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Breathing
Matthias Daniel Zink  1, Christoph Brüser2, Björn-Ole Stüben1, Andreas Napp  1,  
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Sleep disordered breathing (SDB) is known for fluctuating heart rates and an increased risk of 
developing arrhythmias. The current reference for heartbeat analysis is an electrocardiogram 
(ECG). As an unobtrusive alternative, we tested a sensor foil for mechanical vibrations to perform a 
ballistocardiography (BCG) and applied a novel algorithm for beat-to-beat cycle length detection. 
The aim of this study was to assess the correlation between beat-to-beat cycle length detection by 
the BCG algorithm and simultaneously recorded ECG. In 21 patients suspected for SDB undergoing 
polysomnography, we compared ECG to simultaneously recorded BCG data analysed by our algorithm. 
We analysed 362.040 heartbeats during a total of 93 hours of recording. The baseline beat-to-beat cycle 
length correlation between BCG and ECG was rs = 0.77 (n = 362040) with a mean absolute difference 
of 15 ± 162 ms (mean cycle length: ECG 923 ± 220 ms; BCG 908 ± 203 ms). After filtering artefacts 
and improving signal quality by our algorithm, the correlation increased to rs = 0.95 (n = 235367) with 
a mean absolute difference in cycle length of 4 ± 72 ms (ECG 920 ± 196 ms; BCG 916 ± 194 ms). We 
conclude that our algorithm, coupled with a BCG sensor foil provides good correlation of beat-to-beat 
cycle length detection with simultaneously recorded ECG.

Sleep disordered breathing (SDB) is widespread1,2 and characterized by pathological breathing episodes possibly 
leading up to complete apnea. Through fragmented sleep architecture, untreated SDB can result in reduced qual-
ity of sleep and increased morbidity3. SDB is associated with an increased risk for obesity4, abnormal body and 
limb movements, fluctuating heart rates and risk for the development of cardiac arrhythmias5. Thus, an unobtru-
sive device for long-term heartbeat measurement is desirable for this group of sleep disordered individuals and 
other patients who are at risk for arrhythmia6.

The gold standard for heartbeat diagnosis is the electrocardiogram (ECG), but novel unobtrusive systems 
are the focus of research looking for alternatives for heart rate monitoring7. These include wearable electrodes8, 
smartphone applications9, photoplethysmographic-10, unobtrusive-11 or mechanical sensors12,13, developed as an 
alternative for heart rate measurement to address future aspects of individualized diagnosis and therapy. While 
ECG measures cardiac electrical activity, a ballistocardiography (BCG) foil registers the mechanical vibrations 
caused by cardiac activity. This method came into focus at the end of the 19th century14. Initially, the signal of 
mechanical vibrations offered reliable information about respiration rate15–17 and cardiac contractility18. Thanks 
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to advances in sensor and algorithm technology, analysis of the cardio-mechanical signal is now able to deliver 
additional information regarding heart rate19–21 or pulse transit time22 for cuff-less blood pressure monitoring.

A BCG foil can be positioned invisibly beneath the bed sheets (Fig. 1A). The mechanical vibration of each 
heartbeat is recorded and interpreted by our novel algorithm (Fig. 1B,C) as a surrogate for the heartbeat cycle 
length and compared to a simultaneously recorded ECG during an in-laboratory polysomnography (PSG) 
(Fig. 1D).

In preceding investigations, we demonstrated that short term beat-to-beat analysis for known episodes of 
atrial fibrillation and sinus rhythm by a BCG sensor are feasible23. This study now extends our previous approach 
by applying autonomous beat-to-beat recording with robust and reliable analysis for hours, live feed of the 
acquired BCG signal similar to a telemetric monitoring system, automated exclusion of episodes with no signal 
or low signal quality and an increase in the accuracy of cycle length estimation by a computed quality index 
(QI). In addition, this long-term approach should help to identify potential fields of application, for which kind 
of heartbeat surveillance the sensor may be suited best. We selected a SDB cohort to test the performance of our 
novel algorithm as it represents a difficult measurement situation caused by patient related physical constraints 
including obesity, restless sleep as well as a highly fluctuating heart rate.

