane 
M: standard marker proteins; lane 1: supernatant of cell lysate (BL21-pET28a); lane 2: precipitation of cell lysate 
(BL21-pET28a); lane 3: supernatant of cell lysate (BL21-p28aMagR-α-AF); lane 4: precipitation of cell lysate 
(BL21-p28aMagR-α-AF); lane 5: the purified clMagR-α-AF protein (the single band marked with the arrow); 
(c) lane M: standard marker proteins; lane 1: supernatant of cell lysate (BL21-pET28a); lane 2: precipitation of 
cell lysate (BL21-pET28a); lane 3: supernatant of cell lysate (BL21-p28aMagR-pullulanase); lane 4: precipitation 
of cell lysate (BL21-p28aMagR-pullulanase); lane 5: the purified clMagR-pullulanase protein (the single band 
marked with the arrow).

Sample Specific activity (U/mg) Purification (fold)

Crude extract 187.2 ± 14.5 1.0

clMagR-lipasea 1795.3 ± 172.8 9.6

Lipaseb 1589.1 ± 141.7 8.5

Free lipasec 1309.3 ± 112.6 7.0

Free lipased 1487.5 ± 153.8 7.9

Crude extract 15.0 ± 2.2 1.00

clMagR-α-AFa 139.5 ± 17.4 9.3

α-AFb 118.5 ± 14.3 7.9

Free α-AFc 87.0 ± 9.7 5.8

Free α-AFd 89.2 ± 8.5 5.9

Crude extract 2.85 ± 0.57 1.00

clMagR-pullulanasea 23.09 ± 3.85 8.10

Pullulanaseb 18.47 ± 3.29 6.48

Free pullulanasec 12.20 ± 2.44 4.28

Free pullulanased 12.31 ± 2.23 4.32

Table 2.  Enzyme activity of lipase, α-AF and pullulanase. aclMagR-enzymes were purified by iron beads. 
bclMagR was removed from enzymes. cFree enzymes were purified by Ni-NTA affinity chromatography. dHis tag 
was removed from free enzymes.

Iron beads (mg) Adsorbed target protein a (µg) Immobilization efficiency (protein/iron beads)

0 mg 0 µg 0 mg/g

0.5 mg 1.43 µg 2.86 mg/g

1 mg 3.26 µg 3.26 mg/g

1.5 mg 3.87 µg 2.58 mg/g

2 mg 4.32 µg 2.16 mg/g

Table 3.  Effect of the amount of iron beads on immobilization efficiency. aclMagR-lipase was used as target 
protein.
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pullulanase were also higher than activities of their respective free enzymes (purified by affinity chromatography, 
without His tag, Table 2). Note that the specific activity of clMagR-removed proteins were a little lower than that 
of clMagR fusion proteins. This may ascribe to enzymatic activity loss during the label-removing process.

Biochemical characterization of immobilized enzyme.  Upon absorption by iron beads, the 
clMagR-enzyme could be easily separated by centrifugation and reused for the next batch, thus regarding as 
immobilized enzyme. The characteristics of free lipase, clMagR-lipase (before purification), and immobilized 
lipase were investigated. As shown in Fig. 6a, the optimum temperature of the free lipase was 40 °C, but the high-
est enzymatic activity of clMagR-lipase and immobilized lipase were at 50 °C and 55 °C, respectively. Figure 6c 
clearly indicates that the free lipase exhibited its maximal activity at pH 9.0, while the maximum activity was at 
pH 10.0 for clMagR-lipase and immobilized lipase. Thermostability of the free lipase, clMagR-lipase, and immo-
bilized lipase was also studied. All enzymes featured a similar trend: the residual activity decreased with increased 
temperature. However, the immobilized lipase was obviously more stable than free lipase. At 50 °C, the residual 
activities of the immobilized lipase, clMagR-lipase, and free lipase were 42%, 34%, and 29%, respectively (Fig. 6b). 
The pH stability of these lipases were determined by incubating the enzymes in various buffers for 12 h. Figure 6d 
presents that immobilized lipase displayed much better pH tolerance in alkaline conditions than free enzyme. The 
magnetic immobilized lipase retained 65% of the optimal activity in excess alkali condition of pH 12.0, while the 
clMagR-lipase and free lipase maintained only 46% and 42%, respectively.

