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Higher-order Network Analysis 
of Fine Particulate Matter (PM2.5) 
Transport in China at City Level
Yufang Wang1,3, Haiyan Wang2, Shuhua Chang3 & Maoxing Liu4

Specification of PM2.5 transmission characteristics is important for pollution control and policymaking. 
We apply higher-order organization of complex networks to identify major potential PM2.5 contributors 
and PM2.5 transport pathways of a network of 189 cities in China. The network we create in this paper 
consists of major cities in China and contains information on meteorological conditions of wind speed 
and wind direction, data on geographic distance, mountains, and PM2.5 concentrations. We aim to 
reveal PM2.5 mobility between cities in China. Two major conclusions are revealed through motif analysis 
of complex networks. First, major potential PM2.5 pollution contributors are identified for each cluster 
by one motif, which reflects movements from source to target. Second, transport pathways of PM2.5 are 
revealed by another motif, which reflects transmission routes. To our knowledge, this is the first work to 
apply higher-order network analysis to study PM2.5 transport.

Accompanying the world’s fastest-growing industrialization and the consequent large amount of vehicle exhaust, 
China’s increasing occurrences of haze, especially PM2.5 (particulate matter smaller than 2.5 μm), have been linked 
to de\creased visibility, negative effects on human health, and influence on global climate. Air pollution has been 
one of the world’s most important eco-environmental problems. In 2012, a new ambient air quality standard (GB 
3095–2012) was set by the Chinese Environmental Protection Agency (EPA), which adds PM2.5 into the exist-
ing list of regularly monitored species. PM2.5 originates from many sources, such as road dust, vehicle exhaust, 
biomass burning, industrial emission and agriculture activities, as well as from regionally transported aerosols.

Regionally transported aerosols are an important factor for PM2.5 pollution1–6. There are a number of studies 
on regional transport for PM2.5. In2, it was found that the air quality of Shanghai is largely influenced by the air 
masses from the north, east and west directions, accounting for 44.8%, 30.4%, and 24.8% of all the air masses 
respectively. In3, the contribution of regional transport to PM2.5 was estimated in Lingcheng on the North China 
Plain. The PM2.5 from regional transport contributed 31.6% of the PM2.5 concentrations, with only 15.4% from 
the local emissions.

It is debatable how far PM2.5 can spread. A number of research works have studied PM2.5 transport in local, 
regional, or long-range scale1–8. In the existing works on PM2.5 transmission, it’s unclear how “local,” “regional,” 
and “long-range” transport are defined and distinguished. Relative geographic distances are indispensable factors 
for determining the pollution level. In this paper, if cities are separated by more than a certain distance, we assume 
their PM2.5 has no influence on each other.

In addition, the pollution level is highly influenced by meteorological conditions such as wind speed and 
wind direction9–14, which dramatically influence the diffusion, accumulation, and transport of air pollutants15,16. 
Generally, greater wind speed leads to stronger turbulence, resulting in more favorable dispersion conditions for 
pollutants17. Wind direction significantly affects PM2.5 transport because of the spatial distribution of pollution 
sources and air pollutants’ transportation18.

Mountains between cities are also a major factor influencing PM2.5 concentration. Where mountains exist, air 
does not flow between the cities. As depicted in19, Beijing is surrounded by mountains in three directions, and 
polluted air can not be easily expelled in that special geographical environment. Chongqing lies in a mountainous 
area of China. Influenced by the specific topographic condition, Chongqing is in the region of lowest wind speed 
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over China. In this paper, we considered thirteen major mountains in China to build a city-network, in which the 
PM2.5 of any two cities has no reciprocal influence, if there is a mountain between them.

PM2.5 has significant spatial and temporal characteristics in China5,20. Regionally, PM2.5 concentrations are 
generally higher in northern regions than in southern regions and tend to be higher in inland regions than in the 
coastal regions. Seasonally, the level of PM2.5 is highest in winter and lowest in summer. In wintertime, except for 
emissions from fossil fuel combustion and biomass burning, meteorological conditions largely contribute to the 
high concentrations of PM2.5. More frequent occurrences of stagnant weather, less rainfall, and low temperature 
are not good for pollution dispersion. Therefore, we choose January of 2016 for this research.

