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The piecewise parabolic method 
for Riemann problems in nonlinear 
elasticity
Wei Zhang  1,2, Tao Wang3, Jing-Song Bai3, Ping Li3, Zhen-Hua Wan1 & De-Jun Sun1

We present the application of Harten-Lax-van Leer (HLL)-type solvers on Riemann problems in 
nonlinear elasticity which undergoes high-load conditions. In particular, the HLLD (“D” denotes 
Discontinuities) Riemann solver is proved to have better robustness and efficiency for resolving complex 
nonlinear wave structures compared with the HLL and HLLC (“C” denotes Contact) solvers, especially 
in the shock-tube problem including more than five waves. Also, Godunov finite volume scheme is 
extended to higher order of accuracy by means of piecewise parabolic method (PPM), which could 
be used with HLL-type solvers and employed to construct the fluxes. Moreover, in the case of multi 
material components, level set algorithm is applied to track the interface between different materials, 
while the interaction of interfaces is realized through HLLD Riemann solver combined with modified 
ghost method. As seen from the results of both the solid/solid “stick” problem with the same material 
at the two sides of contact interface and the solid/solid “slip” problem with different materials at the 
two sides, this scheme composed of HLLD solver, PPM and level set algorithm can capture the material 
interface effectively and suppress spurious oscillations therein significantly.

Nonlinear elastic deformation of solid material undergoing high-load conditions commonly occurs in industrial 
application areas, such as the design of automobile anti-collision device, the evaluation of the capability of space-
craft structural materials against hypervelocity impact, and etc. For such a phenomena of technological interest, 
the research strategy can be classified into three categories: Lagrangian view1,2, Eulerian view3–5 and the combi-
nation of the above two views6. The Lagrangian view is more popular in engineering area as the mesh point for 
this view is always coincident with material point in the deformation process of material and no material point 
crosses the mesh boundary, leading to no necessity for processing material interface. While the material has a 
large deformation, the computational mesh will warp or distort. Although this problem can be overcome through 
mesh remeshing and deleting the abnormal meshes, the effects on the computational accuracy cannot be ignored 
yet. While for Eulerian view, fixed meshes are adopted and materials are allowed to pass through mesh interface, 
implying that mesh warp or distortion induced in the case of large deformation could be avoided in a large extent. 
Thus, it is relatively suitable for studying the problems featured with large material deformation. Despite of this, it 
is still a great challenge to apply the Eulerian reference frame as the capturing of the interfaces between different 
materials is quite complicated therein.

Elastic deformation of solid material is a common phenomenon in engineering, but to describe large deforma-
tion process7 accurately is still a tough task. In recent years, a variety of model equations and numerical methods 
have been developed under Eulerian view to simulate nonlinear elastic deformation behaviors of solid material, 
as reviewed by Benson8, Wilkins9. With regard to model equation, the ones of elastic strain law of materials 
should be added in Eulerian reference frame on the basis of the governing equations in Lagrangian reference 
frame, which are composed of mass, momentum and energy equations. The model equations describing elastic 
strain law can be divided into two major groups. The first one, whose variable is deviator stress tensor10–12, is con-
structed in non-conservative form and thermodynamically inconsistent. It is extensively applied in engineering 
as it could also account for plastic effect of solid material through Maxwell relaxation model, despite that its dis-
advantages of not ensuring the strict numerical resolution due to the non-conservative form and being unable to 
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treat strong variables (shock, expansion wave, etc.)4 correctly, are also obvious. With this in mind, several authors 
have put forward another group of model equation, which is in conservative form and based on deformation 
tensor. This group of model equation can also be classified into two types. The first type proposed by Romenski13 
and Godunov14 contains 9 transport equations for the components of deformation gradient tensor (F = ∂x/∂X, 
defined as the gradient of Eulerian coordinates to Lagrangian coordinates). Effects of plastic deformation are 
considered by adding source terms into these transport equations. The second one is constructed on the basis 
of inverse deformation gradient tensor (f = F−1 = ∂X/∂x, namely gradient of Lagrangian coordinates to Eulerian 
coordinates). This model, which needs to solve 21 equations in three dimensions, was firstly suggested by Plohr 
& Sharp3 for elastic solids and then developed to be applicable to rate-dependent and rate-independent plastici-
ties. It is worthwhile that the two types of strain law equations based on deformation gradient tensor and inverse 
deformation gradient tensor are mathematically equivalent.

