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Retinal Degeneration Protein 3 
(RD3) in normal human tissues: 
Novel insights
Sheeja Aravindan1, Dinesh Babu Somasundaram2, Kwok Ling Kam3,  
Karthikeyan Subramanian2, Zhongxin Yu3, Terence S. Herman1,2, Kar-Ming Fung1,3 & 
Natarajan Aravindan2,3

The 195-amino-acid-long human Retinal Degeneration Protein 3 (RD3) is critical in the regulation of 
guanylate cyclase (GC) signaling and photoreceptor cell survival. Recently, we identified significant loss 
of RD3 in high-risk neuroblastoma and the influential role of RD3 in tumor progression. However, the 
functional characterization of RD3 in tumor systems has been hampered by the dearth of information on 
its localization in normal tissue and by the lack of antibodies suitable for staining FFPE tissue, primarily 
due to the inaccessibility of the epitopes. In this study, we validated a custom-synthesized RD3 antibody 
and investigated the expression/localization of RD3 in assorted human tissues. We observed stratified 
expression of RD3 in different cell types and subcellular location of retina. We demonstrated extensive 
positive RD3 immunoreactivity in various normal tissues and particularly strong dot-like perinuclear 
staining in the lining epithelial cells, suggesting that RD3 may play an important role in the normal 
functioning of epithelial cells. RD3 expression is limited in the CNS. While neuroblastoma is often RD3-
positive, the adrenal medulla, where many neuroblastomas originate, is RD3-negative. Meta-analysis 
of RD3 transcriptional expression across normal tissues confirmed tissue-specific RD3 mRNA levels. Our 
results revealed the tissue-specific expression/localization profile of RD3 for the first time.

Retinal degeneration protein 3 (RD3/LCA12/C1orf36) is a gene that encodes a 195-amino-acid-long protein 
with relatively low molecular mass (22 kDa) and includes putative coil-coil domains at amino acids 22–54 and 
115–141 and several conserved sites for protein modification, and is expressed in rod and cone photoreceptor 
cells1. RD3 protein is highly conserved across vertebrates with the human protein, sharing 95% sequence identity 
with other primates, 86% with mice and rats, 83% with bovine animals, 67% with chickens, and 50–60% with 
lower vertebrates (zebrafish, Western clawed frog)2. Retinal degeneration studies showed that genetic defects or 
mutations in RD3 (e.g., homozygous c.319C → T in exon 3) produce a less stable non-functional C-terminal trun-
cated protein that drives early-onset photoreceptor degeneration in patients with Leber Congenital Amaurosis 
123. Recent studies underscored the importance of RD3 in photoreceptor cell survival, and provided insight into 
the function of RD3 in photoreceptor cells, as well as the mechanism by which mutations in RD3 cause photo-
receptor degeneration1,2,4–6. RD3 binds to guanylate cyclases GC1 and GC2, translocate GCs from the ER to the 
photoreceptor outer segments, and suppresses the basal enzymatic activity of GCs1,2,4. In addition, RD3 mice lack 
GC expression in the retina; this finding highlights the importance of RD3 in maintaining GC expression and 
stability1. Forced delivery of the normal RD3 gene restores GCs expression and outer segment localization, and 
leads to the long-term recovery of visual function and photoreceptor cell survival4. Although high levels of RD3 
expression in rod and cone photoreceptor cells and RD3’s association with photoreceptor cell survival have been 
extensively recognized, information on RD3 constitutive expression and/or localization in other tissue/cell types 
is limited. In the present study, we investigated the transcription and tissue-specific expression/localization of 
RD3 protein in various human tissues.

RD3 was primarily detected using mass-spectrometry-based proteomic analysis7. We and others have used 
immunoblotting to validate the presence of low molecular mass RD3 protein in tissue extracts with mono/pol-
yclonal RD3 antibodies1,8. However, successful immuno-localization of RD3 in tissues is challenging and yields 
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equivocal outcomes, with inconsistent labeling above background levels1. This is mainly due to the inaccessibility 
of the epitopes and/or the low level of constitutive or facultative RD3 expression in certain tissues. Establishing 
and characterizing an RD3-specific antibody that can access epitopes is needed. Thus, we custom-synthesized an 
anti-human RD3 antibody, characterized its specificity, and investigated the expression and localization of RD3 
in several human tissues. Our immunohistochemical approach used an automated staining process in order to 
maintain the quality and minimize variation of staining results, in contrast to manual staining methods.

We demonstrated significant loss of RD3 (transcriptional/translational) in in vivo mouse models and in clin-
ical samples of high-risk neuroblastoma8, the most common extracranial malignant solid tumor in infants and 
children. RD3 loss is strongly correlated with advanced stages of neuroblastoma and with poor patient survival 
in multiple cohorts. More importantly, RD3 loss is correlated with increased metastasis, and we demonstrated 
its novel ability to stabilize tumor evolution, underscoring RD3’s possible role in the switch from neuroblastoma 
with favorable prognosis to high-risk aggressive disease8. The biological significance of this highly conserved 
protein in normal human tissue and tumors other than neuroblastoma is largely unexplored. To that end, we 
investigated the localization and constitutive expression of RD3 protein in a collection of normal human tissues, 
and further compiled the RD3 transcriptional profile in normal tissues to enhance our understanding of RD3 in 
human tumors other than neuroblastoma.

Results
Antibody validation. The RD3 anti-human antibody was designed and produced by the NeoBioLab 
(Cambridge, MA) on our initiative, in a project that emphasized generating RD3 antibodies that would be appro-
priate for IHC and devoid of any epitope inaccessibility issues. A sequence specific for RD3 (amino acids 171-183) 
was chosen for recombinant protein production and for immunization (Fig. 1A). Initial quality control studies 
with analytical HPLC and MS ensured the delivery of high-quality peptides for antibody production (Figure S1). 
The resultant rabbit polyclonal antibody was affinity purified and validated by ELISA analysis. Compared with 
blank and negative controls, ELISA revealed the RD3 antibody specificity in a concentration-dependent manner 
(1:1000, 4000, 16000, 64000), with definite sensitivity even with maximal (1:64000) dilution (Figure S1).

