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Future soil moisture and 
temperature extremes imply 
expanding suitability for rainfed 
agriculture in temperate drylands
John B. Bradford1, Daniel R. Schlaepfer2,3, William K. Lauenroth3, Charles B. Yackulic1, 
Michael Duniway4, Sonia Hall5,6, Gensuo Jia   7, Khishigbayar Jamiyansharav8,  
Seth M. Munson1, Scott D. Wilson9 & Britta Tietjen10,11

The distribution of rainfed agriculture, which accounts for approximately ¾ of global croplands, is 
expected to respond to climate change and human population growth and these responses may be 
especially pronounced in water limited areas. Because the environmental conditions that support 
rainfed agriculture are determined by climate, weather, and soil conditions that affect overall and 
transient water availability, predicting this response has proven difficult, especially in temperate 
regions that support much of the world’s agriculture. Here, we show that suitability to support 
rainfed agriculture in temperate dryland climates can be effectively represented by just two daily 
environmental variables: moist soils with warm conditions increase suitability while extreme high 
temperatures decrease suitability. 21st century projections based on daily ecohydrological modeling 
of downscaled climate forecasts indicate overall increases in the area suitable for rainfed agriculture 
in temperate dryland regions, especially at high latitudes. The regional exception to this trend was 
Europe, where suitability in temperate dryland portions will decline substantially. These results clarify 
how rising temperatures interact with other key drivers of moisture availability to determine the 
sustainability of rainfed agriculture and help policymakers, resource managers, and the agriculture 
industry anticipate shifts in areas suitable for rainfed cultivation.

Meeting the nutritional demands of a burgeoning human population in coming decades will require shifts in 
the distribution of global cultivation1. Approximately 1.5–1.6 billion hectares, or roughly 12–15% of the earth’s 
terrestrial land surface, are currently in cultivation or exist within a matrix of substantial cultivation, and in many 
regions cultivation is nearly ubiquitous2,3. Expansion of cultivation into newly suitable locations is an anticipated 
societal response to both changing climate4 and shifting geographic patterns of human populations5. Strategies 
for adapting our agricultural systems to climate change6 include enhanced irrigation7–9, although future water 
supplies for irrigation are uncertain, especially as societal water demand grows and changing climatic conditions 
alter both temperature and precipitation patterns10. Consequently, rainfed agriculture, which currently repre-
sents approximately 75% of global croplands11, is likely to remain a major component of the global food system. 
As cultivated lands shift4, the importance of rainfed agriculture will become especially pronounced for dryland 
areas where irrigation infrastructure and water supply are already limited. Quantifying the climatic and edaphic 
controls of rainfed cultivation in drylands is necessary to facilitate accurate forecasts of local, national, and global 
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food supply12. In addition, understanding the potential future distribution of agricultural land use is important 
to forecast the impact of human activities on a range of ecological processes and services13. Cultivation is a trans-
formative land-use practice that influences ecosystem water balance14, carbon dynamics15, and nutrient cycling16, 
and modifies landscape attributes such as biodiversity, habitat connectivity, and potential migration pathways17.

The suitability of drylands for rainfed agriculture is dictated by interactions among temperature, precipita-
tion, and soil texture12,18–20 that are not well estimated by mean climate conditions alone21–23. Climatic variables 
that influence the distribution of rainfed agriculture include the degree of overlap between warm and wet sea-
sons24, growing degree days, aridity, and winter temperatures19,25. Studies of crop yields have indicated that high 
temperature extremes, which lead to high vapor pressure deficits, can decrease rainfed crop yields in a variety 
of crops and regions4,26–32, especially during sensitive periods of crop development33. In addition, the adverse 
impacts on crop yields appear to be mediated by transient deficits of soil water availability, rather than directly by 
temperature12,21. Despite this evidence for interactive effects of temperature extremes and transient soil moisture 
on crop yields, the roles that these variables play in dictating overall areas suitable for agriculture have not been 
explored. Understanding these effects is particularly important considering expectations for increasing tempera-
ture stress31,32,34 throughout the 21st century.

Climate change is expected to decrease agricultural suitability at the global scale, although many studies have 
suggested that the most negative outcomes are likely to occur in tropical and sub-tropical systems7,32,33,35,36. By 
contrast, climate change impacts on agricultural suitability are uncertain for temperate regions37 that support a 
majority of global agricultural land38 and tend to have higher yields than tropical areas due in large part to higher 
soil fertility39. Globally, the temperate zone accounts for roughly 1/6 of cultivation and represents approximately 
31% and 17%, of cultivated areas for wheat and maize, respectively40. Understanding the controls over agricultural 
suitability and the potential impact of climate change on the distribution of suitable areas is especially challenging 
in temperate drylands because suitability in areas with high annual temperature amplitude is driven by complex 
interactions among seasonal and soil-depth patterns of both soil moisture and temperature. Plant growth and 
overall agricultural suitability in these areas is restricted to the mostly frost-free, warm season, which may not 
coincide with the period of highest soil moisture availability.