Thus, the main objective of this study was to test the feasibility of long-term beat-to-beat cycle length calcu-
lation by means of BCG.

Results
A total of 93 hours with 362.040 identified heartbeats in 21 BCG recordings were analysed. Mean age of the 
included patients was 50 ± 13 years and 19 of the participants were male (91%) (Table 1). The patient cohort was 
generally overweight with a mean Body-Mass-Index (BMI) of 33.8 ± 9.6 kg/m2. All patients suffered from snoring 
and symptoms related to sleep disorder breathing. Preliminary assessment included a mean Epworth sleepiness 
scale (ESS) score of 13 ± 5 and an Apnea-Hypopnea-Index (AHI) of 40.9 ± 21.7 before PSG.

During PSG, the average oxygen saturation was 91 ± 4.2%, while minimal saturations of 77.1 ± 10.9% were 
recorded. Sleep apnea syndrome was diagnosed in 16 (76%) patients (Table 1).

Figure 1. BCG measurement and correlation with a synchronized recorded ECG. (A) BCG foil is positioned 
under the patient’s chest. (B,C) Mechanical cardiac activity induces a charge shift in the BCG foil. (D) A BCG 
signal is recorded and compared to a simultaneously recorded ECG.

Mean ± Standard Deviation (SD) N (%)

Study group

Age 50 ± 13

Sex Male 19 (91%)

Smoker Yes 4 (19%)

Height [cm] 1.77 ± 0.09

Weight [kg] 107 ± 33

BMI [kg/m2] 33.8 ± 9.6

AHI [/h] 40.9 ± 21.7

ESS 13 ± 5

Polysomnography

RDI [/h] 26.9 ± 23.8

Mean Oxygen Saturation [%] 91 ± 4.2

Minimal Oxygen saturation [%] 77.1 ± 10.9

No sleep apnea syndrome 5 (24%)

Mild sleep apnea syndrome 3 (14%)

Moderate sleep apnea syndrome 3 (14%)

Severe sleep apnea syndrome 10 (48%)

Table 1. Baseline data of the study group.
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The baseline correlation of the estimated BCG cycle length with the simultaneously recorded ECG was 
rs = 0.77 (n = 362040) with a mean absolute difference between ECG and estimated heartbeat cycle length by the 
BCG algorithm of 15 ± 162 ms (heartbeat cycle length: ECG 923 ± 220 ms vs. BCG 908 ± 203 ms) (Fig. 2A). By 
calculating the signal quality of each identified heartbeat in the BCG signal, the QI offered the possibility to filter 
heartbeats of poor quality at the cost of reducing the absolute number of analysable heartbeats (Table 2). Filtering 
heartbeats of poor quality resulted in an improved correlation coefficient and a more precise cycle length meas-
urement. By raising the QI to ≥ 0.4, the correlation coefficient improved to rs = 0.95 (n = 235367) with a mean 
difference in heartbeat cycle length of 4 ± 72 ms (ECG 920 ± 196 ms vs. BCG 916 ± 194 ms) (Fig. 2B).

We next divided all analysed heartbeat lengths into quartiles according to the heart rate of the measured ECG 
cycle length (Table 3). The QI was highest for the two middle quartiles with a QI of 0.63 ± 0.35 and 0.67 ± 0.35, 
respectively. Accordingly, the mean difference between the BCG and ECG cycle length in the beat-to-beat analy-
sis was the lowest for the mid-quartiles 11 ± 100 ms and 11 ± 94 ms, respectively. By filtering for heartbeats with 
better signal quality, the quartiles with slow (1005–2000 ms) and fast (330–795 ms) cycle length were filtered at a 
higher rate as compared to the quartiles in the middle with an improvement in the estimation of cycle length and 
QI (Table 3). Distribution of the recorded heartbeats in the context of the calculated QI is visualized in Fig. 3. By 
adding an arbitrary line plotted at a QI of 0.4, the correlation coefficient of heartbeats right of the line was rs = 0.95 
(n = 235367). The higher the QI, the smaller the absolute difference between the recorded ECG cycle length and 
the corresponding estimated BCG cycle length, leading to clutter around the x-axis for heartbeats with a high QI.