Immunoblot analysis was performed in several human neuroblastoma SH-SY5Y, SK-N-AS, SK-PNDW, and 
IMR-32 cells, as we have previously reported basal levels of RD3 expression in these cells8. Cell lysates blotted 
with the synthesized RD3 antibody contained a single 23-kDa band, indicating that the antibody specifically 
detected RD3 (Fig. 1B,C), and served as the positive control. More importantly, immunoblot analysis performed 
utilizing the lysates of normal human duodenum, pancreas, colon, lungs, submandibular gland, brain and spinal 
cord tissues with the custom synthesized RD3 antibody produced a single solid 23-kDa band, demonstrating the 
Ab specificity (Fig. 1D). Evidently, band intensity analysis demonstrated tissue specific RD3 expression profile 
that corroborates with the IHC data (Fig. 1E). Further antibody neutralizing experiments with pre-mixing anti-
body with antigen (peptide) showed complete loss of RD3 labeling, defining the antibody-specific labeling in 
the immunoblots of lysates from normal human duodenum, pancreas, colon, lungs, submandibular gland, brain 
and spinal cord tissues (Fig. 1F). The blots were over exposed to define the complete lack of RD3 labelling with 
the neutralized Ab (Fig. 1E,F). The appearance of the faint bands on the top of the blot (despite perfect absence 
of RD3 labeling) in this setting is consistent with the other full length blots (in vitro and in human tissues) and 
serves as the negative control. In addition, to ensure the specificity of the peptide antigen competition, the alter-
ations in RD3 labeling (and levels) were investigated with the blots of lysates from identical set of human tissues 
were immunostained with neutralized Ab with the scrambled sequence peptide containing same amino acid 
content (Fig. 1G). Immunoblotting revealed no non-specific neutralization with scrambled peptide (Fig. 1G) 
and, the band intensity quantification revealed a near identical expression profile of RD3 (vs. non-neutralized 
Ab) in these tissues (Fig. 1E). Furthermore, we investigated the RD3 antibody specificity with RD3 gene manip-
ulation experiments utilizing SH-SY5Y (with high basal level of RD3) and SH-MSDACs (RD3 null/lost) cells8,9. 
Immunoblotting with custom synthesized RD3 Ab reiterates RD3 expression levels of SH-SY5Y and SH-MSDAC 
cells (Fig. 1H,I). More importantly, immunoblotting revealed strong RD3-specific labeling in ectopically RD3 
re-expressed MSDACs (Fig. 1H,I). The results from the RD3 gene silencing and re-expression studies coupled 
with immunoblotting analysis demonstrate the RD3 specificity of the antibody produced in the present work.

To further validate the antibody’s ability and specificity of RD3 labeling in FFPE tissues, we investigated RD3 
labeling in human colon tissues, with and without neutralization, using various concentrations of premixed anti-
body + peptide. Automated IHC with no primary antibody controls in colon tissues produced no labeling, no 
background, and served as the negative control (Figure S2). However, IHC performed with RD3 antibody pro-
duced selective and specific RD3 labeling in human colon tissues (Figure S2). RD3 positive staining appeared in 
brown, and was predominantly localized to the nucleus and perinuclear area, with weak-to-moderate cytoplasmic 
positivity (Figure S2, 20X). Moreover, we observed that the antibody could differentiate sub-cellular selectivity 
(positive, negative), intensity (strong, moderate and weak positivity), and specific RD3 localization in an FFPE 
setting. RD3 antibody neutralizing protocols (i.e., pre-mixing with 1, 2, or 4 μg of antigen) completely blocked 
RD3 staining with as little as 1 μg antigen (Figure S2), demonstrating that the IHC staining was antibody-specific. 
Though, the use of RD3 mice with natural knockout would further be an ideal platform to evaluate the Ab speci-
ficity, since the synthesized RD3 Ab is anti-human, such an approach is not attempted in this study.

Finally, to irrefutably demonstrate the specificity of synthesized RD3 antibody and to portray the relative 
abundances of RD3 expression in human normal tissues, we investigated the RD3 labeling efficiency and expres-
sion levels in colon, pancreas, submandibular and duodenum and, compared with human retina, the only tissue 
for which the RD3 presence and its biological function has been documented thus far (Figure S3A,B). Retinal 
tissue lysates blotted with the synthesized RD3 antibody contained a single 23-kDa band without any cross reac-
tivity, indicating that the antibody specifically detected RD3 (Figure S3A), and served as the positive control. 
More importantly, we observed a consistent single solid 23-kDa band with the lysates of duodenum, pancreas, 
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colon and submandibular gland demonstrating the Ab specificity (Figure S3A). Evidently, band intensity analy-
sis demonstrated the abundance of RD3 expression in retinal tissues (Figure S3B). Further RD3 expression was 
relatively high (near comparable to retinal expression) in submandibular tissue, moderate in pancreas, colon and 
duodenum (Figure S3B). These results clearly portray the RD3 specific labeling of the synthesized antibody and 
the relative abundance of RD3 expression in normal human tissues compared to its expression in RD3.

RD3 transcription in human tissues. In silico analysis revealed tissue-type-specific RD3 transcription in 
human tissues. Using data from three individual databases (GTEx, GENT, and IST), we compiled the RD3 mRNA 
levels in more than 80 tissue types, including adipose (adipose, subcutaneous, visceral), adrenal gland, bladder, 
blood vessel (blood vessel, aorta, coronary artery, tibial artery), bone, bone marrow, brain (brain, cerebrum, 
cerebellum, corpus callosum, brain stem, amygdala, anterior cingulate cortex, caudate, cerebella hemisphere, 

Figure 1. RD3 antibody validation. (A) Schematic representation of RD3 domain structure and the regions 
(amino acids 171-183) used for antibody production. Antibody was produced in collaboration with NeoBioLab 
(Cambridge, MA) on our initiative, affinity purified, and quality tested. (B) Immunoblot showing RD3 
specific labeling by the custom synthesized antibody without any non-specific events. Cell lysates from human 
neuroblastoma (SH-SY5Y, SK-N-AS, SK-PNDW, IMR-32) cells blotted with synthesized RD3 antibody resulted 
in the labeling of single strong band at 23 kDa. (C) Histograms of Quantity One band ID gel analysis showing 
relative expression levels of RD3 in human neuroblastoma cell lines. Immunoblots showing RD3 levels in tissue 
lysates from human duodenum, pancreas, colon, lungs, submandibular gland, brain and spinal cord labelled 
with (D) custom synthesized RD3 Ab; (F) synthesized RD3 Ab neutralized with peptide (antigen) and; (G) 
synthesized RD3 Ab neutralized with scrambled peptide (SPDLRRESWDPVETP) containing same amino acid 
content. (E) Histograms from Quantity One gel densitometry analysis showing strong, tissue specific expression 
profile of RD3 with custom synthesized Ab; complete lack of labeling when the Ab is neutralized with peptide 
and; no non-specific blocking of custom Ab associated RD3 immunostaining when neutralized with scrambled 
peptide. (H) RD3 specificity labeling defined with RD3 gene manipulation experiments. Immunoblots showing 
corresponding, characteristic, RD3 labeling variations in SH-SY5Y (RD3 positive control), SH-MSDAC (RD3 
negative control) and in SH-MSDAC-RD3+++ (ectopically re-expressed) cells lysates. (I) Histograms from 
Quantity One band intensity analysis reiterating high basal levels of RD3 in SH-SY5Y cells, loss of RD3 in 
SH-MSDAC and re-expression of RD3 in SH-MSDAC after forced ectopic expression. Full-length blots are 
presented in Supplementary Figure S6.