Presently, most of the methods for studying PM2.5 can be divided into two groups: deterministic and statistical 
approaches. Deterministic methods21,22 mainly focus on the formation mechanism of PM2.5 from the respective of 
meteorological-chemistry. In comparison, the statistical approaches, such as linear regression models23,24, neural 
networks25, and nonlinear regression models26,27, aim to detect certain correlated patterns between air quality 
data and various selected predictors, thereby predicting the pollutant concentrations in future. Each approach 
addresses problems from different perspectives.

Network analysis is an important and global method to study relationships between objects28,29, that can be 
organized into a graph. In graph theory, objects are presented as nodes and relationships between two nodes are 
presented as edges. Network analysis can group nodes into clusters whose members have certain common char-
acteristics. In general, there are more connections between the nodes within a cluster than between the nodes 
in different clusters. Yang et al.20 have applied the network tool in studying PM2.5. In20, the correlation between 
two PM2.5 emission profiles are investigated, and then network analysis is applied to cluster cities in China. The 
network structure in their work is depicted at the level of individual nodes and edges, which are considered to be 
lower-order connectivity patterns of complex networks.

Figure 1. Triangular motifs.

Figure 2. SSE varies with the number of clusters (K).
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Using higher-order organizations of complex networks as the basic building blocks of complex network can 
help us understand the fundamental structures of complex systems. The most common higher-order organization 
of complex networks is network motifs30,31. In particular, three-node motifs (Fig. 1) appear frequently in net-
works. In air traffic patterns, M8–M13 are fundamental units of network. M7–M7 are structural hubs in the brain. 
A generalized framework32 is developed for clustering networks based on higher-order connectivity patterns. 
In32, different network motifs can result in different higher-order clusters. Motifs (M5, M6, or M8) depict differing 
hierarchical flow between species in the Florida Bay ecosystem food web.

In this paper, we apply motif-based higher-order organization of complex networks to study PM2.5 transmis-
sion and analyze structures in each city-cluster by motif analysis. Specifically, this paper aims to cluster 189 cities 
in China and identify major potential PM2.5 contributors and regional transport pathways in each cluster. We first 
build an adjacency matrix of the complex network, combining geographic distance, wind speed, wind direction, 
mountains, and PM2.5 concentration. Then the cities are clustered by using the motif-based higher-order organi-
zation of complex networks. Then, we apply motif analysis to identify the structure in each cluster.

Figure 3. Nine clusters obtained by m8-motif spectral clustering algorithm. Tableau Public 10.3 (https://public.
tableau.com/) was used to create the map.

Figure 4. Spy plot of two representative clusters of Fig. 3 in January of 2016. The major potential PM2.5 
contributors in each cluster are marked in the plot. The number order in the spy plot is the ID in Supplementary 
Table S1.

https://public.tableau.com/
https://public.tableau.com/
http://S1
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To our best knowledge, this is the first work to apply higher-order organization of complex networks to PM2.5 
transmission. Network analysis not only gives a global view to examine PM2.5 transmission, but also reveals an 
internal structure of pollution between cities in China. This research can provide valuable information for the 
Chinese government to implement air pollution control.

Results
In Figs 3 and 5, a circle with its cluster number represents a city. The cities in a cluster are more densely connected 
with each other but sparsely connected with the cities in other clusters. In accordance with specific characteris-
tics of PM2.5 emissions in China, a cluster will usually consist of cities in the same province or close geographical 
proximity.

Clustering 189 cities into groups and identifying major potential pollution contributors in each 
cluster by motif m8. Motif m8 is chosen to identify major potential pollution contributors in each cluster. 
After we perform a higher-order spectral clustering algorithm, three connected components and some isolated 
points are included (see the Supplementary Table S1) in the m8-motif adjacency matrix of 189 cities. The largest 
connected component contains 170 cities, which form seven clusters. The number of total clusters K = 7 makes 
SSE relatively smaller, which can be seen from Fig. 2(a). Here SSE is defined at the end of this paper. The other two 
connected components compose cluster 8 (Changchun, Daqing, Jilin, and Mudanjiang) and cluster 9 (Jinchang, 
Lanzhou, Xining, and Yinchuan) respectively. Thus, nine clusters (see Fig. 3 and Supplementary Table S1) are 
obtained by a motif m8-based spectral clustering algorithm. The remaining 11 isolated cities can be explained 
by their geographic characteristics. Kelamayi, Wulumuqi, and Kuerler are located in the Mongolia Autonomous 
Region, and Jiayuguan is near the Mongolia Autonomous Region. Lhasa is a plateau area. Qiqihaer and Haerbin 
are in the most northerly province of China. Two representative clusters, cluster 2 (including Shanghai) and clus-
ter 4 (including Beijing), are illustrated below.