Here, we examined climate and soil texture controls of rainfed agriculture suitability in temperate drylands. 
Our goal was to assess how climate change, and particularly changing weather extremes, may impact the distribu-
tion and abundance of areas suitable to support rainfed agriculture in temperate dryland regions. First, we exam-
ined current climate, weather, and edaphic controls of rainfed agriculture suitability in temperate drylands, and 
we identified the metrics of daily soil moisture availability and weather extremes that were most strongly related 
to the current distribution of rainfed agriculture, from a list of potential explanatory variables used by previous 
studies (SI Appendix, Table S1). Because local demand for food influences the distribution and abundance of 
cultivation5, we also included a static metric of access to markets in our candidate variables. Second, we quantified 
how potential climate change-driven shifts in both weather extremes and transient soil moisture conditions may 
alter the abundance and extent of areas in temperate drylands that can support rainfed agriculture.

Results
Climate and soil moisture controls over rainfed agriculture.  We examined how remotely-sensed 
measures of current rainfed agriculture in temperate drylands (Fig. 1A) related to seven candidate driving varia-
bles representing climate, weather extremes, soil moisture and access to markets as a measure of demand for food 
(SI Appendix, Table S1). Comparison of 10 a priori candidate models (SI Appendix, Table S2) built upon variables 
identified by independent regional optimization (see Methods) identified a best model utilizing three standard-
ized variables and two interactions (SI Appendix, Table S2) that yielded unbiased estimates of rainfed agriculture 
(r2 = 0.55; SI Appendix, Figure S1) under current climate conditions:

RFA WDD TMAX MKT
WDD MKT WDD TMAX

logit( 2 4 1 2 0 12 0 68
0 26 0 07 )

= − . + . − . + .
− . ∗ − . ∗

where RFA is proportion rainfed agriculture within a 0.3125-degree raster cell, WDD is wet degree days (degree 
days when shallow soils are wet; SI Appendix, Table S1), TMAX is the frequency of extreme hot days (maximum 
temperature >34 °C), and MKT is market access.

Our best model contained just two variables representing soil moisture and climate, suggesting that soil 
and climatic controls over agricultural suitability can be effectively represented by the interactive effects of the 
long-term mean annual frequency of wet degree days in the top soil layers and the long-term mean annual num-
ber of days with maximum temperature greater than 34 °C. Rainfed agriculture was positively related to wet 
degree days and market access, and negatively related to extreme hot days (Fig. 2). The positive relationship 
with wet degree days was the most powerful predictor of rainfed agriculture and non-linear such that rainfed 
agriculture is most responsive in locations where wet degree days are high (e.g. above ~1200 °C × days). In addi-
tion, the influence of wet degree days interacted with extreme hot days and market access (Fig. 2a). Specifically, 
in locations where wet degree days are low (e.g. <1000 °C × days), rainfed agriculture is also low regardless of 
extreme hot days or market access. Rainfed agriculture was negatively related to extreme heat (Fig. 2b), and that 
relationship is strongly influenced by the interaction with wet degree days. Specifically, rainfed agriculture is 
very low in cells exposed to a high frequency of extreme hot days regardless of wet degree days, whereas rainfed 
agriculture in areas with a low frequency of extreme hot days is strongly, and positively, related to wet degree 
days. Market access is positively associated with increased rainfed agriculture (Fig. 2c), although the response 
of rainfed agriculture to market access is most pronounced at very low (e.g. <0.05) market access (which are 
common in the data; Figure S2). By contrast, variation in market access from 0.05 to 1 have relatively modest 
impacts on the abundance of rainfed agriculture. Furthermore, the difference in rainfed agriculture abundance 
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between high and low market access was greatest at intermediate levels of wet degree days (Fig. 2a). Within the 
full set of 10 candidate models (SI Appendix, Table S2), coefficients for wet degree days (1.15–1.33; best model, 
1.18) and for markets access (0.68–0.87; best model, 0.68) were all positive and varied little, while 4 out of the 
6 models that included coefficients for temperature extremes estimated them as negative (−0.26 to +0.37; best 
model, −0.12), underscoring the strong relationships between these independent variables (WDD and MKT) 
and rainfed agriculture.