Under Eulerian view, numerical methods for the simulation of nonlinear elastic deformation behavior need 
obviously to be able to handle large deformation simultaneously with high resolution, considering the potential 
complex mechanical behavior. The Godunov scheme based on the solution of local Riemann problem, which 
is an efficient method for shock capturing in fluid mechanics (see Toro15), satisfies this requirement and can 
be thus seen a reasonable choice for the simulation of deformation behavior. In 1959, Godunov proposed the 
original form of well-known Godunov scheme with only first-order accuracy in both space and time, which 
meant to solve exact Riemann problem at each inter-cell boundary, for a hyperbolic equation system of conser-
vation laws16,17. Hereafter, numerous works are devoted to the improvement of the Godunov scheme, including 
increasing the precision and resolution of the scheme as well as decreasing the computational time by using 
the approximate solution of Riemann problem to replace the exact solution (see Garaizar18, Miller19, Titarev20 
and Barton21). For the former, several researchers derived the scheme with second-order accuracy in space (e.g. 
MUSCL) by modifying the constant approximation of original variables to linear distribution4,22; while for the 
latter, Titarev20 discussed several approximate solution methods for nonlinear elasticity, including GMUSTA and 
EVILIN solvers, linearized method, and FORCE flux method. The other approximate methods include linearized 
method of Miller22,23, HLLC solver of Gavrilyuk4, Yannick Gorsse24, Alexia de Brauer25, Gavrilyuk4, HLLEM 
solver of Dumbser26 and HLLD solver of Lopez Ortega27 which is often used in magnetohydrodynamics(MHD) 
and is rarely utilized in solid mechanics. The results of these approximate methods in elasticity problems imply 
that these methods could obtain considerably accurate solutions except in some special cases where the lack of 
the robustness of linearized method may lead to the failure of solution process or the HLL and HLLC solvers are 
incapable of capturing the seven-wave structure in solid materials precisely.

Considering the case of multi-component solid material system, it is necessary to select proper numerical 
method for capturing the material interfaces and therewith solving the interaction between different materials. 
Under Eulerian’s frame, the methods of interface tracking type, such as level-set method, volume of fluid (VOF) 
method and marking particle method, are proved to be suitable for the treatment of multi-component solid mate-
rial problems, where it is necessary to keep the sharp shape of interface and interface smearing is unacceptable. 
The successful applications of these methods with solid mechanics model of conservative form include the works 
by Miller22, Wang28, Walter29 and Barton30. It is worthwhile that the over shoot phenomena, i.e. the non-physical 
oscillation at material interfaces, often occur when common numerical methods are used with interface track-
ing method. Thus, the highly efficient and reliable numerical method is needed to be developed with interface 
tracking method to achieve the two objects of studying the interaction between different materials and decreasing 
numerical oscillation at material interfaces at the same time.

In this study, we develop Godunov scheme for solving Riemann problems in nonlinear elasticity based on 
the coupling model developed by Godunov & Romenski14,31 in the Eulerian reference frame. On one hand, the 
capabilities of HLL family of Riemann solvers in the single elastic material problem are evaluated and compared. 
On the other hand, the Piecewise Parabolic Method (PPM)32, which is widely applied in the field of fluid mechan-
ics23,33, is employed to achieve higher-order spatial accuracy for simulating the mechanical behaviors of materials 
under the conditions of high-pressure and high strain rate. Furthermore, the efficiencies of these improvements 
as well as the usage of level set method for interface tracking in problems with multi material components are 
all examined in shock-tube problems, solid/solid “stick” problem, solid/solid “slip” multi-material problem, etc.

Results
In this section, we first present a comparative study of the HLL-type Riemann solvers which are applied in sin-
gle material cases. (Particularly, we select test cases that are known to cause severe difficulties for numerical 
computations to assess the accuracy and robustness of the schemes.) With the state equation given in Equation 
(10) employed, Equation (8) is solved in each test case under different initial and boundary condition. The com-
mon material parameters, which appear in state equation, are shown in Table 1. Moreover, first-order Godunov’s 
scheme is extended to PPM, which is featured with higher order of accuracy and used with different types of 
Riemann solvers for single material problem. Further, the validation of PPM combined with different types of 
Riemann solvers (especially the HLLD solver) are examined in one or two dimensional cases with multi materials 
by numerical experiments. In the test cases below, all one-dimensional initial value problems are solved in a com-
putational domain 0 m ≤ x ≤ 1 m, and the initial discontinuity is placed at the location of x0 = 0.5 m. Transmissive 
boundary conditions are applied at the computational domain boundaries and the CFL number is set to be 0.8 
unless otherwise specified.

Test case 1: Contact discontinuity problem. In this case, we solve the Riemann problem with initial 
density and velocity distributions corresponding to a contact discontinuity. At both sides of this discontinuity, the 
materials are both copper and the initial distributions are as follows:
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Here we solve the case within the dimensional time t = 0.7 ms on a mesh of 500 cells and make a quantitative 
comparison with the exact solution W(x, t) = W(x − 0.01t, 0). Figure 1 presents the profiles of density ρ and veloc-
ity component u computed by first-order Godunov’s scheme with three kinds of Riemann solvers, i.e. HLL, HLLC 
and HLLD (In the following we denote the methods of first-order Godunov’s scheme combined with HLL, HLLC 
and HLLD Riemann solvers by ‘1st + HLL’, ‘1st + HLLC’ and ‘1st + HLLD’, respectively.) It is clearly shown that 
the HLLC and HLLD solvers produce nearly accurate density profiles which are almost coincident, while the 
density profile derived by HLL is rather different from the exact solution. For the velocity distribution, the results 
from three methods, among which only that from HLLD is nearly coincident with the exact solution, are consid-
erably different. The L1 norm errors and convergence orders of density ρ and deformation gradient F11 at time 
t = 0.7 ms for test case 1 are presented in Table 2 for 1st + HLL, 1st + HLLC and 1st + HLLD. It is observed that all 
first-order methods are converging at the order of ∆O x( )

1
2  rather than O(Δx).