http://S3A
http://S3B
http://S3B
http://S6


www.nature.com/scientificreports/

4SCieNtifiC RepoRTS | 7: 13154  | DOI:10.1038/s41598-017-13337-9

cortex, frontal cortex, hippocampus, hypothalamus, nucleus accumbens, putamen, substantia nigra), breast, 
bronchus, cells (lymphocytes, fibroblasts, blood B-cells, blood T-cells, blood-granulocytes, blood-dendritic cells, 
blood-reticulocytes, hematopoietic stem cells), cervix (cervix, ecto-cervix, endo-cervix), colon (colon, sigmoid, 
transverse), colorectal, connective tissue, endometrium, esophagus (esophagus, gastro-esophageal junction, 
esophagus mucosa, esophagus muscularis), heart (heart, atrial appendage, left ventricle), fallopian tube, kidney 
(kidney, kidney cortex), liver, lung, lymph node, mesenchymal stem cell, mesothelium, muscle (skeletal muscle), 
oral cavity, ovary, pancreas, penis, pituitary gland, prostate, salivary gland, skin (skin, suprapubic, lower leg), 
small intestine (SI, SI-terminal ileum), spinal cord (spinal cord, PNS ganglion), spleen, stomach, testis, thyroid, 
tibial nerve, tongue, tonsil, uterus, vagina and vulva (Fig. 2A–C). Considering the differences in the analyzed 
tissue types and analyzing platform/method across the databases, a thorough, careful comparison of RD3 mRNA 
expression across healthy tissues is warranted, and is presented below.

In silico transcriptomic data analysis indicated near-zero RD3 mRNA levels in lymphocytes and fibroblasts 
(Fig. 2A). Moderate RD3 transcription was observed in human brain tissue (Fig. 2B). Further, hypothalamus, 
nucleus accumbens, amygdala (Fig. 2A), cerebrum, corpus callosum, cerebellum, brain stem and tibial nerve 
(Fig. 2C) tissues showed strong RD3 transcription levels. However, anterior cingulate cortex, caudate, cortex, 
frontal cortex, hippocampus (Fig. 2A), spinal cord, and PNS ganglion tissues showed meagre RD3 transcription. 
Similarly, adipose tissue showed moderate (Figure A-C) RD3 levels, clearly indicating inter-adipose tissue varia-
tions with relatively high levels in visceral adipose tissue compared with low levels in subcutaneous adipose tis-
sues. There was extensive variation between data sources regarding RD3 transcription levels in the adrenal gland, 
ranging from marginal to high levels. Bladder tissues showed fluctuating moderate to high levels of RD3 tran-
scripts (Fig. 2A,B). Although RD3 analysis in whole blood showed near-zero levels in two databases (Fig. 2A,C), 
analysis of the outsized collection (n = 855) of samples revealed fairly high RD3 transcription (Fig. 2B) that was 
consistent with the high RD3 levels analyzed individually in B-cells, T-cells, granulocytes, dendritic cells, reticu-
locytes, and hematopoietic stem cells (Fig. 2C).

RD3 transcription in blood vessels varied with the type of vessel, including low transcription in tibial artery 
tissue, moderate transcription in the aorta, and high transcription in coronary artery tissue. Although basal levels 
of RD3 transcription were observed in heart tissues, the data analysis revealed markedly high RD3 transcription 
in the atrial appendage compared with the left ventricle (Fig. 2A,C). Moderate RD3 transcription levels were 
observed in the esophagus; however, transcription increased in the gastro-esophageal junction, mucosa, and 
muscularis. Despite minimal RD3 transcripts reported in muscle tissues in one database, the other databases 
consistently indicated high levels of RD3 in muscle tissues. Bone possessed insignificant levels of RD3. In con-
trast, tissues along the gastro-intestinal tract showed maximal levels of RD3 transcription. For example, small 
intestine, stomach, and colon (sigmoid, transverse) tissues showed overall high levels of RD3. RD3 was moder-
ately expressed in pancreas tissues. Furthermore, levels of RD3 transcription fluctuated from moderate to high 
among tissues along the reproductive system, including the fallopian tube, ovary, endometrium, uterus, cervix 
(ecto-cervix and endo-cervix), vagina, and vulva (Fig. 2A–C). This moderate-to-high fluctuation in RD3 tran-
scription was also apparent in male reproductive tissues (testis, penis, prostate; Fig. 2A–C). Analysis of skin tis-
sues revealed trivial, yet measurable, RD3 transcription across databases without any tissue-origin- (supra-pubic, 
lower leg or others) specific fluctuations (Fig. 2A–C). Spleen, kidney, and liver tissues showed nominal to moder-
ate RD3 transcription. However, RD3 level was relatively high in lung tissues. Similarly, a remarkably high level of 
RD3 was observed in tongue tissues, although tonsil and oral cavity tissues exhibited nominal RD3 transcription. 
Interestingly, data analysis of thyroid tissues unveiled equivocal outcomes (fluctuations from minimal to maximal 
RD3) with data sources. Tissues like lymph nodes, bone marrow, mesothelium, connective tissue, breast, and 
mesenchymal stem cells showed nominal expression (Fig. 2C). Salivary gland tissues showed moderate to high 
RD3 levels. Taken together, our analysis of RD3 transcription levels utilizing three high throughput data sources 
of numerous clinical tissues: (i) identified the basal levels of RD3 transcription in normal human tissues, (ii) rec-
ognized the inter- and intra-tissue-specific fluctuations in RD3 transcription, and (iii) defined the system-specific 
(e.g., GI, female reproductive system, CNS) association of RD3 transcription intensity. Although intensity varia-
tions were observed between the databases, the expression profiles generally complemented each other and hence 
allowed us to clearly define the RD3 transcription in normal human tissues. This in silico data analysis demon-
strated the general pattern of RD3 transcription in normal human tissues. It should be noted that these data were 
generated from homogenized tissue without specific reference to a certain cell type. The expression levels of RD3 
in different cell types could not be resolved using this technique.