Our overall estimates of land area suitable for rainfed agriculture is moderately influenced by the assump-
tions about the cultivated areas within pixels classified as agriculture (see Methods). We estimate approximately 
2.32 million km2 suitable for rainfed agriculture across all temperate dryland regions, close to the 2.51 million km2 
of realized rainfed agriculture estimated by remote sensing2. Our estimates (Fig. 3 black bar) were approximately 
9%, 14%, and 19% less than remotely-sensed estimates in North America, West Asia and Europe, respectively, 
7% more in East Asia, and dramatically more (~600%) in South America. The large difference in South America 
indicates that our climatic and edaphic drivers suggest a potential for more widespread rainfed agriculture in the 
temperate dryland portions of South America19.

Predictions based on wet degree days, extreme temperatures and market access (SI Appendix, Figure S2) 
successfully reproduced current geographic patterns of rainfed agriculture estimated from remote sensing 
(RMSE = 13.7%; SI Appendix, Figure S1a). In general, the spatial gradients in predicted agricultural suitability 
are very similar to observed gradients of agriculture abundance (Fig. 1, SI Appendix, Figures S1 and S3). Areas 
with the highest density in East Asia are focused on the central part of northeastern China with small pockets 
of rainfed agriculture in the western part of the region. In western Asia, rainfed cultivation is most abundant in 
a broad east-west band extending from north of the Black Sea east across southern Russia, with smaller areas 
to the south from Kazakhstan to Turkey. Rainfed agriculture is most abundant in North America throughout 
the northern Great Plains, from the central United States into the southern parts of Manitoba, Saskatchewan, 
and Alberta in Canada. Predictions for each major region based on the model fit without that region assess the 

Figure 1.  Rainfed agriculture (expressed as proportion of land area) in temperate drylands estimated from: 
(A) remote sensing (e.g. realized abundance), (B) predicted under current conditions from a statistical model 
(e.g. potential abundance), (C) predicted under future conditions (median GCM, RCP8.5), and (D) change in 
prevalence between future and current climate. Created in R version 3.3.2. (www.R-project.org/).
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model’s capability to accurately predict into novel locations and climates, and those predictions are also good 
(RMSE = 15.5%), although they display a slight bias toward under-estimation of rainfed agriculture in areas of 
high agricultural abundance (SI Appendix, Figure S1b). Likewise, while our statistical model correctly identified 
the locations within Asia and North America that are highly suitable for rainfed agriculture, the actual intensity 
of rainfed agriculture within those regions was, in some places, higher than modeled (SI Appendix, Figure S3). 
These discrepancies underscore that decisions about rainfed cultivation are influenced by factors not represented 
in this analysis such as economic conditions other than market access or incentives driven by governmental 
subsidies for agriculture, competing alternative land uses, irrigation water cost and availability, and terrain or soil 
limitations not accounted for here. Despite these modest differences between estimated suitable area and esti-
mated actual rainfed agriculture, the extremely low bias displayed by the relatively simple model identified here 
suggests that it provides a useful framework for examining the influence of climate variables and the potential 
consequences of changing climatic conditions for rainfed agricultural suitability.

Figure 2.  Controls over rainfed agriculture, represented by relationships between rainfed agricultural 
abundance and (a) wet degree days (WDD; growing degree days when soil water potential >-1.5 MPa in 
the top 20 cm of soil); (b) days with maximum temperature (TMAX) greater than 34 °C; and (c) access to 
markets (MKT). Black lines are mean response and colored dashed or dotted lines illustrate interactions by 
showing response under high or low (90th or 10th percentiles, respectively) of other driving variables. Gray 
areas provide insight into how climate change may alter these important driving variables, by depicting the 
distribution of temperate drylands relative to each driving variable, WDD in (a), TMAX in (b), MKT in (c), and 
lines depict forecasted future distributions (medians GCM forecast from RCP 4.5 and RCP8.5).
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Climate change impacts on the distribution of areas suitable for rainfed agriculture.  Contrasting 
current and future estimates of total area suitable for rainfed agriculture (included both cultivated and unculti-
vated) suggests potential increases for most regions. Compared to current modeled suitable area, our best model 
predicted that climate change represented by the median GCM under RCP8.5 at the end of the 21st century 