Calculating descriptive statistical parameters estimated for each polysomnography recording per participant, 
we could demonstrate heterogeneity among the individual recordings (supplementary material Table S1, Fig. S1). 
Reasons for episodes of bad signal quality in participants were mainly caused by intervals of poor placement of 
the upper body on the sensor or increased body movement. In rare cases, bad signal quality was due to episodes 

Figure 2. Bland-Altman plots of the analysed heartbeats. To generate the plots, 10% of all recorded heartbeats 
(n = 326040) were randomly selected to avoid clutter. (A) Mean differences of all analysed heartbeats for BCG 
and ECG. The mean difference of simultaneously recorded heartbeats for ECG and BCG is 15 ± 162 ms. (B) 
Mean differences of all analysed heartbeats for BCG and ECG filtered with QI ≥ 0.4. The mean difference for 
simultaneous recorded heartbeats is 4 ± 72 ms after filtering. By filtering for better signal quality, the BCG cycle 
length detection improves accuracy at the cost of the absolute number of analysable heartbeats.

http://S1
http://S1
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Quality 
Index [au] n =

Percentage 
[%] rs =

Mean ± SD 
ECG [ms]

Mean ± SD 
BCG [ms]

Mean ± SD  
(ECG – BCG) [ms]

≥0.1 362040 100 0.77 924 ± 220 908 ± 203 15 ± 162

≥0.15 361897 99.9 0.77 924 ± 220 908 ± 203 15 ± 162

≥0.2 358126 98.9 0.8 924 ± 220 908 ± 203 15 ± 161

≥0.25 338193 93.4 0.81 924 ± 217 909 ± 201 15 ± 151

≥0.3 302529 83.6 0.85 923 ± 210 911 ± 198 12 ± 129

≥0.35 266041 73.5 0.91 922 ± 202 913 ± 195 8 ± 101

≥0.4 235367 65 0.95 920 ± 196 916 ± 194 4 ± 72

Table 2. Analysed RR intervals by the BCG algorithm and correlation coefficient of the simultaneously 
recorded ECG filtered by QI and corresponding mean ECG, BCG cycle length and the absolute difference 
between ECG and BCG cycle length.

Quartiles by cycle length

Cycle length [ms] 1005–2000 895–1000 800–890 330–795

Heartbeats [n] 92204 91859 89480 88497

ECG [ms] 1191 ± 238 945 ± 31 846 ± 27 699 ± 75

BCG [ms] 1115 ± 215 933 ± 105 835 ± 97 739 ± 140

Difference ECG – BCG 
[ms] 76 ± 236 11 ± 100 11 ± 94 −40 ± 148

Quality Index [au] 0.56 ± 0.32 0.63 ± 0.34 0.67 ± 0.35 0.57 ± 0.35

Quality Index≥0.4

Heartbeats [n] 54730 63728 66041 50868

Percentage [%] 59 69 74 58

ECG [ms] 1172 ± 220 945 ± 31 846 ± 27 714 ± 69

BCG [ms] 1155 ± 218 940 ± 55 842 ± 50 723 ± 91

Difference ECG – BCG 
[ms] 16 ± 106 4 ± 45 4 ± 43 −9 ± 82

Quality Index [au] 0.74 ± 0.3 0.78 ± 0.32 0.8 ± 0.32 0.78 ± 0.34

Table 3. All analysed heartbeats were classified by cycle length in 4 similar sized groups. Second and third 
quartile group show best accordance in mean absolute difference between BCG and ECG and the resulting QI. 
The group with low or high heart rate show a poorer agreement. By filtering heartbeats with lower signal quality, 
the accordance could be improved especially in the quartiles with low and high cycle length compared to the 
two middle quartiles with normal cycle length.