Further to define the transcriptional levels of RD3 in normal tissues in comparison with human retina (that 
is not included in the data bases utilized in this study), the only tissue with documented abundance of RD3, we 
investigated the relative abundance in the transcript levels of RD3 in human retina, colon, pancreas, submandib-
ular, lungs and duodenum (Figure S3C). QPCR analysis revealed relatively high levels of RD3 mRNA in human 
retina, submandibular and pancreas while we observed moderate RD3 levels in duodenum, lungs and colon. 
Together these results in general portray the abundance of RD3 transcripts in human normal tissues and further 
indicate the relative expression patterns of RD3 in colon, pancreas, submandibular, lungs and duodenum com-
pared to the retinal expression (Figure S3C).

RD3 protein expression and cellular localization in normal human tissues. Since RD3 expression 
is thus far unknown in normal human tissues other than the retina and is critical to defining its role in can-
cer biology, we examined the expression and localization of RD3 protein in the retina, central nervous system 
(brain, spinal cord, and olfactory bulb), gastrointestinal tract (esophagus, stomach, duodenum, appendix, colon), 
pancreatic hepatobiliary tract (parotid and submandibular gland, liver, bile ducts, pancreas), and other organs 
(lung, kidney, placenta, uterus, thymus, prostate skin, fallopian tube, thyroid, tonsil, breast). Our automated IHC 
coupled with Aperio image analysis and RD3 positivity scoring revealed strong positive RD3 staining in human 
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Figure 2. RD3 mRNA expression profile in normal human tissues. Histograms from in silico data analysis of 
RD3 mRNA expression from the (A) Genotype-Tissue Expression (GTEx), (B) Gene Expression across Normal 
and Tumor tissue, (GENT), and (C) Medisapiens in silico transcriptomics (IST) online public databases. The 
GTEx database included the analysis of 53 healthy tissues (total n = 8232) on the Affymetrix and Illumina 
platforms, expressed in calculated RPKM with isoforms collapsed to single gene with no other normalization 
steps. The GENT database contained expression analysis in 25 healthy human tissues (total n = 3210) from the 
Affymetrix platform. The IST database included data analysis of gene expression from the Affymetrix platform 
across 49 healthy tissues (total n = 1706) with unique normalization and data quality verifications, allowing 
the gene expression profiles collected from different studies to be combined to generate an overview of the 
expression profile in human tissues. The expression profiles of RD3 mRNA levels in over 80 tissue types across 
three data portals corroborated well with each other, despite some intensity variations, and clearly identified the 
tissue-specific RD3 mRNA levels in normal human tissues.
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retina that served as the positive control. Isotype matched controls in normal human tissues including retina, did 
not reveal any specific staining and hence served as the negative controls (Figure S4). Since RD3 is localized in 
both the nucleus and cytoplasm, immunoreactivity in both subcellular locations was counted together. Further, to 
avoid any false positive staining, only strong positivity signal quantification was included in this analysis. All cal-
culated intensities were normalized to percent baseline (retinal expression) and expressed as means with standard 
deviations (Fig. 3). Overall, we observed nominal RD3 protein expression in human skin, thalamus, olfactory 
bulb, thymus, spleen, breast, fallopian tube, and uterus tissues (Fig. 3). Hypothalamus, spinal cord, lymph node, 
duodenum, prostate, and testis tissues exhibited low, yet measurable, RD3 expression. Human liver, kidney, eso-
phagus, colon, appendix, and placenta tissues showed moderate (near 25% of retinal positivity) RD3 expression 
(Fig. 3). We observed strong (about 50% of retinal positivity) RD3 expression in cerebellum, parotid, tonsil, and 
thyroid tissues. Interestingly, we noted prominent RD3 protein expression (comparable to and beyond that of 
retinal positivity) in human submandible, lungs, bile-duct, stomach, pancreas, and small intestine tissues (Fig. 3). 
RD3 protein expression data for skin, cerebellum, spinal cord, thyroid, lungs, liver, spleen kidney, esophagus, 
stomach, and small intestine tissues corroborated well with the in silico transcription data (Fig. 2).

Retina, central nervous system, and adrenal gland. Results are summarized in Table 1 and illustrated in Fig. 4. In 
the retina, the strongest immunoreactivities were located in the internal half of the photoreceptor layer and the 
external half of the outer plexiform layer. Both nuclear (arrow in Fig. 4A) and cytoplasmic immunoreactivities 
were observed. In the photoreceptor layer, some cells were more strongly reactive than others (insert in Fig. 4A). 
The distribution of immunoreactivities was not homogeneous, with the strongest immunoreactivity seen in the 
inner half of the cytoplasmic portion of the photoreceptor layer, where rods and cones are found, and the external 
half of the outer plexiform layer (Fig. 4A). However, to validate the specificity of custom synthesized Ab in detect-
ing the localization of RD3 and, to demonstrate its heightened efficiency, human retinal sections were immunos-
tained in parallel with commercially available RD3 Abs. For this we used a panel of 6 different Abs raised against 
different regions (AA 7-67; AA 36-85, AA 52-112, AA 62-87, AA 145-175, AA 135-194) of human RD3 protein. 
IHC analysis revealed RD3 staining pattern with varying degrees of magnitude in labeling efficiency, portraying 
the immaculate labeling efficiency of the custom synthesized Ab used in this study (Figs 4A and S4). Despite the 
differences in efficiency magnitude, the results clearly demonstrated the consistent distribution patterns of the 
RD3 localization as discussed above (Figure S5). In adult cerebellum (Fig. 4B), there was weak expression in the 
molecular layer of cerebellar folia, but the internal granular layer, Purkinje cells, and white matter were largely 
negative for RD3 (Fig. 4B). In adult cerebrum, there was moderate expression in the cytoplasm of large neurons, 
such as those in the thalamus, basal ganglia, and spinal cord (Fig. 4C). Neuropils in general were weakly negative; 
neuropils in the molecular layer of the cerebellum had the strongest expression. In the white matter, there were 
only scant positive nuclei, and no cytoplasmic positive immunoreactivity was noted (4D). In contrast, the cells 
lining the central nervous system, namely, the ependymal cells and choroid plexus epithelium (Fig. 4E), showed 
strong RD3 immunoreactivity. In the peripheral nerve ganglions, weak cytoplasmic reactivity was noted in the 
ganglionic neurons, but not in the sustentacular cells or Schwann cells (Fig. 4F). Some, but not all, of the nuclei of 
ganglionic cells were RD3-positive. In the adrenal gland (Fig. 4G to I), there were strong nuclear immunoreactiv-
ities and weak cytoplasmic immunoreactivities in the adrenal cortex (Fig. 4H). In contrast, adrenal medullar cells 
were largely negative for RD3 (Fig. 4I). Some positive cells were present in the adrenal medulla; these cells were 
more consistent with endothelial cells, but not adrenal medullar cells.