Figure 3.  Estimated regional percent change in land area suitable for rainfed agriculture under future climatic 
conditions for all 10 statistical models examined (Table S2), with models ranked from best performing (#1, 
median changes highlighted in yellow) to worse performing (#10.) Projections are shown by region for RCP 4.5 
(blue) and RCP 8.5 (red). Circles are change estimates for the median GCM and lines show range between rank 
2 and rank 15 (out of 16 GCMs examined) for each RCP.
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(2070–2099) would result in a 41% increase in global temperate dryland area suitable to support rainfed agri-
culture (~0.96 million km2 based on current sub-pixel abundance assumptions, SI Appendix, Figure S4) (18% 
increase under RCP4.5; Fig. 3), assuming current market access. Under RCP8.5, we forecast suitable area to 
increase in East Asia by 78% (0.34 million km2), in West Asia by 30% (0.35 million km2), in North America by 
43% (0.26 million km2), in South America by 35% (0.02 million km2), and decrease in Europe by 31% (0.014 
million km2). The directions of these predictions for change in suitability were generally robust to uncertainty in 
both statistical model structure and future climate represented by variation among two emissions scenarios and 
16 climate models (Fig. 3 and Figure S8), although variability in projected change in suitable area was greater in 
some regions (e.g. Eastern Asia and South America) than others. Uncertainty in statistical model structure had 
less influence than uncertainty in climate on predictions of rainfed agriculture suitability at the global scale and 
regional scale for all regions except North America (SI Appendix, Table S3). The top several models all projected 
increased suitability in Eastern and Western Asia and North and South America, while projections for Europe 
ranged between no change and ~40% decline. In all regions, estimates from the best model fell in the middle of 
the suite of projections from all models, indicating that the best model does not generate extreme predictions. 
Regional estimates of change in land area suitable to support rainfed agriculture (Fig. 3) increased under both 
RCPs and the low, middle, and high GCM ranks in East Asia (RCP4.5 range 12% to 89%; RCP8.5 range 35% to 
161%), West Asia (RCP 4.5 range 3% to 43%; RCP 8.5 range 12% to 64%), and North America (RCP4.5 range 
8% to 41%; RCP8.5 range 14% to 65%). Within these regions with overall increases, substantial decreases in 
suitability for rainfed agriculture are projected in many smaller areas, notably the southern great plains of North 
America and the southeastern portion of East Asia (Fig. 1). Anticipated declines in suitable area in Europe were 
also robust across RCPs and GCMs, ranging from −19% to −10% under RCP4.5 and −30% to −22% under 
RCP8.5 (Fig. 3). In South America, estimates of percent change ranged from −3% to 62% for RCP4.5 and −4% 
to 104% for RCP8.5.

Discussion
Our results identify two important environmental influences over rainfed agriculture in temperate dryland areas. 
First, climate variability and weather events, expressed here as long-term average annual number of days with 
extreme heat, exert important control over suitability for rainfed agriculture, a process that may not be well 
represented by studies focusing only on mean climatic conditions or using a monthly time scale analysis. While 
extreme heat has a recognized impact on agricultural yields4,26–30, its role in restricting the distribution of areas 
suitable for rainfed agriculture has not been previously demonstrated. Second, extreme heat interacts with the 
dominant control exerted by transient soil moisture availability in these dryland regions such that rainfed agri-
culture can be restricted by any combination of dry conditions or extreme heat. These interacting influences are 
especially important in the context of climate change, because a growing potential for extreme heat events, more 
frequent ecological drought periods, and enhanced aridity in drylands are among the most reliable aspects of 
climate projections41 (Figure S8).

The long-term average annual sum of wet degree days in the top soil layers was the most influential variable 
in our best model; rainfed agriculture is non-existent where wet degree days are very low, but reliably more 
abundant where wet degree days are high. The importance of wet degree days is consistent with previous studies 
that have related cropland to growing degree days and overall aridity19,25, and studies showing adverse drought 
impacts on crop yields33. Wet degree days integrate important aspects of both temperature and moisture limita-
tions, and was identified in our statistical model selection as a more effective predictor of rainfed agriculture than 
variables relating directly to either growing degree days or precipitation. Historical trends in climate extremes 
over the past few decades have adversely impacted agricultural production, although those impacts are masked 
by advances in agronomic technology, such as genetic crop improvements12,29. However, crop improvements that 
have increased rainfed crop yields in recent decades may be associated with greater drought vulnerability33.

We found that the number of days with maximum temperature greater than 34°C provided a useful met-
ric for identifying areas with adequate wet degree days that are not suitable for agriculture because of frequent 
extreme high temperatures. Abundant evidence implies that crop yields are negatively impacted by extreme high  
temperatures22,27,28,34,37. However, our results are the first to illustrate that high temperature extremes provide a 
geographic limitation to rainfed agriculture, and in particular that the occurrence of episodic extreme heat events 
appears to restrict cultivation even in relatively cool temperate regions. Although we used 34 °C as our metric 
of potential heat stress, a value consistent with previous work34, we also examined a higher 40 °C threshold and 
found similar relationships with current rainfed agriculture abundance and similar impacts on future suitability 
(results not shown). As temperatures continue to rise in coming decades, this limitation will have potentially 
important negative consequences for future global food supply42,43.