Figure 3. Scatter plot of QI and corresponding differences between analysed cycle length in ECG and estimated 
cycle length by BCG algorithm. To avoid clutter, randomly selected 10% of all analysed heartbeats are displayed. 
The scatter plot demonstrates: The higher the QI, the lower the difference between ECG and BCG measurement. 
An arbitrary cut-off line at the QI value of 0.4 is shown, indicating a correlation coefficient rs = 0.95 for the data 
points to the right of this cut-off line.
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of arrhythmia with frequent beat-to-beat changes of the BCG amplitude pattern like premature ventricular 
contractions or AV node conduction blocks (supplementary material Figs S2–S4). Premature supraventricular 
contractions or atrial fibrillation (Fig. 4) seemed to slightly decrease the signal quality and in rare cases accu-
racy of cycle length estimation but the algorithm could still provide good coverage and reliable measurements. 
Trustworthiness of the QI for estimation of the cycle length is demonstrated in supplementary material Fig. S5 by 
a high correlation the calculated correlation coefficient between ECG and BCG per participant.

Examples of BCG signal analyses are displayed in Figs 4,5 and 6 and in supplementary material Figs S2,S3 
and S4. Figure 4 shows an episode of AF with overall good signal analysis and good ECG and BCG cycle length 

Figure 4. Episode of AF with good signal correlation, for heartbeat 3 and 17 the BCG algorithm estimated a 
wrong cycle length due to a hampered signal indicated by a low QI (red line, Fig. 4d). Each signal is visualized 
by a unique colour: ECG (green), BCG (blue), Airflow (brown), thorax movement (orange), oxygen saturation 
(purple) and QI (red). (A,B) Plot of 23 consecutive heartbeats. The upper-most signal is the start, the bottom-
most is the end of the sequence. The signals are synchronized and the maximum of R peak in ECG signal is 
situated at 0 ms. A: In the ECG signal, atrial fibrillation is shown. (B) Slightly differing height and chronological 
appearance of ventricular mechanical contraction in amplitude sequence can be seen. (C) The recorded 
signal during polysomnography is plotted. Flow and thoracic movement show normal movement and oxygen 
saturation is always in the upper 90%. A continuous measurement in BCG is possible, but the signal in the ECG 
indicates an absolute arrhythmia due to atrial fibrillation. (D) The diagram shows heartbeat cycle length of 
ECG and corresponding estimated BCG cycle length, as well as the calculated QI are shown. For the most time 
–during AF – ECG and estimated cycle length of the BCG signal correlate well with a near perfect overlap of 
the ECG (green) and BCG (blue) line. For heartbeat 3 and 17 the estimated cycle length by the BCG algorithm 
differs strongly from the ECG. For these cases, the QI decreases, indicated by a dip of the red line at these 
heartbeats. However, due to the flexible algorithm the following heartbeats are calculated correctly.

http://S2
http://S4
http://S5
http://S2
http://S3
http://S4
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correlation, interrupted by very long cycle lengths with altered electro-mechanical contraction and resulting 
poor accurateness of BCG cycle length estimation. In Fig. 5, an obstructive apnea episode is shown by decreased 
oxygen saturation associated with an arousal reaction and increased muscular tone. The superposition of mus-
cular tone and body movement hampered signal analysis, as reflected by a decreased QI, which allowed filtering 
out these episodes. Once these episodes passed, signal analysis with a good QI resumed through the flexible peak 
pattern analysis of the algorithm. In Fig. 6 an episode of central apnea is shown with moderate to good signal 
coverage. In supplementary material Fig. S2 an episode of intermittent AV node block is shown with good cov-
erage and accurateness, but problems in BCG cycle length estimation during the beats with blocked conduction 
in AV node. Whereas in supplementary material Fig. S3 the same patient at a later time point suffered from a 
persistent 2:1 AV node conduction block with better BCG cycle length estimation because the heartbeats do not 
differ as much in beat-to-beat comparison. In supplementary material Fig. S4 a difficult measurement situation 
is presented in a participant with BMI 45.9 kg/m2 suffering from sinus arrhythmia and a premature ventricular 
contraction during an episode of severe obstructive sleep apnea. Two heartbeats were excluded automatically by 
the algorithm, because the QI was to poor for reliable cycle length estimation.