In cluster 4, there are 31 cities, covering most of northern China. They are shown in Fig. 4(a) and 
Supplementary Table S1. From the spy plots, we can observe that some cities of y-axis direction correspond to 
more dots in the horizontal line, which indicates that they have more out-direction arrow lines than other cities 
in the network subgraph of the cluster, such as Anyang, Baoding, Jiaozuo, Xingtai, and some cities, which are 
labeled in the spy plot. They are major potential PM2.5 contributors of Cluster 4. This is in agreement with the 
results of5,33. They concluded that the above cities are the heavily haze-affected cities in Beijing-Tianjin-Hebei, 
and that pollution from Shandong and Henan provinces by regional transport is also an important factor for the 
PM2.5 of North China.

In cluster 2, there are 51 cities, including all the cities from the Yangtze River delta and some of Shandong’s 
coastal cities, as shown in Fig. 4(b) and Supplementary Table S1. Jining, Xuzhou, Yancheng, Zhangjiagang, and 
some cities that are labeled in the spy plot are the potential PM2.5 contributors of cluster 2. Most of the potential 
PM2.5 contributors are in the north part of the cluster; this agrees with the spatial characteristics of PM2.5

5,20. Note 

Figure 5. 20 clusters obtained by m9-motif spectral clustering algorithm. Tableau Public 10.3 (https://public.
tableau.com/) was used to create the map.

http://S1
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that although Shanghai is a metropolis, it is not a major source of pollution in the cluster. Our conclusion accords 
with the results of2.

Clustering 189 cities into groups and identifying transport pathways in each cluster by motif 
m9. We choose motif m9 to identify transport pathways in each cluster. We can see, from Fig. 5, that only 166 
cities are shown and they are clustered into 20 groups. The remaining 23 cities are isolated and these isolated cit-
ies can also be explained by their geographic characteristics. Some of them are from the Mongolia Autonomous 
Region, the plateau area, the most northerly part of China, or from Gansu and Ningxia. All the clustering results 
are listed in Supplementary Table S2.

In Fig. 2, SSE is smaller when the number of total clusters K = 10. However, clustering with K = 10 leads to 
more cities in each cluster. It’s difficult to see the transport pathways clearly when more cities appear in each clus-
ter. Therefore, we choose K = 20 to cluster cities and identify transport pathways in each cluster through motif 
analysis.

Cluster 4 (including Shanghai), cluster 14 (including Beijing), and cluster 16 (including Tianjin) are shown in 
Fig. 6. For cluster 4, the PM2.5 transport pathway originates from Nantong and Huzhou in northwest to Wenzhou, 
Taizhou(s), Ningbo and Zhoushan in southeast. Shanghai is also generally downwind of the most developed and 
polluted YRD region in special meteorological conditions, which accords with2. For cluster 14, the main PM2.5 
transport pathway is from Shijiazhuang to the northeast of the cluster and the detailed PM2.5 transport pathway 
is shown in Fig. 6(b). Shijiazhuang is a key controlling point because of its relative high PM2.5 concentration and 
its location upwind of other cities in the cluster. Beijing’s pollution is partly from Shijiazhuang, as described in5. 
Cluster 16 includes Tianjin and cities of Liaotung peninsula, Shangdong peninsula. All of the cities are around 
Bohai; therefore wind affecting these cities varies frequently and wind directions are not all the same in dif-
ferent cities at the same time. One possible PM2.5 transport pathway originates from Tianjin, halfway between 

Figure 6. m9-motif analysis for three representative clusters obtained by motif spectral clustering algorithm 
based on January of 2016. Tableau Public 10.3 (https://public.tableau.com/) was used to create these maps.

http://S2
https://public.tableau.com/
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Huludao, Yingkou,Wafangdian and Dalian in Liaotung peninsula, and arrives at Yantai, Weihai and some cities in 
Shangdong peninsula. Another possible PM2.5 transport pathway is from Zhaoyuan to Yantai, Weihai and some 
cities in Shangdong peninsula, or to Huludao, Yingkou and some cities in Liaotung peninsula.