Consistent with our hypothesis about the positive influence of proximity to population centers, our model 
selection indicated a positive relationship with market access. Although market access patterns may shift in the 
future, we did not attempt to anticipate those changes and, for the purpose of this analysis, assumed that the geo-
graphic patterns of market access will not change in the future. The inclusion of market access in our best model 
suggests that it provides useful information that can complement climate and ecohydrological metrics to enhance 
future studies of agricultural suitability.

For temperate dryland regions, the importance of both wet degree days and high temperature extremes, and 
the interaction between them, suggests a simple framework for interpreting both historical relationships between 
climate and agriculture, as well as for developing future projections of climate change impacts that explicitly 
incorporate edaphic influences over moisture availability23. For example, recent climatic warming trends have 
been related to decreased crop yield in many temperate regions, including soy and maize in North America 
and Asia, and wheat in Asia, and increased yield in other areas, including wheat in North America and rice in 
the Northern parts of Asia6. While most of these yield patterns were consistently linked to temperature trends, 
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growing season precipitation trends, which are less consistent than temperature trends, showed weak relation-
ships with crop yield at global scales29 but are likely much more important in water-limited arid and semiarid 
climates.

Climate change appears likely to increase suitability for rainfed agriculture at high latitude, and to a lesser 
extent high elevation, locations (Fig. 1 and SI Appendix, Figure S5), consistent with previous work19,25,44. In par-
ticular, the northern portions of East Asia, West Asia and North America and the southern portion of South 
America all display increases in suitability for rainfed agriculture. Some portions of these areas of increasing suit-
ability are already heavily cultivated, while others have relatively low current prevalence of cultivated agriculture. 
This increased suitability is driven primarily by increases in temperature that when combined with slight precipi-
tation increases, result in higher wet degree days in the top soil layers (SI Appendix, Figure S6). However, climate 
models also forecast substantial increases in the occurrence of extreme high temperatures for these regions, (SI 
Appendix, Figure S7), which limits the potential increases in suitability for rainfed agriculture and contributes 
to the predicted suitability decreases in some locations. Although we did not explicitly restrict our assessment of 
suitability by topography, areas of extreme topographic relief (defined here as >2000 m elevation range within 
one of our cells) represented only approximately 1% of total suitable areas under either current or future condi-
tions, suggesting that our estimates of newly suitable future areas do not contain substantial amounts of moun-
tainous areas with extreme topography.

Despite our overall result of increased area suitable for rainfed agriculture in most temperate regions, our 
analysis also indicated locations within each region that are currently heavily cultivated, but will become less suit-
able in the future. Most of the temperate dryland cultivated areas in Europe are expected to experience declining 
suitability. Similar declines are predicted for southern China, many southern portions of West Asia around the 
Black Sea and in southern Kazakhstan, and the southeastern U.S. Great Plains, especially the northern parts of the 
shortgrass steppe in eastern Colorado and western Kansas. Previous analysis suggested that rainfed agriculture 
was restricted to conditions where AET/PET > 0.525, but we found that dryland agriculture can occur in drier 
conditions. Our results suggest that ~1.1 million km2 of rainfed agriculture exists in areas with AET/PET < 0.5, 
and 0.66 million km2 where AET/PET < 0.4. The feasibility of rainfed agriculture in these semi-arid and arid areas 
may be greater in the temperate climates we examined here than tropical and subtropical areas, because in the 
temperate zone soil water storage during the cool season has the potential to support a productive early growing 
season despite limited overall precipitation45. The presence of rainfed agriculture in areas previously thought to be 
too dry may also be the result of increasing drought tolerance of crops developed in recent decades29.

Our selection of important climatic variables was informed by crop yield results, but we did not directly model 
crop yield or the influence of enhanced atmospheric carbon dioxide concentrations on plant growth. Our projec-
tions of future suitability to support rainfed agriculture also do not incorporate the possibility of further genetic 
enhancements to drought resistance, or other crop specific requirements like vernalization in winter wheat. The 
influence of temperature extremes and soil moisture conditions over both interannual variability in crop yields 
and the distribution and abundance of rainfed agriculture underscores their potential utility for anticipating 
climate impacts on agriculture. Recent and anticipated advancements in remote sensing of cultivated areas, espe-
cially in distinguishing between rainfed vs. irrigated cultivation, will eventually lead to long-term, high spatial 
resolution information about cultivation trends that could test and refine our projections of future shifts in areas 
suitable for rainfed agriculture.