Test case 2: Five-wave shock-tube problem. In the present case, the materials at both sides of the dis-
continuity interface still are copper. The initial distributions satisfy compatibility condition and are given as
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For this case, the solution structure comprises five waves (from left to right): two left-travelling rarefaction waves, 
a right-travelling contact discontinuity wave, a right-travelling rarefaction wave and a right-travelling shock wave, 
respectively. The solution derived by high-order scheme with a fine mesh is used as the reference solution for 
comparison.

Parameters Cu Al Steel Units

ρ0 8.93 2.71 8.03 g/cm3

c0 4.6 6.22 5.68 km/s

cv 3.9 × 10−4 9.0 × 10−4 5.0 × 10−4 KJ/gK

T0 300 300 300 K

b0 2.1 3.16 3.1 km/s

α 1.0 1.0 0.596 —

β 3.0 3.577 2.437 —

γ 2.0 2.088 1.563 —

Table 1. The material parameters of equation of state.

Figure 1. Contact discontinuity problem. The profiles of density (a) and velocity (b) at t = 0.7 ms. The symbols 
are plotted with a spacing of 4 cells. The solid line represents the exact solution.



www.nature.com/scientificreports/

4Scientific RepoRTs | 7: 13497  | DOI:10.1038/s41598-017-13484-z

We solve this problem within the dimensional time t = 0.06 ms on a mesh of 500 cells by using first order 
scheme with HLL, HLLC and HLLD solvers. The density profiles are shown in Fig. 2, where the exact solution is 
denoted by solid line. It is seen that HLL has the most diffusive result in the region 0.4 m ≤ x ≤ 0.6 m, where HLLC 
and HLLD provide more accurate results. Also, it is found that HLLD performs better than HLLC as shown in 
the local enlarged graph Fig. 2(b). To check grid convergence, the cell number is increased from 500 to 1000 and 
2000 with the same time interval and the results from different gird resolutions are compared in Fig. 3. As shown 
in Fig. 3(a), the convergence rate is relatively low for HLL, and the density profile with 2000 grid cells is even 
very diffusive around x = 0.5 m. With increasing cell number, the density profiles derived from HLLC and HLLD 
are improved in the vicinity of x = 0.5 m, although the convergence rates are still very low due to their low-order 
nature. Relative CPU-times, which are the corresponding multiples relative to the CPU time taken by first order 
scheme coupled with HLL with the coarsest grid (N = 500), are given in Table 3 for different combinations of 
computational scheme and Riemann solver. While first order Godunov’s scheme is used, the CPU time spent by 
HLLC is approximately 1.7 times as long as that by HLL, and the time spent by HLLD is approximately 2.2 times 
as long as that by HLL. In summary, the first-order scheme can only give relatively reasonable solution even with 
very fine meshes and the use of HLLC and HLLD, having low convergence rate.

In the present framework, a simple way to increase the resolution of shock and discontinuity is to employ 
high-order reconstruction. Herein, we accomplish such reconstruction by applying Piecewise Parabolic Method 
(PPM), which is coupled with Riemann solvers, including HLL, HLLC and HLLD. Figure 4 plots the profiles of 
density derived from different combinations of PPM and Riemann solver: the one of PPM and HLL (denoted as 
‘PPM + HLL’), the one of PPM and HLLC (denoted as ‘PPM + HLLC’) and the one of PPM and HLLD (denoted 
as ‘PPM + HLLD’). As shown in Fig. 4(a), the profiles can be resolved reasonably using a mesh containing only 
100 cells. When the number of cells is increased to 500, the contact discontinuities, shock waves and the rarefac-
tion wave in the region of 0.1 m ≤ x ≤ 0.2 m are all captured accurately, as shown in Fig. 4(b–d). Compared with 
exact solution, the scheme PPM + HLLD is seen to have the most accurate solution, particularly in the region of 
0.4 m ≤ x ≤ 0.5 m where the solution exhibits very slow convergence rate. The CPU time spent by PPM + HLLC 
is approximately 1.3 times as long as that by PPM + HLL, while the time spent by PPM + HLLD is approximately 
1.8 times as long as that by PPM + HLL. The L1-norm errors at time t = 0.06 ms and convergence rates for all 
combinations of PPM and Riemann solver are presented in Table 4 for test case 2.

Scheme N

ρ F11

L1-error L1-order L1-error L1-order

1st order + HLL

100 2.22E-01 — 2.91E-02 —

200 1.58E-01 0.491 2.08E-02 0.489

400 1.12E-01 0.499 1.47E-02 0.497

1st order + HLLC

100 1.09E-02 — 5.25E-03 —

200 7.66E-03 0.503 3.72E-03 0.498

400 5.35E-03 0.517 2.59E-03 0.524

1st order + HLLD

100 6.97E-03 — 8.22E-04 —

200 4.89E-03 0.510 6.17E-04 0.414

400 3.01E-03 0.701 3.84E-04 0.685

Table 2. L1 Errors and orders of convergence for the test case 1.