Discussion
The present study demonstrates the feasibility of long-term heartbeat interval detection by a ballistocardiographic 
sensor foil and a novel beat-to-beat algorithm during in-laboratory polysomnographic diagnostic.

Participants in our study were suspected to suffer from sleep disordered breathing, an illness which may be 
accompanied by snoring and strong movements during arousal events. Thus, artefacts caused by non-heartbeat 
movements were a concern for signal recording. In addition, the mean BMI of the patient cohort was 
33.8 ± 9.6 kg/m2 with a maximum weight of 225 kg, potentially further lowering signal amplitude. Episodes with 
no signal or low signal quality, as well as all movements other than those caused by mechanic heart activity like 
respiration, were classified as artefacts. After automatic exclusion of these artefacts, the algorithm provided a 
moderate to good baseline correlation coefficient of rs = 0.77. By further filtering the signal with the help of an 
automatically computed QI for each identified heartbeat, we were able to raise BCG cycle length estimation to a 
good to very good correlation of rs = 0.95, however lowering the number of analysable heartbeats.

There were several novel aspects in this approach in addition to our previous work. To simulate a low or 
non-medically controlled environment, BCG recording was surveyed in a control room, but it was not allowed to 
enter the polysomnography room and to improve the recording after initial placement of the patient on the sen-
sor and initiation of the measurement. BCG recording continued in episodes of reduced signal quality or while 
the patient left the bed. Our algorithm identified these episodes of no signal or low signal quality and excluded 
them automatically from baseline analysis. The accuracy of the calculated QI to identify heartbeats with good 
cycle length estimation is shown by Fig. 3 and the strong relationship of the QI with the calculated correlation 
coefficient between ECG cycle length and estimated BCG cycle length (supplementary material Fig. S5) could be 
demonstrated. The system provided robust and reliable measurements in different heart rhythms, despite super-
position of the BCG signal due to sleep disordered breathing for hours of continuous measurement. Additionally, 
thanks to advances in our algorithm in combination with the BCG sensor, the field of potential applications was 
broadened for more different environments, diseases and lengths of recording.

Our system appears to work best for heartbeat cycle lengths within physiological parameters (Table 3) irre-
spective of the underlying heart rhythm (Figs 4,5 and 6, supplementary material Fig. S3). However, it could pro-
vide near perfect cycle length estimation, compared to a synchronized ECG. BCG recording appears to be suitable 
for a medically low- or uncontrolled environment or in combination with other measurements as an opportunity 
to record heart rate. The BCG algorithm offered robust and reliable results for different heart rhythms, which 
potentially offers future application where unobtrusive and long-term recordings can improve diagnosis and ther-
apy. Indeed, this set up may be worthwhile – beside typical cardiac applications – for all kinds of diseases, which 
are associated with arrhythmia or where heart rate control is an aspect of treatment. Although ECG is the current 
“gold standard” for heartbeat evaluation, there are limits to the technology as well as its usability. Furthermore, it 
is not best suited for measurement situation, where unobtrusive monitoring is required. For BCG measurements, 
the patient’s chest merely needs to be placed above the BCG foil, a feasible technique in a low- or uncontrolled 
medical environment.