Discussion
In this paper, higher-order organization of complex network and spectral clustering methods are used to group 
cities in China. We obtain two major conclusions: specifically, major potential PM2.5 contributors and PM2.5 trans-
port pathways. Clustering of complex networks often provides a global view of the underlying networks. Through 
the new clustering method, we presents a new framework to investigate the transmission of PM 2.5 among major 
cities in China.

In general, statistical methods tend to apply data over a long period. The complex network we use in this paper 
intends to analyze the relationship of nodes in a certain state and reveals the essential structure of a complex sys-
tem. We intend to use the clustering method to identify the city-network, to aggregate cities, and to identify major 
potential PM2.5 contributors and transport pathways. As a result, in this study we collect data only for a short 
period. Specifically, only January data are used; this is justified for several reasons. PM2.5’s concentration shows an 
apparent seasonal pattern. High–frequency and high–concentration PM2.5 days usually occur in winter9,34. This is 
mainly due to meteorological conditions. In a short period, some meteorological conditions that affects the PM2.5 
can be thought to be relatively stable, and this is helpful for simplifying models. This is the main reason we choose 
data from one month for our study. As a result, less important factors such as temperatures and atmospheric pres-
sure can be ignored; thus, more important factors can be considered in a relatively simple model. As in1,9, we can 
ignore atmospheric pressure and temperature and consider major meteorological factors such as wind speed and 
wind direction that influence PM2.5 concentration in this paper. Wind speed and wind direction vary in each city 
constantly and they drive air pollution transport between cities. In constructing the adjacency matrix for the net-
work, we choose the monthly prevailing wind direction and monthly average wind speed. This approach allows us 
to better describe the fact of the frequent change of wind speed and direction in the present study. We believe the 
data from January suffice for identifying major potential pollution contributors and pollution transport pathways.

We assume that PM2.5 in city i has no influence on city j, if the straight-line geographical distance of the 
two cities is more than 500 kilometers. PM2.5 flow will dissipate during the propagation. In addition, when the 
straight-line geographical distance of the two cities is more than 200 kilometers, we assume PM2.5 in city i has 
influence on city j, only if city i’s PM2.5 concentration is higher than city j’s at certain extent. We use “500 kilom-
eters” and “200 kilometers” as the dividing values, mainly inspired by9, which concluded that aerosol nucleation 
and growth processes occur on the regional (several hundred kilometers) to urban (less than 100 kilometers) 
scales. Although there are many research works on regional transport of PM2.5, it is an open question as to how far 
PM2.5 can travel. In addition, we believe that many physical, biological and social models, for example35–44, could 
be used for estimating/predicting the long range transport of PM2.5.

Because meteorological conditions are complex, additional factors affecting PM2.5 should be considered in 
future studies. In addition, PM2.5 in city i has influence on other cities and the incidence should be inversely pro-
portional to the geographic distance. Therefore, it is more important that weighted complex networks should be 
considered in future.

In this paper, we consider some meteorological conditions and geographical data to cluster cities in China and 
identify the inner structure of each cluster. However, PM2.5 transmission between cities is a very complex issue. 
Economy, population, in-vehicle commuting, and many others are also indispensable factors that influence PM2.5 
transmission. More economic factors and social factors will be considered in our future work.

Data and Methods
Data. In this paper, we focus on the top 189 pollution–monitoring cities in China’s mainland, which cover 
all 34 provincial-level regions of China. The most polluted and the major cities are all included, such as Beijing, 
Shanghai and Guangzhou.