The reusability of clMagR-lipase was studied under constant conditions. As illustrated in Fig. 7, the immobi-
lized lipase maintained nearly 90% of its activity in the first 5 cycles, more than 80% activity after 12 batches, and 
retained 71% of initial activity even after 20th reuse.

Discussion
It is well-known that many species can perceive navigation cues from geomagnetic fields for the purpose of guid-
ance or navigation22. Recently, Xie et al. reported a putative magnetic receptor and a biocompass model, which 
may form the basis of magnetoreception in animals4. This novel magnetic protein is capable of detecting the 
magnetic field intensity and presents significant orientation preferences to the geomagnetic field. Such a magnetic 
protein was believed to inspire plenty of potential applications across different fields. In this study, we first used 
this magnetic protein as a label for purification and immobilization of other proteins.

For practical and economic reasons, integrating protein purification and immobilization steps draws great 
concerns in biotechnology and industrial applications23. Traditional approaches such as immunoaffinity chroma-
tography, metal affinity chromatography, and modified iron oxide nanoparticle immobilization mainly rely on van 
der Waals interactions, electrostatic interactions, and hydrogen bonding between the protein and the support24–26.  
Therefore, external environment factors, like ionic strength, pH, and temperature have strong impacts on the 
purification and immobilization process. Here, we established a novel one-step purification and immobilization 
method based on magnetic absorption. The penetrability of magnetism is independent of external conditions, 
thus providing a stable separation and immobilization process that can be extensively used in various conditions 
like extreme environment. Moreover, traditional methods are costly (affinity chromatography column, modi-
fication materials), complex to manipulate, time-consuming (sample loading and elution, modification of the 
support and evaluation), and contaminate the environment (usage of organic solutions, toxicity of metal iron). 
Magnetic-absorption-based purification and immobilization in this study could potentially overcome all these 
drawbacks.

In this study, a universal vector was constructed for fusion expression of magnetic protein and target protein, 
and GFP was employed as reporter protein to validate this purification method. Generally, linker was used to 

Figure 5.  SDS-PAGE analysis of separation of the magnetic protein from the target protein. lane M: standard 
marker proteins; lane 1:supernatant of cell lysate (BL21-pET28a); lane2: supernatant of cell lysate (BL21-
p28aMagR-lipase); lane 3: the purified clMagR-lipase protein (the single band marked with the arrow); lane 
4: the purified clMagR-lipase protein was digested with thrombin at 4 °C for 10 h; lane 5: the purified clMagR-
lipase protein was digested with thrombin at 20 °C for 3.5 h; lane 6: the purified clMagR-lipase protein was 
digested with thrombin at 37 °C for 1.5 h (the arrow refers to label-removed lipase (lane 4–6)).
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control the distance and prevent interference between two fusion proteins27,28. In our work, three linker patterns 
were designed, and a no-linker pattern was preferred since the low-molecular-size magnetic protein MagR did 
not affect green fluorescent intensity. Actually, in the subsequent experiments with the target proteins lipase, 
α-AF, and pullulanase, three linking patterns were all applied. The consistent results (data not shown) indicated 
that fusion expression with magnetic protein had little effect on target protein activity. Furthermore, to meet 
high demands of protein application, thrombin site was also introduced, and the target protein could be easily 
separated from MagR. In addition, the remaining iron beads could be reused continuously and steadily after sep-
arating from magnetic protein by boiling in a water bath.

Versatility is of great significance for novel purification approaches. In this work, three enzymes with different 
molecular sizes were successfully purified and verified the practicability and versatility of this magnetic purifica-
tion approach. SDS-PAGE analysis suggested that enzymes with lower molecular sizes were easier to purify. The 

Figure 6.  Characterization of free lipase, clMagR-lipase, and immobilized lipase. (a) The relative activity of free 
lipase (■), clMagR-lipase (●), and immobilized lipase (▲) at different temperature; (b) Thermostability of the 
free lipase, clMagR-lipase, and immobilized lipase; (c) Relative activity profile of free lipase (■), clMagR-lipase 
(●), and immobilized lipase (▲) at various pH conditions; (d) pH stability of the free lipase, clMagR-lipase, and 
immobilized lipase.