On the other hand, limits of the algorithm became clearer in this long-term recording as the algorithm esti-
mated cycle length for heartbeats with a distinctive change of amplitude pattern in rare cases of poor correlation 
with real heartbeat cycle length in ECG (supplementary material Figs S2 and S4). The QI allowed to exclude these 
heartbeats easily, but for patients suffering from frequent beat-to-beat changes the algorithm at the current stage 
of development may not provide throughout an acceptable measurement. The estimated extreme cycle lengths 
(Table 3, Figs 2 and 3) were in some cases caused by these incorrect calculations. To clarify the accuracy of the 
algorithm in very fast and very slow heart rates further testing will have to be conducted. Altogether, misinterpre-
tation of heartbeats was limited to some premature ventricular contractions and to episodes of intermittent AV 
node conduction blocks (supplementary material Figs S2 and S4). Atrial fibrillation (Fig. 4), sinus brady-, tachy- 
and arrhythmia, atrial tachycardia as well as premature supraventricular contraction did not seem to hamper 
the working of the algorithm considerable. In this feasibility study, the number of patients included was low, but 
the number of analysed heartbeats was high. Due to the low number of participants, QI values must be validated 
in a cohort with more participants. To analyse organ activity, the algorithm must know the frequency range of 
interest. We used 30 to 180 heartbeats per minute. Hence, 53 heartbeats faster and 57 heartbeats slower than these 
limits could not be interpreted correctly and were thus excluded. This corresponds to roughly only <0.0003% of 
all analysed heartbeats.

For future applications, a signal related to respiration – considered an artefact in the current setting – would 
be a desirable additional parameter, which could be potentially extracted from the BCG signal. From a technical 

http://S2
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point of view, we envision the presented algorithm as the first stage of a more comprehensive method that takes 
not only cycle length but also the amplitude and changes in the waveform pattern into account. In the past, we 
had positive results with using machine learning algorithms trained to distinguish AF and sinus rhythm based on 

Figure 5. Episode of obstructive sleeping apnea with acceptable signal correlation. While the estimator 
calculates a good BCG to ECG correlation during the apnea phase, the phase of arousal is associated with 
increased muscular tone leading to a BCG to ECG mismatch and a decreased QI (Fig. 5D). Each signal is 
visualized by a unique colour: ECG (green), BCG (blue), Airflow (brown), thorax movement (orange), oxygen 
saturation (purple) and QI (red). (A,B) Plot of 32 consecutive heartbeats. The upper-most signal is the start, 
the bottom-most is the end of the sequence. The signals are synchronized and the maximum of R peak in ECG 
signal is situated at 0 ms. While the ECG is virtually not affected by the increased muscular tone of the phase of 
arousal, the BCG analysis is hampered by a strong superposition of mechanic heart activity. A: P-waves can be 
identified. In the lower third of the plot the ECG signal is slightly affected by increased body movement. B: The 
BCG signal suffers from strong deterioration due to body movement during this episode of obstructive sleeping 
apnea. At the upper half, a specific BCG sequence can be identified whereas at the lower half the identification 
of a decent amplitude sequence becomes more difficult. (C) Plot with simultaneously recorded ECG, air flow 
(brown), thoracic movement (orange, oxygen saturation (purple) and BCG (blue) deflection. There is nearly no 
flow due to the obstruction of the upper airway indicated by a near flatline in the flow signal. With decreasing 
oxygen saturation, thoracic movement increases and leads to an arousal-correlated reaction with increased 
muscular tone and superposition of mechanic heart activity. (D) A continuous BCG measurement is feasible 
but signal analysis is hampered during arousal and lacks good signal correlation in heartbeats 10, 14, 15, 20–29, 
indicated by a low QI. As soon as the muscular tone decreases, the algorithm again offers good BCG signal 
analysis indicated by a good QI in heartbeat 30.
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amplitude and periodicity features extracted from the BCG. This earlier work was limited in that we did not yet 
have the beat-to-beat cycles available, so a natural next step would be to investigate a combination of these meth-
ods24. Another direction for future technical work would be the use of multiple spatially distributed BCG sensors. 
Here also, we could report some initial success on sinus rhythm patients that make us optimistic that there is good 
potential for reliable rhythm discrimination based on such a system25.