Data from January 2016 are used in this work to identify major PM2.5 pollution contributors and transport 
pathways in each cluster. The data that we collect in this paper are as follows: (1) PM2.5 monthly average concen-
tration is calculated based on ground air quality monitoring data from China’s National Environmental 
Monitoring. (2) The geo-location information in the forms of latitude and longitude of 189 cities are from Google 
Earth. (3) Thirteen major mountains with high altitudes in China (see Supplementary Table S3) are included in 
this paper. (4) Wind speed and wind direction data is from the China Meteorological Administration. Wind 
directions are classified into eight directions (e.g., N, E, S, W, W-S, E-S, W-N, E-N), We use the monthly prevailing 
wind direction of each city in January. The scaling of wind speed is based on the Jenks Natural Breaks 
Classification method10. Wind speed(ws) is divided into eight levels: ≤ .ws m s0 7 /  (Level-1), . < ≤ .ws m s0 7 1 1 /  
(Level-2) ,  . < ≤ .ws m s1 1 1 6 /  (Level-3) ,  . < ≤ .ws m s1 6 2 1 /  (Level-4) ,  . < ≤ .ws m s2 1 2 7 /  (Level-5) , 
. < ≤ .ws m s2 7 3 4 /  (Level-6), . < ≤ .ws m s3 4 4 4 /  (Level-7) and > .ws m s4 4 /  (Level-8). We use the monthly average 

wind speed. Here “monthly average” means the arithmetic average of the mean concentration levels or mean wind 
speed of each day in a calendar month.

Motif-based higher-order spectral clustering algorithm. The motif-based higher-order spectral clus-
tering algorithm in the supplementary materials of32 unifies motif analysis30 and k-means spectral clustering45 to 
reveal new organizational patterns and modules in complex systems. We use the method to cluster 189 cities in 
China and identify major potential PM2.5 contributors and PM2.5 transport pathways in clusters. The major steps 
are listed below.

 (1) Building the adjacency matrix A of the network and choosing motif M of interest. Specifically, in this 
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paper, matrix A is built as follows: m8 and m9 are chosen as the building modules to reveal the essential 
structures of the complex network; m8 reflects reveal the relationship between source and victims; m9 
reflects the transmission route.

 (2) Computing the motif adjacency matrix WM, whose entry W i j( , )M  equals the number of the motif instances 
of motif M with node i and node j.

 (3) Clustering 189 cities by spectral clustering algorithm through the motif adjacency matrix WM.

 a) Computing the normalized motif Laplacian = − − −L I D W DM M M M
1/2 1/2, where DM is diagonal matrix 

with = ∑D W( ) ( )M ii j M ij.

 b) Forming matrix X, st. = X x x x[ , , , ]k1 2 , where x x x, , , k1 2  are the k largest eigenvectors of LM.

 c) Calculating matrix Y, whose entry is = ∑Y X X/( )ij ij j ij
2 1/2.

 d) Taking each row of Y as a point in Rk and cluster the points into k clusters via k-means method45. In 
this paper, the optimal number of cluster(K) is chosen as follows, which is inspired by46.

 e) City j is assigned to cluster j if and only if row j of matrix Y is assigned to cluster j.
 (4) Analyzing every cluster using the motifs of (1). This paper applies motif m8 to analyze major potential 

contributors. In the social network graph, a node with the largest numbers of edges is commonly consid-
ered as source, from which information begins to disperse47. After using motif m8 to cluster 189 cities in 
the complex network, a city with more out-direction arrow lines shows that it has relatively high PM2.5 
concentration and it has a high influence ratio on the other cities of the cluster. The city can be regarded as 
one major PM2.5 pollution contributor in the cluster. This can be seen through the spy plot, which 
illustrates the network structure of the cluster. Motif m9 helps find PM2.5 transport pathway in every cluster. 
In Fig. 1, m9 corresponds to the PM2.5 flow from city a to city b, then from city b to city c.

Building an Adjacency Matrix. A network can be represented as a matrix, which is called the sociomatrix44 or 
adjacency matrix. Suppose the number of nodes is n. Let V and E be the sets of nodes and edges in the network, 
respectively. Then the adjacency matrix of the network can be expressed by matrix A∈{0, 1}nn. An entry 

∈A {0, 1}ij  denotes whether there is a link between node vi and node vj. If node vi and node vj are adjacent, then 
=A 1ij . Otherwise, =A 0ij . If the network is undirected, the adjacency matrix A is symmetric. However, in some 

situations, interactions between two different individuals are directional. In Twitter, for example, one user x fol-
lows another user y, but user y does not necessarily follow user x. In this case, the follower- followee network is 
directed and asymmetrical.