Figure 7.  Reusability of the immobilized lipase.
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probable reason is that proteins with larger molecular sizes are difficult to pull by MagR. Although the adsorption 
capacity was not high, using this magnetic-based purification method, the purification fold was much higher than 
that using Ni-NTA affinity chromatography. Therefore, in the case of low-concentration proteins, the purification 
method developed in our work has distinct advantages.

The characteristics of immobilized lipase were investigated in this work. In accordance with other immobili-
zation methods29–31, the magnetically immobilized lipase exhibited higher thermostability and pH stability. The 
enhanced thermal stability could be explained by a more rigid conformation, less denaturation and restricted 
diffusion of lipase aided through immobilization. Similarly, the increased pH stability can be attributed to the 
interaction between lipase and iron beads (through MagR), which could reduce drastic conformational changes 
during pH shifting. Reusability is another prominent advantage of immobilized enzymes, which in turn would 
commercially benefit biocatalyst applications. Many enzymes immobilized on modified iron oxide nanoparticles 
could be used for no more than 10 cycles32,33. This may be attributed to the fact that apart from the detachment 
between protein and the carrier, the separation of modification material from the support could also result in loss 
of enzymatic activity. But in the current study, the immobilized lipase maintained over 70% of its initial activity 
even after 20 cycles.

In summary, the magnetic protein was used in biotechnology for the first time, and a novel one-step protein 
purification and immobilization method was established in this study. A universal vector and three linker patterns 
were constructed for fusion expression of magnetic protein and target protein. Several proteins with different 
molecular sizes were used and verified the practicability of this magnetism-based approach. The detailed report 
of high purification specificity, improved stability and favorable reusability of immobilized enzyme demonstrated 
that the magnetic protein-based purification and immobilization method is facile, economical, and stable that can 
be easily extended to other protein systems. This study is a beneficial attempt and paved a way to apply magnetic 
protein in biotechnology applications.

Materials and Methods
Bacterial strains and plasmids.  Two magnetic protein (MagR) genes were used in this study: clMagR 
(GenBank Accession No. XP_005508102.1) and dMagR (GenBank Accession No. NP_573062.1), which were 
synthesized by GenScript (Nanjing, China). E. coli DH5α (Tiangen, Shanghai, China) was used for construc-
tion and conventional amplification of plasmids. E. coli BL21 (DE3) (Tiangen) was used for protein expression. 
Plasmid pET-28a(+) (Novagen, Darmstadt, German) was used to construct the protein expression vector. Genes 
encoding lipase (GenBank Accession No. KF040967.1), α-L-arabinofuranosidase (α-AF, GenBank Accession No. 
CP002403.1), pullulanase (GenBank Accession No. KJ740392.1) and green fluorescent protein (GFP, GenBank 
Accession No. KF410615.1) were preserved in our laboratory.

Chemicals.  PrimeSTAR high-fidelity DNA polymerase, T4 DNA ligase, and restriction enzymes were pur-
chased from Takara (Otsu, Japan). ClonExpress II One Step Cloning Kit was provided by Vazyme (Nanjing, 
China). The substrate 4-nitrophenyl palmitate, substrate 4-nitrophenyl-α-L-arabinofuranoside, substrate pul-
lulan and thrombin were supplied by Sigma-Aldrich (Milwaukee, USA). Other molecular biology reagents and 
chemicals (analytical grade) were obtained commercially.

Cloning and expression of clMagR and dMagR in E. coli.  Both clMagR and dMagR were amplified 
with the primers clMagRF/clMagRR and dMagRF/dMagRR (Table 4), respectively. After digestion by Nde I/Xho I 
and EcoR I/Xho I, the clMagR and dMagR genes were cloned into the plasmid pET-28a(+) respectively, which was 
also digested by the same restriction endonucleases. The positive clones were selected and confirmed by sequenc-
ing. The recombinant plasmids pET28a-clMagR and pET28a-dMagR were transformed into E. coli BL21 (DE3).

Recombinant cells (BL21-pET28a-clMagR, BL21-pET28a-dMagR) were cultured at 37 °C until the optical 
density (600 nm) reached 0.6-0.8. IPTG (20 µM) was added to induce clMagR or dMagR expression at 20 °C for 
18 h, then the cells were harvested and washed with distilled water. The collected cells were resuspended in TBS 
buffer (20 mM Tris, 150 mM NaCl, pH 7.5) and disrupted ultrasonically for 15 min. The cell lysate was centrifuged 
at 4 °C and the supernatant was collected.