Figure 3. RD3 protein levels in normal human tissues. Histograms obtained from Aperio image analysis 
and quantification showing levels of RD3 strong positivity in human retina, skin, thalamus, hypothalamus, 
cerebellum, spinal cord, olfactory bulb, parotid, sub-mandible, tonsil, thyroid, lymph node, thymus, lungs, 
liver, bile duct, spleen, kidney, esophagus, stomach, duodenum, pancreas, small intestine, appendix, colon, 
prostate, testes, breast, placenta, fallopian tube, and uterus tissues. Automated RD3 IHC-stained sections of 
FFPE specimens were micro-digitally scanned using Aperio ScanScope, and RD3 strong positivity was group-
analyzed using Aperio image analysis/quantification software. Tissue-specific expression was profiled and the 
retinal expression normalized (% retinal strong positivity). Mean and SD are plotted with GraphPad Prism.
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Nervous System and Adrenal Gland

Tissue Cell Nuclear Cytoplasm Comment

Retina Photoreceptor layer outer segment N/A ●●●●● NSP

Photoreceptor layer inner segment N/A ●●●●● NSP

Outer nuclear layer ●●●● NSP

Outer plexiform layer, outer half N/A ●●●● NSP

Outer plexiform layer, inner half N/A ●●●●● NSP

Inner nuclear layer ●●●● NSP

Inner plexiform layer N/A ●●●●● NSP

Ganglion cell nuclei ●●●● N/A NSP

Ganglion cell neuropil N/A ●●●●● NSP

Cerebellum Molecular layer ●●●●● NSP

Purkinje cells − −

Internal granular layer nuclei −

Internal granular layer neuropil −

White matter and glial cells − −

Cerebrum Neuronal bodies − ●●●● Limited to neuronal bodies

Neuropil − −

White matter − −

CNS overall Ependymal cells − ●●●●● Apical dot-like pattern

Choroid plexus ●●●●● ●●●●● NSP

Adrenal Cortex ●●●●● ●●●●● Lipid droplets are not stained

Medulla ● − NSP

Epithelial Cells

Esophagus Squamous epithelial cells ●●● ●●●●● NSP

Stomach Foveolar cells − ●●●●● Apical perinuclear dot-like pattern

Chief cells − ●●●●● NSP

Parietal cells − − NSP

Duodenum Villous lining cells − ●●●● Apical perinuclear dot-like pattern

Brunner’’s gland − ●● Perinuclear dot-like pattern

Ampulla of Vata Glandular lining epithelium − ●●●●● Apical perinuclear dot-like pattern

Appendix Lining epithelium − ●●●●● Apical perinuclear dot-like pattern

Colon Lining epithelium − ●●●●● Apical perinuclear dot-like pattern

Pancreas Ductal lining epithelium − ●●●●● Apical perinuclear dot-like pattern

Exocrine cells ●●● ●●●●● NSP

Liver Intrahepatic duct lining epithelium − ●●●●● Strong staining at luminal border

Hepatocytes − ●●●●● NSP

Salivary gland Intercalated duct and striated duct ● ● Perinuclear dot-like pattern

(parotid and Serous secretory cells ●● ●● NSP

submandibular) Mucin secretory cells − ●●●●● Apical perinuclear dot like pattern

Lung Bronchial lining cells − ●●●●● Apical perinuclear dot-like pattern

Alveolar pneumocytes ●● ● NSP

Breast Lobular luminal cells − ●●●●● Apical cytoplasmic staining pattern

Kidney Mesangial cells − ●●●● Perinuclear dot-like pattern

Proximal tubules − ●●●●● NSP

Distal tubules − ●●● Apical perinuclear dot-like pattern

Thyroid gland Follicular epithelial cells − ●●●● Apical perinuclear dot-like pattern

Other Cells

Tonsil Lymphoid cells ●●● ●●●● NSP

Spleen Sinusoid lining cells ●● ●●● Perinuclear dot-like pattern

Lung Alveolar macrophages ●● ●●●●● NSP

Table 1. RD3 localization in human tissues. N/A, Not Applicable; NSP, No specific staining pattern; −, 
Negative staining; 5 balls, 100% immunoreactivity; 4 balls, 75–100% immunoreactivity; 3 balls, 25–75% 
immunoreactivity; 2 balls, 5–25% immunoreactivity; 1 ball, <5% immunoreactivity.
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Epithelial cells. The present study revealed strong expression of RD3 in epithelial cells of different organs. Results 
are summarized in Table 1 and illustrated in Figs 5 and 6.

Lining epithelial cells. In the squamous epithelium of esophagus, there were weak and heterogeneous immuno-
reactivities in the nuclei and moderate, widespread immunoreactivity in the cytoplasm (Fig. 5A). In the columnar 
epithelial lining of the gastrointestinal tract, hepatobiliary tree, pancreatic ducts, and bronchial tree, there was 
rather homogeneous and widespread cytoplasmic expression, but no nuclear immunoreactivity (Fig. 5B to J). 
Among the areas with moderate to high expression, the immunoreactivities were often in the form of dots, such 
as the positive structures in the apical areas (insets in Fig. 5B,C,D,E,F,G,I and J). The positive immunoreactivity 
at the luminal border of intrahepatic duct is a less common pattern (inset in Fig. 5H). The ducts of the salivary 
gland, where expression was weak in both nuclei and cytoplasm (Fig. 6A–C), and the alveolar epithelial cells lin-
ing the pulmonary alveoli (Fig. 5K), which demonstrate only nuclear immunoreactivities, were exceptions to the 
general rule. Macrophages in the lung were strongly positive for both nuclear and cytoplasmic immunoreactivity.