Figure 2. Five-wave shock-tube problem. The profiles of (a) density (b) partial enlargement at t = 0.06 ms 
computed by HLL, HLLC and HLLD.The symbols are plotted with a spacing of 4 cells. The solid line represents 
the exact solution.
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Test case 3: Seven-wave shock-tube problem. Having assessed the performance of different schemes 
in the five-wave shock-tube example, we further test the accuracy and robustness of the high-order scheme 
PPM + HLLD in solving a more complex problem, i.e. the seven-wave shock-tube problem, by adding an addi-
tional degree of shear deformation. The initial conditions of this problem are
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The solution structure for this case is composed of three left-travelling rarefaction waves, a right-travelling con-
tact discontinuity, two right-travelling rarefaction waves and a right-travelling shock wave. The results shown in 
Fig. 5 are obtained by the scheme PPM + HLLD on a mesh of 500 cells with the dimensional computational time 
t = 0.06 ms. As shown in Fig. 5, all the seven waves are captured precisely, implying that the PPM + HLLD scheme 
indeed has superiority and good robustness in processing the solid material problem with complex multi-wave 
structure. CPU times for test case 3 are comparable to those for test case 2 shown in Table 3. The L1-norm errors 
at time t = 0.06 ms and convergence rates of PPM + HLLD are presented in Table 5 for test case 3.

Test case 4: Solid/solid ‘stick’ problem. With the purpose of examining the performance of the method 
PPM + HLLD in the multi material problem, we will solve the solid/solid ‘stick’ problem and solid/solid ‘slip’ 
problem in the following two cases (test case 4 and 5) by using it. For the former, the materials at two sides 

Figure 3. Five-wave shock-tube problem. The profiles of density computed by (a) HLL (b) HLLC (c) HLLD at 
t = 0.06 ms with different mesh size. The solid line represents the exact solution.

N HLL HLLC HLLD PPM + HLL PPM + HLLC PPM + HLLD

500 1.00 1.74 2.15 1.50 1.97 2.62

1000 4.25 6.80 8.52 5.26 7.80 11.27

2000 15.67 26.32 33.7 23.80 30.80 38.36

Table 3. Computation times for test case 2. CPU times are shown relative to the first order scheme coupled with 
HLL Riemann solver on the coarsest grid.
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of contact interface where the ‘stick’ condition is satisfied are the same and thus the Riemann solvers for both 
single-material and multi-material situations can be utilized for solution. When multi-material HLLD solver is 
used, level-set method for interface tracking must be applied in conjunction. This technique of PPM combined 
with multi-material HLLD solver and level-set method is referred to as ‘PPM + HLLD(M)’. And, the one of PPM 
coupled with single-material HLLD solver is denoted as ‘PPM + HLLD(S)’.

The initial conditions for test case 4 are
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The solution structure comprises (from left to right): a left travelling longitudinal shock, transverse rarefaction 
wave, transverse shock, and the relevant right travelling waves, which are symmetric to the left travelling ones. 

Figure 4. Five-wave shock-tube problem. The profiles of density at t = 0.06 ms computed by different schemes. 
The results computed using a mesh of (a) 100 cells. (b) 500 cells. (c,d) are partial enlargement of (b). The solid 
line represents the exact solution. In (b–d), the symbols are plotted with a spacing of 4 cells.

Method N

u1 u2 F11

L1-error L1-order L1-error L1-order L1-error L1-order

PPM + HLL

250 1.47E-02 — 2.51E-02 — 6.27E-03 —

500 9.04E-03 0.704 1.70E-02 0.561 4.14E-03 0.599

1000 5.24E-03 0.788 1.12E-02 0.600 2.77E-03 0.579

PPM + HLLC

250 8.85E-03 — 1.81E-02 — 2.82E-03 —

500 5.13E-03 0.786 1.17E-02 0.633 1.77E-03 0.674

1000 2.65E-03 0.955 7.19E-03 0.699 1.00E-03 0.819

PPM + HLLD

250 7.94E-03 — 9.65E-03 — 2.35E-03 —

500 4.45E-03 0.835 5.76E-03 0.745 1.39E-03 0.761

1000 2.11E-03 1.077 3.08E-03 0.904 7.07E-04 0.973

Table 4. L1norm errors and orders of convergence for test case 2.
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In the solving process, the CFL number is set to be 0.6 and a mesh of 1000 cells is used in the computational 
domain. The profiles of density and entropy are shown in Fig. 6 at time t = 0.06 ms. Compared with the exact 
solution, the ones from PPM + HLLD(S) and PPM + HLLD(M) techniques are both featured by sharp peaks 
across shocks. Further, it is also found that spurious overshoots occur in both density and entropy profiles in the 
vicinity of x = 0.55, due to the fact that variables are not conserved across linearly degenerate field. Compared 
with PPM + HLLD(S), PPM + HLLD(M) can effectively suppress the spurious overshoot phenomenon due to the 
use of entropy fix technique, as illustrated in the Fig. 6(b,d). Nevertheless, it is noteworthy that this kind of error 
could not be eliminated completely in the present method framework, which still needs to be improved further 
in future.

L1 norm error and its convergence order for selected variables are shown in Table 6 with different cell numbers 
and method combinations such as 1st + HLLD, PPM + HLLD(S) and PPM + HLLD(M). It is found that L1 error 
norm for primitive variables exhibits approximately first-order convergence trend for both PPM + HLLD(S) and 
PPM + HLLD(M) techniques on account of the discontinuities (longitudinal shock, contact discontinuity and 
transverse shock) present in the solution. Further, the errors for all schemes decrease with increasing cell number, 
implying that the solutions are converging. For tangential velocity u2 and deformation gradient F31, the errors 
obtained by applying PPM on the coarsest mesh are lower than those by 1st-order Godunov’s scheme on the 
finest mesh, which indicates PPM indeed has higher order of reconstruction accuracy once again. In summary, 
the results for this case demonstrate that the material interface could be tracked accurately by level-set method, 
and highly precise solutions could be obtained by applying PPM + HLLD(M) with the spurious overshoots being 
suppressed simultaneously.