Magnetic validation of clMagR and dMagR.  The clMagR and dMagR protein were purified by 
Fe3O4-SiO2 nanoparticles (BeaverBeads, Suzhou, China). 0.1 mL Fe3O4-SiO2 (10 mg/mL) was added into 0.5 mL 
cell lysate, followed by incubation for 10 min. The resultant precipitation was harvested by centrifugation, and 
washed three times with TBS buffer to remove the non-adsorptive proteins. Absorbed proteins were detected by 
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).

Construction of a universal plasmid.  A universal vector was constructed for fusion expression of mag-
netic protein and target protein. The pET-28a(+) vector was used as the skeleton. Then fragment I containing the 
whole clMagR gene was amplified using primers MagRF/MagRR (Table 4) with BamH I and Sac I restriction sites 
respectively. After digestion, fragment I was reclaimed and connected with pET-28a(+), generating the universal 
vector p28aMagR, which was validated by DNA sequencing.

Linker design and magnetic purification of GFP.  In order to control the distance and reduce inter-
ference between the magnetic protein and target protein, three linker patterns were utilized. Rigid linker 
(AAAGCGAAACTGAAAGAGGAGGAAGAGC GTAAGCAGCGCGAAGAAGAAGACGTATTAAACGT 
CTGGAAGAACTGGCG AAACGTAAAGAAGAGGAACGCAAA), flexible linker (GGCGGAGGTGGCTCT 
GGCGGTGGCGGATCG), and no linker were inserted between magnetic protein and target protein, respec-
tively. Meanwhile, thrombin-cleavage site was added to separate magnetic protein from target protein when 
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necessary. Green fluorescent protein (GFP) was selected as a reporter protein to determine the effect of different 
linkers on fusion protein activity (Fig. 8).

For plasmid construction, firstly, DNA fragments II and VI including the complete ORF of gfp were ampli-
fied using primers GFP1F/GFP1R and GFP2F/GFP2R, respectively (Table 4). Secondly, DNA fragments III and 
VII containing the thrombin digestion sequence + flexible linker and thrombin digestion sequence + rigid linker 
were synthesized, and applied as templates to amplify DNA fragment IV (primers linker1F/linker1R) and VIII 
(linker2F/linker2R), respectively. Thirdly, using fragments II + IV, and VI + VIII as templates, fragments V and 
IX were obtained with primers linker1F/GFP1R and linker2F/GFP2R, respectively. Next, the vector p28aMagR 
was digested by Sac I and Not I, and then integrated with the uniformly treated fragments V and IX, generating 
vectors p28aMagR-flexible linker-GFP and p28aMagR-rigid linker-GFP, respectively. Similarly, the gfp gene was 
amplified with the primers GFP3F/GFP3R. After digestion by Sac I/Not I, the gfp gene was cloned into the plas-
mid p28aMagR to obtain vector p28aMagR-GFP.

The recombinant plasmids p28aMagR-flexible linker-GFP, p28aMagR-rigid linker-GFP, and p28aMagR-GFP 
were transformed into E. coli BL21 (DE3) respectively. The vector p28aMagR was expressed in E. coli BL21 
(DE3) as control. Transformants were grown and induced with 20 µM IPTG at 20 °C for 10 h. Cells were har-
vested, washed two times with TBS buffer, and disrupted by ultrasonication. The fusion protein was purified by 