Secretory epithelial cells. In contrast to the homogeneous expression of cytoplasmic immunoreactivities in the 
lining epithelial cells, the secretory epithelial cells demonstrated variable immunoreactivities. In stomach tissues, 
the surface foveolar cells showed abundant, yet moderate, RD3 positivity selectively in the cytoplasm (see top 
insert), while the parietal cells and mucus neck cells were almost negative for RD3. However, the zymogenic chief 
cells displayed a strong and abundant cytoplasmic positivity (Fig. 5B). Serous secretory cells in both parotid and 
submandibular glands were only weak to moderately immunoreactive (Fig. 6A,B). However, mucin-secreting 
cells were strongly immunoreactive (Fig. 6C and inset). In addition, exocrine pancreatic cells were strongly 
immunoreactive (Fig. 6D).

Strong apical dot-like immunoreactivities similar to that observed in the intestinal epithelial cells were 
also noted in the distal tubules, but not in the proximal tubules. Perinuclear dot-like immunoreactivities were 
observed in the mesangial cells in renal glomeruli (Fig. 6E). Weak, but extensive, immunoreactivities were seen in 
hepatocytes (Fig. 6F). Dot-like immunoreactivity was also found in the thyroid epithelium.

Figure 4. RD3 cellular localization in human tissues. Representative microphotographs showing RD3 
expression and cellular localization in human (A) retina, (B) cerebellum, (C) basal ganglia, (D) spinal cord,  
(E) thalamus, (F) peripheral nerve ganglion, and (G–I) adrenal gland (H, adrenal cortex; I, adrenal medulla) 
tissues. [Magnification 10x; Insert, 60x] IP = inner plexiform layer; INL = inner nuclear layer; OP = Outer 
plexiform layer; ONL = outer nuclear layer; RC = Rods and Cones (cytoplasmic portion).
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Other Cell Types. There was widespread immunoreactivity among lymphoid cells in the tonsil (Fig. 6H). 
However, we observed that immunoreactivity in lymphoid tissue is variable in different organs. The sinusoidal 
lining cells in the spleen (Fig. 6I) were positive for RD3. Alveolar macrophages in the lung were also strongly 
positive (Fig. 5K).

Discussion
In the present study, we characterized RD3 expression across normal human tissues using an antibody suitable for 
FFPE tissue analysis. The antibody explicitly detects RD3 protein, as evident from its immunoreactivity both in a 
panel of neuroblastoma cell lines and in a panel of human normal tissues (Fig. 1). Moreover, our results from pep-
tide and scrambled peptide blocking studies on the panel of human tissues clearly portrayed the specificity of the 
Ab with no non-specific cross reactivity. Although it is insignificant, on a caution note, the disappearance of very 
faint bands other than RD3 in the presence of neutralizing peptide could indicate the possibility of some residual 
cross-reactivity in tissues. However, comparative analysis of RD3 localization in retinal layers with a panel of six 
commercially available antibodies raised against various regions of human RD3 protein, clearly demonstrated the 
specificity and efficiency of the custom synthesized Ab (Figure S5). It is relevant to mention that the subcellular 
distribution patterns of RD3 in retinal tissue observed in this study did not completely agree with the previously 
documented localization patterns1,10. To that note, previously reported RD3 antibodies are either raised against 
mouse (except human RD3 #497 etc.) or the immuno-localization patterns are assessed only in mouse (wild 
type and or RD3 mice) retina1,10. Also, studies have indicated the advancement of antibody synthesis resulted in 
the betterment of RD3 labeling from only retinal photoreceptor outer segment (POS) localization to the better 
revealing of localization in POS, inner segment, axoneme and outer plexiform layer10, and agrees at least in part 

Figure 5. RD3 cellular localization in human tissues. Representative microphotographs showing RD3 
expression and cellular localization in human (A) esophagus, (B) stomach, (C) duodenum, (D) small intestine, 
(E) appendix, (F) colon, (G) pancreatic duct, (H) intrahepatic duct, (I) ampulla, (J) bronchus, (K) lung, and  
(L) breast tissues.

http://S5
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with the current observation. To our knowledge this is the first report of RD3 expression and localization in nor-
mal human tissues. Markedly, our results showing a single 23-kDa band in normal human retina demonstrated 
the specificity of the synthesized RD3 antibody and validate the relative abundances of RD3 expression in other 
human normal tissues. Consistently, our results comparing the RD3 transcript levels (QPCR analysis) in human 
retina, colon, pancreas, submandibular, lungs and duodenum identified not only the abundance of RD3 tran-
scripts in human normal tissues but also indicated the relative expression patterns of RD3 in these tissues com-
pared to human retina. The mRNA expression patterns well corroborated to the RD3 protein expression patterns 
assessed with the immunoblotting as well with IHC.

In silico data analysis of RD3 transcription in wide array of clinical tissues recognized the basal as well as inter- 
and intra-tissue-specific fluctuations in RD3 transcription in normal human tissues. Our survey of the expression 
of RD3 in normal human tissue led to three major novel findings. First, RD3 is strongly expressed, typically in 
periapical dot-like immunoreactivities, in lining epithelial cells that range from choroid plexus cells to epithelial 
cells lining the gastrointestinal tract and hepatobiliary tract. This phenomenon extends to ependymal cells, which 
are the lining cells of the ventricles of the central nervous system and have a partial epithelial phenotype. Second, 
although RD3 is strongly expressed in retinal cells, which are basically neurons, it is only weakly immunoreactive 

Figure 6. RD3 cellular localization in human tissues. Representative microphotographs showing RD3 
expression and cellular localization in human (A) parotid gland, (B) submandibular gland, (C) salivary gland, 
(D) exocrine pancreas, (E) kidney, (F) liver, (G) spleen, (H) tonsils, (I) thyroid, (J) prostate, (K) testis, and (L) 
fallopian tube tissues.
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or negative in neuronal bodies and their process in the central nervous system. Third, although RD3 is strongly 
immunoreactive in some subsets of neuroblastomas and neuroblastoma cell lines, it is negative in the adrenal 
medulla, from which most adrenal neuroblastomas originate. These findings are consistent with the earlier studies 
describing the presence of RD3 mRNA in different tissues (see Fig. 2 in silico data analysis). Based on these obser-
vations, we believe that RD3 has an important role in the normal functioning of epithelial cells. Interestingly, 
no evidence of any malfunction other than eye degeneration was documented, at least thus far, in RD3 mice. 
However, negative RD3 staining in the adrenal medulla observed in this study raises questions regarding its role 
in normal adrenal embryonal genesis and maturation, in addition to its role in adrenal neuroblastomas.