Test case 5: solid/solid ‘slip’ multi-material problem. The initial conditions for this case are different 
from that for test case 5. In detail, the material at the left side of interface is now aluminum, while the one at the 
right side is still copper, with the slip condition satisfied at the material interface in the middle. The solution struc-
ture of this problem comprises six nonlinear waves, which are three left-travelling shocks inside the aluminum 

Figure 5. Seven-wave shock-tube problem computed by PPM coupled with HLLD. The profiles of density (a) at 
t = 0.06 ms. (b,c) are partial enlargement of (a). The symbols are plotted with a spacing of 4 cells.

Scheme N

u1 u2 F11

L1-error L1-order L1-error L1-order L1-error L1-order

PPM + HLLD

250 7.20E-03 — 7.59E-03 — 2.63E-03 —

500 3.75E-03 0.940 4.77E-03 0.669 1.53E-03 0.782

1000 1.92E-03 0.966 2.59E-03 0.884 8.25E-04 0.892

Table 5. L1 Errors and orders of convergence for the test case 3.
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medium, three right-travelling shocks inside the copper medium, and a right-travelling contact discontinuity. We 
solve the problemm by means of the technique PPM + HLLD(M) for multi material situation within the dimen-
sional time t = 0.05 ms. CFL number is fixed to be 0.6 and two meshes, including 100 cells and 1000 cells respec-
tively, are used. Various variable profiles are shown in Fig. 7. With only 100 cells, the wave structure is captured 
reasonably by PPM + HLLD(M), although the numerical solution seems to be diffusive near the discontinuities. 
As the cell number is increased to 1000, the profiles of density, stress components and velocities near shocks 
become sharp without significant spurious oscillations, implying that PPM + HLLD(M) could be applied in multi 
material problems successfully. The L1 norm errors at time t = 0.05 ms and convergence rates of PPM + HLLD(M) 
are presented in Table 7 for test case 5.

Test case 6: impact of a projectile on a solid plate. In this two-dimensional case, the technique 
PPM + HLLD(M) for multi material situation is utilized to simulate the impact problem of a projectile on a solid 
plate surrounded by vacuum. The initial configuration is shown in Fig. 8. The projectile is a square with the length 
of 0.1 m while the plate is 0.5 m long and 0.1 m wide. The simulation starts from the moment when the projectile 
gets in touch with the plate. The materials of the projectile and plate considered are both copper. The computa-
tional grid covers the domain [−0.5 m ≤ x ≤ 0.5 m, −0.5 ≤ y ≤ 0.5 m] with uniform cell sizes in x and y directions 
as Δx = Δy = 1/1000 m, and the time step is determined from the CFL number which is fixed to be 0.6. At the 

Figure 6. Solid/solid “stick” problem: profiles of density and entropy at t = 0.06 ms, which are computed by 
PPM + HLLD(S) and PPM + HLLD(M), respectively.

Scheme N

u1 u2 F31

L1-error L1-order L1-error L1-order L1-error L1-order

1st + HLLD

500 2.79E-03 — 1.15E-03 — 6.15E-04 —

1000 1.37E-03 1.030 7.82E-04 0.551 4.21E-04 0.546

2000 7.16E-04 0.931 5.37E-04 0.542 2.83E-04 0.572

PPM + HLLD(S)

500 2.74E-03 — 3.93E-04 — 1.23E-04 —

1000 1.39E-03 0.983 2.35E-04 0.743 7.42E-05 0.725

2000 6.77E-04 1.034 1.37E-04 0.781 4.15E-05 0.837

PPM + HLLD(M)

500 1.90E-03 — 3.04E-04 — 1.40E-04 —

1000 1.00E-03 0.923 1.78E-04 0.768 7.73E-05 0.862

2000 5.07E-04 0.987 9.73E-05 0.874 4.28E-05 0.853

Table 6. L1 Errors and orders of convergence for the test case 4.
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initial time all materials are assumed to be in a stress free state: F = I and S = 0. Further, the cooper target is set to 
be static, while the copper projectile is initialized with a non-zero velocity component: u1 = 800 m/s. The solution 
of this test case was performed using a similar Eulerian model as that developed by Favrie34 and Gorsse24, where 
the projectile and plate are surrounded by air.

The schlieren images of the density are shown at time t = 1.0 × 10−5 s, t = 2.0 × 10−5 s, t = 2.3 × 10−4 s and 
t = 6.5 × 10−4 s in Fig. 9. It is found that elastic shock propagates away from the impact surface, reaches the free 
surface and is subsequently reflected to form a rarefaction wave. Further, the elastic material is deformed and 
its surface oscillates with time, having strong similarity to the phenomena depicted by Favrie34 and Gorsse24. 
These facts may become one part of the evidence for the robustness of the technique PPM + HLLD(M) in 
two-dimensional cases.