Our overall result of increasing suitability for rainfed agriculture is specific to drylands of the temperate zone. 
In the warmer conditions of tropical and subtropical regions, rainfed crop production is likely to be negatively 
impacted by rising temperatures. In fact, many of the regions identified as most at risk for declining crop yield due 
to climate change are in tropical and subtropical climates6,7,35,37, and the portions of temperate drylands that we 
identified as declining in suitability for rainfed agriculture tend to occur at lower latitudes. Our result of extreme 
high temperatures negatively affecting rainfed agricultural suitability reinforces these previous findings and illus-
trates how the impact of changing climate on agriculture may differ between temperate regions and tropical/
subtropical regions. Although we focused only on the temperate zone, the interaction identified here between wet 
degree days and high temperature extremes may be useful for future studies of agricultural suitability over the 
entire range of drylands globally.

Cultivated agriculture is a transformative, high-impact land use practice that fundamentally alters biodiversity 
and ecosystem structure and function. Broad geographic changes in cultivation intensity, including both large 
parcels of previously cropped lands left fallow on the trailing edge as well as conversion of land to cropping due 
to increased suitability, would impact ecological processes and ecosystem structure at a range of spatial scales. 
The widespread areas of increasing suitability for rainfed agriculture in temperate drylands that we identified, 
combined with growing global demand for food and fiber43, may lead to overall agricultural intensification (espe-
cially if agricultural suitability declines in tropical and subtropical areas), and migration of cultivated land use 
practices into areas previously considered too cold4. Likewise, areas of declining suitability for rainfed agriculture, 
notably Europe and the southern portion of the U.S. Great Plains, may also experience substantial changes in 
ecosystem structure and potentially enhanced erosion and dust production as a result of crop failures. While land 
use decisions are influenced by many factors other than environmental suitability, changes in suitability may have 
dramatic impacts on ecosystems in temperate dryland regions16 and the non-agricultural ecosystem services that 
they currently provide.

Methods
Study sites and Regions.  We defined temperate drylands as areas where a) mean annual temperature 
(MAT) > 0 °C, b) ≥ 4 but < 8 months have mean monthly temperatures ≥ 10 °C, c) Trewartha climate group cat-
egory is D46, and d) aridity (MAP/PET, where PET is potential evapotranspiration and MAP is the mean annual 
precipitation) is considered arid or semiarid (0.05 ≤ AI < 0.5). We included areas meeting these temperate 
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dryland criteria under either current conditions or future conditions for any of the scenarios we examined and 
our comparisons of current and future rainfed agricultural suitability utilize a consistent area (described below) 
which is larger than current temperate drylands. We applied a geographic raster with 0.3125-degree square cells 
so that exactly one cell center of the NCEP/CFSR T382 Gaussian grid47 fell in each of our cells (resolution of about 
0.312° × ~0.312°). Our raster contained 1152 × 576 cells and had its origin at 90 °S and 179.84375 °W. From these 
criteria, we identified 20,020 cells for running simulations. Our results are based on 5 geographic regions from the 
UN geoscheme48: ‘South America’ (<15 °N & >25 °W); ‘Eastern Asia’ including the eastern portion of Southern 
Asia (along border of Afghanistan/Pakistan except area around city of Quetta) and the eastern portion of Eastern 
Europe (>87 °E starting about at the border point of Russia, Kazakhstan, and China); ‘Western and Central Asia’ 
including the western portion of Southern Asia (along border of Afghanistan/Pakistan plus area around city of 
Quetta) and western portion of Eastern Europe (<87 °E); ‘Western Mediterranean basin’ (W of the Dinaric and 
Pindus Mountains) including Europe and Northern Africa, but excluding Eastern Europe (>0 °N & (<25 °W & 
<14 °E); ‘North America’ (>25 °N & >50 °W).

Data sources.  As described in Schlaepfer et al.49 and Tietjen et al.50, we extracted historical (1979–2010) daily 
maximum and minimum temperature (2 m above ground) and 6-hourly precipitation from NCEP/CFSR data47. 
We examined two RCPs, RCP4.5 and RCP8.5, to represent emissions uncertainty, and 16 GCMs (SI Appendix, 
Table S3) to represent climate model uncertainty. We optimized the selection of 16 GCMs from all those that 
participated in CMIP5 to include the most independent and best performing subset of GCMs51,52 so that this 
optimized set of 16 GCMs likely represents more than 90% of temperature variation and more than 85% of pre-
cipitation variation among all GCMs included in CMIP553. We extracted these 32 future climate conditions as 
monthly time-series for 2070–2099 from 1/2-degree downscaled and bias-corrected products of the fifth phase 
of the Climate Model Intercomparison Project (CMIP5) from the “Downscaled CMIP3 and CMIP5 Climate and 
Hydrology Projections” archive at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/ (data accessed on 
Feb 4, 2014). We combined historical daily data (NCEP/NFSR) with monthly GCM predictions of historical and 
future conditions with a hybrid-delta downscaling approach to obtain future daily forcing54.