Based on PM2.5 monthly-average concentration, geographic distance between cities, monthly prevailing wind 
direction, monthly average wind speed, and mountains between cities (189 cities in China in January 2016), the 
detailed procedure for building the adjacency matrix is as follows:

(1) Adjacency matrix based on distance (A1): Based on the latitudes and longitudes of 189 cities, the relative 
geographic distances are calculated. The entry =A i j( , ) 01 , if the relative geographic distance is more than 500 
kilometers. Otherwise, =A i j( , ) 11 . The assumption is plausible because PM2.5 of each city has no effect on 
another city, if they are distant from each other.

We choose 500 kilometers, because it is an empirical value through numerical simulation. This is in agreement 
with9, which found that aerosol nucleation and growth processes occur on the regional (several hundred kilome-
ters) to urban (less than 100 kilometers) scales.

(2) Adjacency matrix based on mountain (A2): In the planimetric map, a major mountain can be expressed by 
a line segment through its latitudes and longitudes, which is called a mountain-segment. Therefore the 13 major 
mountains we considered are depicted by 13 different line segments. Meanwhile, there is a line segment between 
any two cities, which is called a cities-segment. If the cities-segment between city i and city j has a cross point with 
any of the 13 mountain-segments, the entry =A i j( , ) 02 . Otherwise, =A i j( , ) 12 .

(3) Adjacency matrix based on wind (A3): Wind speed and wind direction jointly affect the propagation of 
PM2.5 flow. Due to the wind direction, the effect from wind on PM2.5 transmission is directional. Specifically, PM2.5 
of city i may flow to city j. But it is possible that PM2.5 of city j may not be blown to city i.

We assume city i’s PM2.5 has no effect on any other cities, if wind level is less than 2. When the speed level is 
more than 2 (more than 1.1 m/s), the wind direction is a key point, determining whether PM2.5 flowing from city 
i affects city j. Specifically, in the planimetric map, there is a directional line segment from city i to city j. If the 
angle θij, between city i’s wind direction and the directional line segment from city i to city j, is less than 90 degree, 
we think city i’s wind can flow to city j.

The overall effect of wind from city i to city j is calculated by θ=A i j w cos( , ) ( )i ij3 , where wi is the wind speed of 
city i.

(4) Adjacency matrix based on PM2.5 (A4): The paper aims to study the major pollution contributors and the 
pollution transport pathways. And we are particularly interested in that how a city with high PM2.5 concentration 
affects a city with low concentration. Specifically, two situations are considered below.

Situation One: When the geographic distance is less than 200 kilometers, the PM2.5 of city i has effect on city j, 
as long as the PM2.5 concentration of it is higher than city j’s, then =A i j( , ) 14 . Otherwise, =A i j( , ) 04 .
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Situation Two: PM2.5 flow will dissipate during the propagation. Therefore, when the geographic distance is 
more than 200 kilometers, if and only if city i’s PM2.5 concentration is α × dij higher than city j’s, then =A i j( , ) 14 . 
Otherwise, =A i j( , ) 04 . Here dij is the geographic distance between city i and city j and α = .0 01 is an empirical 
threshold value through numerical simulation. Better α should be considered in future work according to the 
meteorological condition. α × dij is a degree of PM2.5 concentration, increasing with the geographic distance dij.

Clustering and motif analysis are based on the adjacency matrix =   A A A A A1 2 3 4, where “” is the 
Hadamard (entry-wise) product. Namely, PM2.5’s propagation is the combined effects of geographic distance, 
mountain, wind and PM2.5 concentration.

Selecting K. As in46, the sum of the squared distance between each member of a cluster and its cluster centroid 
(SSE) is defined as

∑ ∑=
= ∈

SSE dist c x( , ) ,
i

K

x C
i

1

2

i

where x is a city; ci is the centroid of cluster Ci; Ci is the i th cluster (cluster i); dist is the the standard Euclidean 
distance between two cities of Euclidean space. K is the number of clusters, and the optimal value is chosen from 
2 to 50, which makes dist smallest. The K larger than 50 has not much meaning for clustering 189 cities, which 
leads to too-detailed clustering.
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