Figure 7. Solid/solid “slip” problem computed by the scheme PPM + HLLD(M). The profiles of density, 
entropy, stress components and velocities at t = 0.05 ms.

Scheme N

u1 u2 F11

L1-error L1-order L1-error L1-order L1-error L1-order

PPM + HLLD(M)

250 1.08E-02 — 1.91E-03 — 1.25E-03 —

500 4.85E-03 1.155 9.41E-04 1.019 5.44E-04 1.197

1000 2.26E-03 1.099 4.53E-04 1.055 2.56E-04 1.085

Table 7. L1 Errors and orders of convergence for test case 5.
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Test case 7: One-dimensional smooth problem. Finally, to test the accuracy of our method 
PPM + HLLD for smooth problems, we carry out the computation for a one-dimensional nontrivial and shock-
less problem with the material of copper and the initially Gaussian-shaped disturbance condition given by 
F = I/1.1, u = 0, εi = ε1ωi + (1 − ωi)ε2, ε1 = 0.823, ε2 = 10ε1, and ω π= −a x a1/ / 2 exp( /(2 ))i i

2 2 , where a2 = 100 is 
the distribution variance and xi is the coordinate of the center of cell i. Further, the computational region is 
0 m ≤ x ≤ 40 m and a transmissive boundary condition is used.The solution derived by high-order scheme with a 

Figure 8. Schematic of initial conditions for the copper impact test.

Figure 9. Impact at u1 = 800 m/s of a copper projectile on a copper plate at rest surrounded by vacuum. 
Numerical Schlieren pictures of the density at t = 1.0 × 10−5 s, t = 2.0 × 10−5 s, t = 2.3 × 10−4 s and 
t = 6.5 × 10−4 s.
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fine mesh is utilized as the reference solution for accuracy and error analysis. The initial conditions and computed 
results at t = 1 ms are shown in Fig. 10 for this test case, for which the differences between the results from differ-
ent grid resolutions are nearly invisible. The L1 norm errors for density ρ, normal velocity u1 and deformation 
gradient F11 at the output time t = 1 ms and the convergence rate of PPM + HLLD scheme are presented in Table 8, 
from which we could conclude that the results converge with the order of larger than 3, implying that 
PPM + HLLD is at least third-order accurate for smooth problems.

Discussion
In this study, the governing equations developed by Godunov & Romenski14,31 are utilized to describe the elastic 
deformation of solid materials in Eulerian reference frame. The existing Godunov-type shock-capturing schemes 
have been applied in conjunction with HLL family of Riemann solver to solve Riemann problems in nonlinear 
elasticity. The two-state HLL Riemann solver7 has been widely used as the standard shock-capturing scheme due 
to its simplicity and high effectiveness. However, numerical experiments show that HLL solver is of strong dis-
sipation particularly in the cases with contact surfaces and strong shock waves, leading to inaccurate resolution 
of physical features and unacceptable numerical smearing. HLLC35,36 method assumes a three-wave model and 
thus it could lead to better resolution of intermediate waves. Nevertheless, for systems with the eigenstructures 
containing more than three distinct characteristic fields, HLLC seems to be inadequate and tends to behave like 
HLL with inaccurate resolution of intermediate waves, particularly when these waves move slowly relative to the 
mesh used, as illustrated in test case 1. Therefrom, HLLC solver has been improved and developed to be HLLD 
solver by admitting the correct number of characteristic field37,38. HLLD solver involves five wave structure and 
has been successfully applied in MHD39,40. In this paper we extend the usage of HLLD solver to the impact prob-
lem of nonlinear elasticity, considering the similarity of the wave structures in nonlinear elasticity with those 
appearing in MHD. And, a comparative study shows that 1st-order Godunov’s scheme coupled with HLLD solver 
has advantages in capturing multi-wave structures in solid material with large deformation, in comparison with 
that coupled with HLL and HLLC solvers.

With the purpose of increasing the convergence rate of solution, we apply the well-known piecewise parabolic 
method, an extension of 1st-order Godunov’s scheme to higher order accuracy, and couple it with HLL-type 
Riemann solvers to solve the problems featured with complex nonlinear wave structures. The results of numer-
ical experiments show that the technique PPM + HLLD provides solutions with highest resolution for single 
material problems compared with other techniques. Moreover, as HLLD Riemann solver can deal with bound-
ary conditions at the interface between different solid materials, we develop the technique PPM + HLLD(M) 
by coupling PPM with multi-material HLLD Riemann solver for the treatment of multi material problems, 
where level-set algorithm is used for tracking material interfaces. As shown in the solid/solid ‘stick’ problem, the 
PPM + HLLD(M) technique in conjunction with level-set algorithm can suppress greatly ‘overshoot’ or ‘heating 
errors’, which may occur in the vicinity of contact discontinuity as observed in the work of Titarev20. For the 
solid/solid ‘slip’ multi-material problem, it is demonstrated that the PPM + HLLD(M) technique is able to cap-
ture nonlinear wave structure accurately even in the presence of strong shocks. While for the two-dimensional 
impact problem (test case 6), the PPM + HLLD(M) technique can reproduce similar dynamic behaviors with 
those given by Favrie34 and Gorsse24, proving the robustness of this technique in two-dimensional cases. Further, 

Figure 10. The initial conditions and computed results of the accuracy test problem using 400 cells. The profiles 
of density ρ (a) and deformation gradient F11 (b).