Designation Primer sequence (5′-3′)

clMagRF AGCCATATGATGGCATCTAGCGCATCATC a

clMagRR GTGCTCGAGTCAGATGTTAAAGCTTTCTC

dMagRF TCCGAATTCATGGCGACACGTGTGGTGGC

dMagRR GTGCTCGAGTTACATGCTGAACGATTCGC

MagRF CGCGGATCCATGGCATCTAGCGCATCATC

MagRR ACGGAGCTCGATGTTAAAGCTTTCTCCAC

linker1F ATCGAGCTCAAAGCGAAACTGAAAGAGGA

linker2F ATCGAGCTCGGCGGAGGTGGCTCTGGCGG

linker1R/linker2R TTCTCCTTTACTCATATGGCTGCCGCGCGGCACCA

GFP1F/GFP2F CCATATGAGTAAAGGAGAAGAACT

GFP3F ATCGAGCTCCTGGTGCCGCGCGGCAGCCATATGAGTAAAGGAGAAGAAC

GFP1R/GFP2R/GFP3R AGTGCGGCCGCTTATTTGTATAGTTCATCCA

lipaseF TCCGTCGACCTGGTGCCGCGCGGCAGCCATTCCTCAGGGCATAACCCTG

lipaseR GTGCTCGAGTTAATTTGTATTTTGTCCGC

AFF TCCGTCGACCTGGTGCCGCGCGGCAGCCATATGAAAAACTTCAAGATGC

AFR GTGCTCGAGTCAGTTCAGTGTGATCTCAA

pulluF TCCGTCGACCTGGTGCCGCGCGGCAGCCATGATTCTACTTCGACTAAAG

pulluR GTGCTCGAGTTATTGTTTGAGAATAAGCG

28a-lipaseF CGCGGATCCATGAAACATATAAAAAGCAA

28a-lipaseR GTGCTCGAGTTAATTTGTATTTTGTCCGC

28a-AFF CGCGGATCCATGAAAAACTTCAAGATGCT

28a-AFR GTGCTCGAGTCAGTTCAGTGTGATCTCAA

28a-pulluF TTCGAGCTCGATTCTACTTCGACTAAAGT

28a-pulluR GTGCTCGAGTTATTGTTTGAGAATAAGCG

Table 4.  Primers used in this study. aThe sequence underlined was introduced.

Figure 8.  The design patterns of fusion protein.
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Fe3O4-SiO2 nanoparticles as described above. Subsequently, the crude extract and the purified fusion protein were 
analyzed by SDS-PAGE. Meanwhile, 200 μL of MagR-GFP, MagR-flexible linker-GFP, and MagR-rigid linker-GFP 
solution was transferred to a 96-well microplate, respectively, and then placed in a BioTekTM CytationTM 3 Cell 
Imaging Multi-Mode Reader (Vermont, USA) with 485 nm excitation and 520 nm emission. GFP signals were 
read before being processed in Microsoft Excel34.

Purification and activity detection of lipase, α-AF and pullulanase.  In order to confirm the uni-
versality of this purification method, lipase, α-AF, and pullulanase with different molecular sizes were selected 
as target proteins. Primers lipaseF/lipaseR, AFF/AFR, pulluF/pulluR (Table 4), with Sal I and Xho I digestion 
sites, were synthesized to amplify the complete ORF of genes coding lipase, α-AF and pullulanase, respectively. 
Meanwhile, a thrombin digestion sequence was introduced in the 5’ end of these genes. The purified PCR prod-
ucts were digested with Sal I and Not I and integrated into universal vector p28aMagR, creating p28aMagR-lipase, 
p28aMagR-α-AF and p28aMagR-pullulanase, respectively.

Meanwhile, the coding sequence of lipase, α-AF and pullulanase were amplified with the primers 
28a-lipaseF/28a-lipaseR, 28a-AFF/28a-AFR, and 28a-pulluF/28a-pulluR, respectively. These PCR products were 
digested and cloned into plasmid pET28a (+), creating pet28a-lipase, pet28a-α-AF, and pet28a-pullulanase as 
comparison.

The recombinant vectors were transformed into E. coli BL21 (DE3) respectively. IPTG (0.1 mmol/L) was added 
to induce the cultures at 20 °C for 16 h. The cells were collected by centrifugation, washed with TBS buffer twice, 
and then disrupted by ultrasonication. The fusion proteins (MagR + lipase/α-AF/pullulanase) were purified by 
Fe3O4-SiO2 nanoparticles as described above (Fig. 9). Subsequently, the crude extracts and the purified fusion 
proteins were analyzed by SDS-PAGE. The free enzymes (without MagR) were purified using Ni-NTA sepharose 
column (Qiagen, Dusseldorf, Germany) according to the manufacturer’s protocol35. The protein concentrations 
were determined using BCA Protein Assay kit (Biotech Well, Shanghai, China) with bovine serum albumin (BSA) 
as a standard.