Seasonal patterns of vegetation structure and function were estimated from climate variables as described in 
Bradford et al.55 and Schlaepfer et al.49 and the algorithms for estimating vegetation from climate were applied 
under both current climate and future climate for each time period and climate model examined. Soil texture 
data were derived from the ISRIC-WISE global soil dataset at 5 arc-min spatial resolution and at 20-cm depth 
intervals. Soil depth was estimated from ISRIC-WISE unless the soil was deeper that 1 m, in which case depth 
was estimated as 95% of the maximum root depth with 50-cm depth intervals56 and soil texture was assumed to 
be the same as the deepest ISRIC-WISE layer. We extracted elevation information from the GAEZ 2008 30-arcsec 
global elevation dataset at http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
global-terrain-slope-download.html?sb=7 and calculated area-weighted median and elevation range for each 
cell.

The proportion of each cell that is currently cultivated in dryland agriculture was estimated from the results 
of Teluguntla et al.2 who synthesized four previous remote-sensing studies of global croplands and developed 
two products relating to global cropland distribution: crop dominance and major crops, both which included 
estimates of rainfed vs. irrigated cultivation (report available at: http://geography.wr.usgs.gov/science/croplands/
docs/Global-cropland-extent-V10-teluguntla-thenkabail-xiong.pdf) Within each simulation grid cell (0.3125° 
degree, about 30 km resolution) the prevalence of dryland agriculture was calculated from the remote-sensing 
derived agriculture estimates (1 km2 resolution) generated by Teluguntla et al.2. We averaged both products, with 
rainfed major crop abundance (Figure 6.13 in in Teluguntla et al.2) calculated as the sum of the rainfed major 
crop categories (classes 4 through 7: “ Rainfed: wheat, rice, and soybeans dominant”, Rainfed: wheat and barley 
dominant,” “Rainfed: corn and soybeans dominant,” “Rainfed mixed crops: wheat, corn, rice, barley, and soy-
beans”) multiplied by 0.7 to approximate the actual subpixel abundance of agriculture, based on57, and rainfed 
crop dominance (Figure 6.12c in Teluguntla et al.2) estimated as class 3 (“croplands rainfed”), class 4 “croplands, 
rainfed minor fragments”, and class 5 (“rainfed very minor fragments”) multiplied by 0.7, 0.25, and 0.1, respec-
tively (reflecting within-pixel abundance57). Our assumptions about within-pixel abundances (i.e. the amount of 
a 1 km by 1km pixel identified by remote sensing as rainfed agriculture that is actually cultivated in rainfed crops) 
influences the regional and global estimates of land area currently cultivated. However, we explored a range of 
sub-pixel abundance values and found that statistical model performance and estimates of percent change in area 
suitable to support rainfed agriculture as a result of climate change were not substantially influenced by sub-pixel 
abundance values. Consequently, we focus on proportional change in suitable area by region, and present esti-
mates of actual land area in supplementary materials. The abundance of rainfed agriculture can be influenced 
not only by the climatic and soil moisture conditions that support viable crop yields, but also by the economic 
demand for food and proximity to population centers5. We estimated access to markets for each cell from a data-
set developed as part of the Global Land Project, accessed from (http://www.ivm.vu.nl/en/Organisation/depart-
ments/spatial-analysis-decision-support/Market_Influence_Data/index.aspx) on October 25, 2015. These market 
access data were highly right skewed, so we applied a natural log transformation adding a constant of 0.0001.

Ecohydrological modeling.  We utilized SOILWAT, a daily time step, multiple soil layer, process-based, 
simulation model of ecosystem water balance58–60 and specific simulations for this analysis are described in 
Schlaepfer et al.49. SOILWAT has been applied and found to be reliable in dryland ecosystems including tem-
perate grasslands58,61 and temperate shrub-dominated ecosystems60. Inputs to SOILWAT include daily weather 
conditions (mean daily maximum and minimum temperature and daily precipitation), mean monthly climate 
conditions (mean monthly relative humidity, wind speed and cloud cover), latitude, elevation, vegetation (mean 
monthly live, standing and litter biomass, active root depth profile) and soil properties (texture of each soil layer). 
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SOILWAT estimates processes for each functional plant group including interception by vegetation and litter, 
evaporation of intercepted water, transpiration and hydraulic redistribution from each soil layer. SOILWAT esti-
mates hydrological processes including partitioning of precipitation into snowfall and rain, snow accumulation, 
melt and loss, infiltration into the soil profile, percolation for each soil layer, bare soil evaporation and deep drain-
age59,60. We executed these simulations on Yellowstone at the National Center for Atmospheric Research-Wyoming 
Supercomputing Center and the Advanced Research Computing Center’s Mount Moran/Bighorn facilities at the 
University of Wyoming.