Scheme N

ρ u1 F11

L1-error L1-order L1-error L1-order L1-error L1-order

PPM + HLLD

100 5.41E-04 — 3.41E-04 — 4.44E-04 —

200 5.37E-05 3.334 3.55E-05 3.265 4.08E-05 3.444

400 5.10E-06 3.396 3.56E-06 3.320 3.90E-06 3.386

Table 8. L1 Errors and orders of convergence for test case 7.
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compared with the method adopted by Barton et al.30 on the basis of characteristic relation of invariants, the 
PPM + HLLD technique is relatively easier to be implemented in the existing code. The accuracy analysis on our 
PPM scheme confirms that it exhibits approximately third-order convergence and even achieves fourth-order 
accuracy with time step Δt tending to 0 for smooth problem. The relevant results of accuracy and error analysis 
imply that for the Riemann problem for elasticity with discontinuity, linearly degenerate discontinuous waves 
produce sub-linear convergence rates which eventually dominate the global convergence rates. In our examples, 
the convergence rates with first-order Godunov’s scheme are close to 0.5, while those with PPM are close to 0.75, 
being consistent with the theoretical rates for contact discontinuities presented by J.W. Banks41, where the authors 
reported that for a general scheme of order p, the order of convergence for unlimited stable schemes is established 
as p/(p + 1). In summary, the PPM + HLLD technique has been proved to be a robust tool in solving Riemann 
problems in nonlinear elasticity for both single material problem and multi material problem, and it could be 
natural to be extended to plastic problems.

Methods
Governing equations of nonlinear elasticity. The model developed by Godunov & Romenski14,31 is 
used to describe the deformation process of solid material in the Eulerian reference frame. The physical variables 
used contain velocities ui, deformation gradient tensor Fij = ∂xi/∂Xj (where xi and Xj denote the fixed Eulerian 
coordinates and Lagrangian coordinates respectively) and specific entropy S. Following the notations used by 
Titarev20 and Barton21, a hyperbolic equation system depicting momentum, strain, and energy conservation laws 
in Cartesian coordinates can be written as

u
t

u u
x

( ) 0
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i i k ik
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Here ρ denotes the material density, σ is the Cauchy stress, E = ε + uiui/2 is the total energy, ε is the specific inter-
nal energy and the Einstein summation convention over repeated indices is implied (i, j, k = 1, 2, 3). The material 
density, stress tensor, specific internal energy, strain tensor Gij and temperature T can be represented as functions 
of the variables mentioned above:
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where ρ0 is the density of the initially unstressed medium. Further, the continuity equation is expressed as
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Following the treatment by Barton42, we also use the continuity equation (5) to replace the strain conversation 
equation for the deformation gradient component ρF11 for convenience. Thereafter, the governing equations can 
be expressed in matrix form:
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where U is the vector composed of the conservative variables, Fi is the corresponding flux vector and SC is the 
vector of source terms associated with the constraints for the deformation tensor:
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Introducing the vector of primitive variables W = (u, FTe1, FTe2, FTe3, S), we could rewrite Equation (6) as a hyper-
bolic quasi-linear system

t x
W A W 0

(8)
k

k
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+
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=

where the Jacobian matrix Ak is given by
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T. See Barton21 for details on the eigenstructure of this system.

The equation of state (EOS) for elastic solid employed is the formula about the specific internal energy ε, 
which is expressed in terms of three independent invariants of the Finger tensor (I1, I2, I3)20,43:
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2 are the squared speeds of the pressure and shear waves, respectively. cv is the heat 
capacity at constant volume, and T0 is the reference temperature. Further, α, β and γ are all constants character-
izing the non-linearities in the EOS20.

Finite Volume Methods. Considering now the one-dimensional system of elastic solid and taking k = 1 in 
Equation (6), the following conservative equation is obtained:

t x
U F 0, (12)
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where the source term Sc becomes equal to zero and is neglected in numerical computation for one-dimensional 
cases. Note that for two-dimensional and three-dimensional cases, the source item Sc is not neglected and 
treated as source terms in the numerical computation for the purpose of capturing the correct wave speed in 
the quasi-linear system (Equation (8)) and ensuring the correctness of numerical results. Equation (6) is not 
conservative in nature for multi-dimensional case. Nevertheless, we follow standard practice21,22 and solve 
the two-dimensional impact problem (test case 6) by using Equation (6) sequentially. With grid spacing 
Δx = xi+1/2 − xi−1/2 and time step Δt = tn+1 − tn, the finite volume scheme for solving this hyperbolic Equation 
(12) can be written as

= −
∆
∆

−+
+ −

t
x

U U F F( ) (13)i
n

i
n

i i
1

1/2 1/2

where U i
n is an approximation to the average of spatial integral in the cell [xi+1/2, xi−1/2] and Fi+1/2 is the numerical 

flux yet to be defined. As proposed by Godunov16, the numerical flux Fi+1/2 is derived by solving the Riemann 
problem with the initial data
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In this study, we use HLL (Harten, Lax and van Leer) family of solvers to obtain approximate solutions of the 
Riemann problem in nonlinear elasticity and carry out a comparative study on their robustness and accuracy. It 
is worthwhile that for HLL-type solvers, the wave propagation speed (λk) and the wave decomposition of Δq into 
Δkq are not rigorously derived from the Jacobian matrix, leading to their usability for simulating the problems 
with complicated Jacobian matrix. In the following, we will briefly introduce HLLD Riemann solver. While to see 
the details of HLL and HLLC Riemann solver, please refer to Harten7, Gavrilyuk4 and Toro15.