Earlier, we characterized the expression of RD3 in human neuroblastoma cells; the expression of RD3 is highly 
restricted in metastatic site-derived aggressive cells. Determining the functional role of any molecular candidate 
in cancer biology, genesis, and progression requires a better understanding of its presence and abundance under 
healthy conditions. Information on mere mRNA status (through high throughput platforms) may not directly 
reflect the levels of constitutive functional protein status due to mRNA degradation by miRNAs/siRNAs11, 
mRNA splicing errors (exon skipping, failure to remove intron), and defects/regulations in translational machin-
ery (amino-acid misincorporation, tRNA misacylation, premature termination, read-through, frameshift)12–14. 
Hence, it is critical to recognize protein expression and cellular localization along with gene transcriptional status. 
Furthermore, considering the tissue-specific responses of cancer genesis and progression, it is crucial to under-
stand tissue- and/or cell- specific baseline transcription and protein expression/localization. For the first time, 
the results presented here demonstrate the constitutive expression of RD3 in numerous normal human tissues.

Studies have revealed the influential genetic defects of the RD3 gene in photoreceptor degeneration, heavily 
contributing to early-onset (childhood) blindness15. To that end, the RD3 gene is highly expressed in the ret-
ina3, and reveals increasing expression through early postnatal development. Although mutation-associated loss 
of RD3 protein3 has been causally linked to early stage retinal degeneration16, a baseline abundance of RD3 in 
normal tissues has not been documented. However, we recently showed that RD3 is significantly lost both at the 
mRNA and protein levels in a high-risk progressive childhood tumor, neuroblastoma8. Further, we demonstrated 
that RD3 regulates the metastatic state and potential of tumor cells8. These findings signify the influential molecu-
lar functions of RD3 protein and demonstrated that RD3 protein loss either by genetic defects or ongoing acquisi-
tion of molecular events could lead to pathogenesis. To that end, RD3 protein includes a putative coil-coil domain 
(that serves as a protein-interaction site) and a number of conserved sites for protein modification, including 
phosphorylation and sumoylation. In any event, the association of RD3 loss with the high-risk disease in multiple 
cohorts of neuroblastoma patients and RD3 protein influencing the regulation of tumor cell migration, invasion, 
and tumorosphere formation validates the causal role of RD3 protein in tumor progression8.

We obtained reliable staining of FFPE tissues using a custom-synthesized RD3 antibody. Similar cell types 
from the same and different tissues demonstrated varied staining intensities and patterns. Staining was observed 
in the cytoplasm and/or the nucleus, consistent with earlier investigations3,17,18, ruling out any non-specific or 
fixation artifacts. Furthermore, researchers have shown that nuclear localization of RD3 is associated with pro-
myelocytic leukemia-gene-product (PML) bodies3. The different patterns of cellular staining support several roles 
for RD3. Nuclear co-localization of RD3 with PML might indicate a role in the regulation of tumor progression, 
while its cytoplasmic location may be involved in other critical cellular functions.

The organ distribution of RD3 protein has never been characterized. In the present study, we reported the organ dis-
tribution and cellular localization of RD3 in human lungs, bile duct, pancreas, small intestine, stomach, submandible, 
appendix, cerebellum, colon, small bowel, kidney, liver, parotid, placenta, thyroid, tonsil, breast, duodenum, esophagus, 
fallopian tube, hypothalamus, lymph node, olfactory bulb, prostate, salivary gland, skin, spinal cord, spleen, testes, 
thalamus, thymus, and uterus tissues. We observed significant strong cell-specific nuclear and cytoplasmic localization 
in human retina, consistent with earlier studies3. Comparable or higher RD3 expression was observed in lungs and GI 
tissues, while other tissues exhibited moderate RD3 positivity (see Fig. 3). However, staining varied between systems, 
organs, and cell types, indicating that RD3 has a tissue-specific and/or function-specific role.

Although the mechanism by which RD3 loss mediates retinal degeneration has been extensively docu-
mented1,2,4–6, the mechanism(s) involved in RD3 loss and loss-associated tumor progression are unknown. Our 
findings demonstrate that, in normal tissues, RD3 has various sub-cellular locations and a heterogeneous pattern 
of expression. These results provide a critical platform that will allow us to delineate RD3-associated and/or 
driven mechanisms. One could argue that understanding the basal levels of RD3 in human fetal tissues would be 
relevant to defining the role of RD3 in early childhood diseases, including neuroblastoma. In addition, identifying 
the RD3 protein signature in cancer tissues is required to understand its role in cancer biology. We acknowledge 
these limitations; however, to appreciate the outcomes of any such studies, the understanding of RD3 expression 
in normal adult human tissues, which is characterized in this study, is critical.