Statistical modeling.  We considered a set of seven variables as candidates for main effects that represent 
specific hypotheses about environmental and economic controls over the distribution of rainfed agriculture (SI 
Appendix, Table S1): (1) mean annual precipitation; (2) mean annual temperature; (3) mean winter precipitation, 
(4) weather extremes (mean annual number of days with maximum temperature greater than 34 C; hereafter 
extreme hot days); (5) water availability when conditions are warm (growing degree days when soil water poten-
tial in top 20 cm was >-1.5 MPa; hereafter wet degree days); (6) mean seasonal correlation of monthly poten-
tial evapotranspiration and monthly soil water potential in shallow layers; and (7) access to economic markets 
(natural log transformed). These variables were selected because they are directly related to general hypotheses 
about the positive influence of adequate warmth and water availability as well as access to markets, and the poten-
tial negative influence of extreme high temperatures (SI Appendix, Table S1). We identified the best statistical 
model (as described below) for predicting rainfed agriculture from combinations of these seven main effects 
and first-order interactions, based on current climatic conditions and current rainfed agriculture abundance 
estimated from remote sensing. Each covariate was standardized prior to model fitting by centering around the 
mean and dividing by the standard deviation.

We modeled the number of square kilometers of dryland rainfed agriculture, Aag, in each cell in terms of the 
number of total square kilometers in the cell, Atotal (varied from 655 to 1202 km2 based on latitude), the predicted 
proportion of land used for agricultural, y, (equivalent to Aag/Atotal) and an overdispersion term, θ, to account for 
variation beyond that expected by a binomial response as a result of unmodelled factors. Specifically, we used 
beta-binomial regression where y was modeled as a function of covariates, X, and estimated coefficients, β, via a 
logit link:

β
β

=
+

y X
X

exp( )
1 exp( )

We first selected covariates from among the seven candidates to include in our final models by a regional 
model selection process defined a priori; then, we created a set of global models using combinations of the 
selected covariates and interactions; finally, we ranked the global models using AIC. First, we defined three major 
regions (N. & S. America, East Asia, and West Asia & Europe) for model fitting. We conducted three separate 
model selection iterations with each major region as an out-of-sample dataset and performed forward stepwise 
model selection where coefficients and overdispersion parameter were estimated via maximum likelihood using 
the remaining two major regions as in-sample data and the performance of a model was based on the negative 
log-likelihood (NLL) of the out-of-sample data given the estimated β and θ. The covariate that led to the largest 
drop in out-of-sample NLL was chosen at each step and forward stepwise selection continued until adding covar-
iates no longer led to a drop in NLL. We then considered two-way interactions between covariates adding them 
in a stepwise fashion until addition of covariates no longer led to declining out-of-sample NLL. We repeated this 
process using each of the three major regions as out-of sample datasets. The best model from each region included 
3 main effect predictors; 5 out of the 7 possible main effect variables were selected by at east one of the three 
regional optimizations. To avoid overfitting, we restricted global models to 3 out of the 5 selected main effects plus 
significant interactions among those main effects. We created global models that contained 3 main effects based 
on all combinations of the 5 candidate main effects resulting in 10 models (SI Appendix, Table S2). Coefficient 
estimates for each model were determined using the full dataset and estimated via maximum likelihood. 
Maximum likelihood estimates were reached using the optim and dbetabinom functions in R62 (version × 64 
3.2.3), which are included in the stats62 and emdbook63 packages respectively. We used AIC to rank the 10 global 
models; the ranking was confirmed by RMSE (based on in-sample data) (SI Appendix, Table S2). We applied each 
model to estimate rainfed agriculture abundance under current climatic conditions and future climatic conditions 
for two representative concentration pathways and 16 general circulation models within each pathway. For each 
RCP, we present results from the 2nd, 8th and 15th GCM rank to represent variability among GCMs. To quantify the 
relative influence of statistical uncertainty vs. climate uncertainty, we partitioned variance in predictions of future 
land area suitable to support rainfed agriculture into variance attributable to statistical models, climate scenarios 
and residual variance (SI Appendix, Table S3), by dividing the sum of squares for each component by the total 
sum of squares for the global and regional predictions.
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