Lipase activity was determined according to the method described by Cai et al.36. One unit of lipase activ-
ity is defined as the amount of enzyme liberate 1 μmol p-nitrophenol per min from 4-nitrophenyl palmitate 
under the assay conditions. The α-AF activity was assayed in accordance with Yang et al.37. One unit of α-AF 
activity is defined as the amount of enzyme releasing 1 μmol p-nitrophenol per min using 4-nitrophenyl 
α-L-arabinofuranoside as substrate. The activity of pullulanase was estimated using the 3,5-dinitrosalicylic acid 
(DNS) method38. One unit of pullulanase activity is defined as the amount of enzyme required to release 1 µmol 
of glucose equivalent of reducing sugar per minute under the assay conditions.

To study the absorption capacity (immobilization efficiency) of iron beads, 0 mg, 0.5 mg, 1 mg, 1.5 mg and 
2 mg Fe3O4-SiO2 nanoparticles were added into the 1 mL cell lysate respectively, and incubated at room tem-
perature for 10 min. The resulting precipitate was harvested and washed three times with TBS buffer to remove 
the non-adsorptive proteins. The bead-adsorbed protein was boiled for 5 min, and separated from iron beads by 
centrifugation. The supernatant protein concentrations were determined using BCA Protein Assay kit (Biotech 
Well, Shanghai, China) with bovine serum albumin (BSA) as a standard.

Separation of magnetic protein from target proteins.  E. coli BL21 expressing p28aMagR-lipase, 
p28aMagR-α-AF, or p28aMagR-pullulanase were harvested and disrupted ultrasonically. The fusion proteins were 
purified with iron beads and then resuspended in 20 mM Tris-HCl buffer (NaCl 150 mM, pH 8.0). Subsequently, 
appropriate amount of thrombin (about 0.2 U) was added into 0.1 mL of fusion protein solution. The reaction 
mixture was incubated at different temperatures (4 °C, 20 °C, or 37 °C) for a certain period of time (10 h, 3.5 h or 
1.5 h). Finally, the iron beads with MagR protein were removed by centrifugation. The supernatants containing 
lipase, α-AF, or pullulanse were analyzed and detected by activity measurement respectively. Meanwhile, the free 
enzymes (with His tag, without MagR) were purified using Ni-NTA sepharose column. Subsequently, appropriate 
amount of thrombin (about 0.5 U) was added into 0.1 mL of free enzymes solution. The reaction mixture was 
incubated at 37 °C for 1.5 h. Finally, the activities of free enzymes (without His tag) were detected for comparison.

Figure 9.  The purification flow chart of target protein of fusion magnetic protein.
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One-step purification and immobilization of lipase.  The purification and immobilization of lipase was 
realized by the physical adsorption of iron beads and magnetic protein. The enzymatic properties and reusability 
of fusion lipase (clMagR-lipase) that immobilized on iron beads were analyzed. The characteristics of free lipase 
(purified by Ni-NTA affinity chromatography) and clMagR-lipase (before purification) were investigated for com-
parison. The optimum temperature for the immobilized lipase and free lipase was determined under standard 
assay conditions at different temperature (20–60 °C) (pH 9.0). The thermostability was evaluated by measuring 
the residual activity after incubating the enzymes at various temperatures ranging from 20 °C to 60 °C for 12 h in 
Tris-HCl buffer (pH 9.0). Similarly, to determine the optimum pH, immobilized lipase and free lipase activities 
were studied over a pH range of 5.0–12.0 at 40 °C. The pH stability was investigated by incubating the enzyme 
in different buffers for 12 h at 4 °C and the residual activity was measured as previously described. The following 
buffers were used: 50 mM citrate buffer (pH 5.0–6.0), 50 mM sodium phosphate buffer (pH 6.0–7.0), 50 mM Tris–
HCl buffer (pH 8.0–9.0), and 50 mM glycine-NaOH buffer (pH 10.0–12.0).

The reusability of the immobilized lipase was measured under constant conditions. Immobilized enzyme was 
recovered from the reaction media by centrifugal separation and washed with TBS buffer for the next batch. The 
reaction was conducted for a total of 20 batches, where the activity of the first run was defined as 100%.
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