Materials and Methods
In silico transcriptomics analysis. Three independent database portals, (i) Genotype-Tissue Expression 
(GTEx), (ii) Gene Expression across Normal and Tumor tissue (GENT), and (iii) Medisapiens in silico transcrip-
tomics online (IST), were used to study the mRNA expression of RD3 across normal human tissues and cells. 
The samples, 53 healthy tissues (total n = 8232) included in the GTEx database, were analyzed on the Affymetrix 
and Illumina platforms and expressed in calculated RPKM with isoforms collapsed to a single gene with no 
other normalization steps. The GENT database contained expression analysis in 25 healthy human tissues (total 
n = 3210) from the Affymetrix platform. The IST database included data analysis of gene expression from the 
Affymetrix platform across 49 healthy tissues (total n = 1706) with unique normalization and data quality ver-
ifications, allowing the gene expression profiles collected from different studies to be combined to generate an 
overview of the expression profile in human tissues.
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Tissue specimens and immunohistochemistry (IHC). Normal human tissue blocks were retrieved from 
the formalin-fixed, paraffin-embedded (FFPE) archival materials at the Department of Pathology, University of 
Oklahoma Health Sciences Center. RD3 expression and localization was investigated in different tissues, including 
retina, central nervous system (brain, spinal cord, olfactory bulb), gastrointestinal tract (esophagus, stomach, duo-
denum, appendix, colon), pancreatic hepatobiliary tract (parotid and submandibular gland, liver, intra-hepatic duct, 
pancreas), and other organs (lung, kidney, placenta, uterus, thymus, prostate skin, fallopian tube, thyroid, tonsil, 
breast). All protocols were approved by the University of Oklahoma Health Sciences Center Institutional Review 
Board with permission for the research use of de-identified control specimens collected for diagnostic purposes. 
All experiments were performed with University of Oklahoma Health Sciences Institutional Review Board for the 
protection of human subjects guidelines and regulations. All tissue section processing and immunohistochemis-
try (IHC) was performed in the COBRE-Cancer Tissue Pathology Core located at the University of Oklahoma 
Stephenson Cancer Center, as described in our earlier studies8,19,20. IHC for RD3 (customized antibody, 4.0 μg/ml) 
was performed utilizing an automated IHC machine (Leica Bond III) according to the manufacturer’s protocol 
using the Bond™ Polymer Refine detection system. A peroxidase-diaminobenxidine visualization process was 
employed, which gave positive immunoreactivity a brown color. Appropriate tissue histology controls stained with 
hematoxylin-eosin stain and negative controls with isotype matched (rabbit IgG Isotype control, ThermoFisher 
Scientific, Rockford, IL) no primary antibody (Figure S4) were examined in parallel. The slides were digitally 
scanned into virtual slides using an Aperio Scan Scope (Aperio Technologies, Inc., Buffalo Grove, IL, USA) slide 
scanner at 20x magnification. The whole slide images were then group-analyzed for RD3-specific positivity using 
Aperio image analysis and quantification software (Aperial Tool Box) with the appropriate algorithms for IHC. 
Parameters for analysis included cytoplasmic, nuclear, and total staining intensity. Automated strong positivity was 
quantified in multi-sections and/or multi-slides for each tissue type using RD3-specific (cytoplasmic and nuclear) 
image analysis algorithms. The tissue-specific metadata were exported to Excel. Tissue-specific expression was pro-
filed by comparing with no primary antibody (Ab) controls, and the means and SD were plotted (GraphPad Prism). 
Manual interpretations regarding cell type-specific localization and subcellular localization were performed by two 
anatomic pathologists (KMF and KLK). Still images were taken with a conventional light microscope (Nikon Eclipse 
80i) equipped with a digital camera. The intensity of immunoreactivity in different cellular locations was scored 
with a 3-tier system, and the extent of immunoreactivity was scored with a 5-tier system, as detailed in the legend 
of Table 1. To compare the RD3 IHC labeling specificity and efficiency of the custom synthesized Ab, IHC labeling 
was compared with commercially available RD3 Abs raised against various regions of human RD3 protein. For this, 
sections of human retina were immunostained with rabbit polyclonal RD3 Abs against epitope mapping between 
AA 52-112, AA 7-67 (both Abs from Antibody Verify), AA 36-85 (from Abcam) and; mouse monoclonal Abs raised 
against epitope mapping between AA 62-87, AA 145-175 and, AA 135-194 (all Abs from Santa Cruz Biotechnology 
Inc.). A negative control with no primary Ab is also included.

Cell Culture. The human neuroblastoma (SH-SY5Y, SK-N-AS, SK-PNDW, and IMR-32) cells were obtained 
from ATCC (Manassas, VA) and were cultured and maintained as described in our earlier publications21. In brief, 
SH-SY5Y cells were maintained as monolayer cultures in DMEM/F-12 50/50 (Mediatech, Inc., Herndon, VA) 
supplemented with 1.5 g/L sodium bicarbonate, 2 mm l-glutamine, 1% nonessential amino acids, 1% minimum 
essential medium vitamins, 5000 IU/ml penicillin, 5000 μg/ml streptomycin, 1% sodium pyruvate, and 10% FBS 
(Invitrogen). Human SK-N-AS, IMR-32, and SK-PN-DW cells were maintained in Dulbecco’s modified eagle’s 
medium supplemented with 0.1 mM nonessential amino acids, 1.5 g/L sodium bicarbonate, 5000 IU/ml penicil-
lin, 5000 g/ml streptomycin, 0.011% sodium pyruvate, and 10% FBS. For passage and for all of the experiments, 
the cells were detached using trypsin (0.25%) and EDTA (1%), re-suspended in complete medium, counted 
(Countess; Invitrogen), and incubated in a 95% air, 5% CO2 humidified incubator.

Plasmid preparation and DNA transfection. RD3 plasmid preparation and DNA transfection was per-
formed as described in our earlier studies8. Expression of RD3 (Human retinal degeneration 3, transcript variant 
1, Origene) was conducted with TurboFectin 8.0 reagent (Origene).

Immunoblotting. Total protein extraction and immunoblotting were performed as described in our ear-
lier studies21,22. For this study, immunoblotting was performed in the protein lysates (50 μg) of human neuro-
blastoma (SH-SY5Y, SK-NA-AS, SK-PN-DW, IMR-32) cells; normal human retina, duodenum, pancreas, lungs, 
colon, submandibular glands, brain and spinal cord and; in lysates from RD3 expressing SH-SY5Y cells, RD3 null 
SH-MSDAC cells and, ectopically RD3 re-expressed SH-MSDAC cells. The protein-transferred membranes were 
incubated with human RD3 antibody and were developed with the appropriate anti-rabbit secondary Ab (Bio 
Rad Laboratories, Hercules, CA). For peptide competition assay, the RD3 antibody was neutralized by mixing 
antibody with antigen (peptide) prior to immunoblotting. For defining the specificity of the peptide antigen com-
petition, lysates from identical set of human tissues were immunostained with neutralized Ab with the scrambled 
sequence (SPDLRRESWDPVETP, synthesized by GenScript, Piscataway, NJ on our initiative) peptide contain-
ing same amino acid content. Blots were stripped and reblotted with mouse monoclonal α-tubulin (Santa Cruz 
Biotechnology, Inc., Dallas, TX) or mouse monoclonal GAPDH (EMD Millipore, Billerica, MA) confirm equal 
loading of the samples. Specificity and efficiency of RD3 labeling was scrutinized using full length blots. For this 
study, broad-range blue pre-stained protein standard (New England Biolabs, Ipswich, MA, USA), was used for 
observing protein separation, transfer efficiency and for verification of protein size. Since the molecular stand-
ards do not show up in the chemiluminescent exposure, the ladder is not included in the pictures. Band intensity 
quantification was performed using Quantity One (Version 4.6.5, Bio Rad) 1D image analysis software and were 
plotted/analyzed with GaphPad PRISM (Version 7.03, GraphPad Software, Inc., La Jolla, CA).

http://S4
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Quantitative Real-time PCR. Total RNA extraction and RD3 gene transcript levels were investigated as 
described earlier8,23. We used b-actin as a positive control. A negative control without template RNA was also 
included. Each experiment was carried out in triplicate. The DDCt values were calculated by normalizing the gene 
expression levels to b-actin. The relative expression level was expressed as fold change.
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