HLLD Riemann Solver. HLLD Riemann solver gives a nonlinear approximate solution. Its central idea is to 
assume a wave configuration for the solution that consists of five waves (two slow waves, two fast waves and a 
contact discontinuity), which separates six constant states. As shown in Fig. 11, there are four intermediate states: 
∼−
U , U*−, U*+, and ∼

+
U . The fastest (longitudinal) waves between U± and ∼

±
U  are denoted SL

± and the slow shear 
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waves SS
± separate the states U∼

±
 and U*±. Each wave is considered to be a discontinuity and the Rankine-Hugoniot 

relation is satisfied across each wave ( ±SS  and ±SL ):

S SU F U F Q (15a)L L L− = − =
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⁎ ⁎S SU F U F Q (15b)S S S
− = − =
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− = −− − + +S SU F U F (15c)C C
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From Eqs (15a–15c) one can find that there are more unknowns than equations, thus some other conditions must 
be imposed. In order to obtain the unknown intermediate state vectors U∼

±
, ⁎±U , F

±
  and ±F⁎ , the following con-

ditions need to be satisfied:

•	 Tangential velocities u2, u3 and tangential stresses σ12, σ13 are continuous across fast (longitudinal) waves and 
may jump across slow (shear) waves.

•	 Density ρ, normal velocity u1 and normal stress σ11 are continuous across slow waves and may jump across 
fast waves.

•	 Normal stress σ11 and normal velocity u1 are continuous across contact discontinuity; for the ‘stick’ multi-ma-
terial problem, shear stress and tangential velocity are equal for different materials at the interface; while for 
the ‘slip’ multi-material problem, tangential component of the stress vector are zero.

The left and right fastest wave speeds are approximated from the information of original state by
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Under HLL approximation15, the intermediate wave speed SC in the present solver is evaluated as
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where Q i( )L
±  denotes the i-th component of the vector QL

± (the meaning of ±Q i( )R  can be inferred accordingly). 
From these wave speeds above, U∼ state can be obtained as:
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And, the intermediate states ⁎U  are constructed as:
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Figure 11. HLLD Riemann solver.
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For the ‘stick’ multi-material problem, the following formulas are established:
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While for the ‘slip’ multi-material problem, one can obtain
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Within a single material, the boundary condition at the interface is set to be ‘stick’, and the HLLD fluxes F
±

 and 
±F⁎  for Godunov’s scheme are then given by
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Extension to Multi-material Problem. Interface Evolution of Level-Set Equation. The level-set algo-
rithm is used in the simulation of multi material problem for interface tracking. The moving interface Γ(t) is the 
zero isosurface of level-set function ϕ(x, t) at any moment and ϕ(x, 0) represents the signed distance from point 
x to interface Γ(0).
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where d(ϕ, Γ(0)) is the unsigned distance from x to Γ(0).
The ideal method of contour surface function is that ϕ moves at an appropriate speed. At any moment, as long 

as the value of ϕ is fixed, we could determine the position of moving interface, based on which the governing 
equations are spontaneous to be solved.

ϕ should satisfy certain governing equation. At any moment t, ϕ(x, t) equals to zero for any point x on moving 
interface Γ(t), leading to the following equation:

ϕ ϕ ϕ=
∂
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V d
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In general, with increasing time, ϕ(x, t) will not satisfy signed distance any longer. In order to maintain its prop-
erty, reinitialization algorithm, which transforms ϕ(x, t) to make it be the signed distance from point x to inter-
face Γ(t), is adopted. The transformation is realized by obtaining stable solutions of the initial value problem:

ϕ ϕ ϕ
ϕ ϕ
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0
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Spatial derivatives in Equation (26) are discretised using 5th-order weighted essentially non-oscillatory scheme 
(WENO) and time integration is performed using 3rd-order Runge-Kutta scheme.

HLLD Multi-Material Riemann Solver. For multi-material problems, the solving procedure is similar to HLLD 
Riemann solver in single material problem except that ‘stick’ or ‘slip’ boundary conditions should be considered at 
the material interface. For an interface located between the grid points i and i + 1, the known states WL = W(xi, tn) 
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and WR = W(xi+1, tn) at the current time level, corresponding to the left and right materials respectively, are used 
to pose a multi-material Riemann problem. The fluxes at the left and right sides are given as

= =+
−

+
+F F F F, (28)i

l
i
r

1/2 1/2
⁎ ⁎

The states in the respective materials’ ghost cells are defined as Wi+1 = W i+2 = W i+3 = W*− and 
Wi−2 = Wi−1 = Wi = W*+. Meanwhile, an entropy fix technique is adopted to suppress ‘heating errors’ (see Liu 
et al.44 for the details of the technique). In practical applications, the initial values of WL and WR are set to be 
W*− and W*+ respectively and utilized to conduct multiple iterations. The quantities computed will converge 
after about 10 iterations.

Data availability statement. The datasets generated and/or analysed during the current study are available 
from the corresponding author on reasonable request.
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