Figure 6. Episode of central sleeping apnea with good signal correlation. Arousal and the following deep 
respiration manoeuvres are associated with increased muscular tone and subsequently lead to decreased BCG 
signal detection in comparison to the simultaneously recorded ECG with slight cycle length mismatch and 
decreased QI. Each signal is visualized by a unique colour: ECG (green), BCG (blue), Airflow (brown), thorax 
movement (orange), oxygen saturation (purple) and QI (red). (A,B) Plot of 23 consecutive heartbeats. The 
upper-most signal is the start, the bottom-most is the end of the sequence. The signals are synchronized and the 
maximum of R peak in ECG signal is situated at 0 ms. A: In the ECG signal a sinus rhythm can be identified. 
(B) The BCG shows acceptable overlap in amplitude height and chronological sequence. In contrast to the BCG 
during obstructive sleeping apnea (Fig. 5) the signal is more harmonic with a slight superposition during deeper 
respiration manoeuvres. (C) Plot with simultaneously recorded ECG (green), air flow (brown), thoracic (orange) 
movement amplitude, oxygen saturation (purple) and BCG (blue) deflection. In the apnea phase, there is nearly 
no flow and no thoracic- or abdominal-movement. With decreasing oxygen saturation, thoracic- and abdominal-
movement are increasing leading to an arousal correlated reaction with increased muscular tone and superposition 
of the mechanic heart activity in the recorded BCG signal. A continuous BCG measurement is feasible. But signal 
analysis is hampered in beats 5–8 showing moderate signal correlation indicated by a lower QI.
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We conclude that a long-term beat-to-beat cycle length analysis with our novel algorithm using a BCG sensor 
is feasible, providing good heartbeat detection and correlation with a simultaneously recorded ECG even in a 
setting with multiple artefacts and signal superposition.

Methods
This investigation was performed at the Department of Neurology, University Hospital RWTH Aachen, Germany. 
Ethical and regulatory classification according to German medical device act and “Berufsordnung Ärzte (BOÄ)” 
was performed by the coordination center for cardiology studies at the University Hospital of Aachen. The 
study was approved by the institutional review board of the University Hospital Aachen (Registration number: 
EK204/11, date: 27.05.2011; Clinical trials gov.: NCT 01775241). The study met the ethical principles of the 
Declaration of Helsinki, the guidelines of Good Clinical Practice and the current legal requirements.

Study design and Study population. We included 21 patients after positive screening for sleep disor-
dered breathing. The mean AHI was 40.9 ± 9.6 /h and ESS 13 ± 5. All participants were scheduled for overnight 
diagnostic PSG. The BCG and PSG measurements were performed in the Sleep Center at the Department of 
Neurology, University Hospital RWTH Aachen, Germany. Written informed consent was obtained for all par-
ticipants prior to commencement of the study according to the following criteria: Patients suspected for sleep 
breathing disorder and scheduled diagnostic PSG, at least 18 years of age and ability to understand the investi-
gation and to follow the instructions of study staff. Exclusion criteria were: Pregnancy or lactating and mentally 
incapacitated persons.

Data acquisition and analysis. Overnight diagnostic PSG was performed with a digital polygraph of 
Schwarzer Brainlab (Schwarzer Brainlab, Software Version 4.00, Munich, Germany; Barcelona: Deltamed, 
Software version 2007 Paris, France). Noninvasive HR measurement was performed during polysomnography 
with a BCG foil (30 × 60 cm) of EmFit (EmFit Ltd. Vaajakoski, Finland). Electrical safety was approved by the 
VDE (“VDE Verband der Elektrotechnik, Elektronik, Informationstechnik e.V.”, Frankfurt, Germany) according 
to EN IEC 60601-1.

Ballistocardiographic sensor. The EmFit sensor is a thin and flexible foil consisting of charged polymer 
layers containing air voids that react like an electrical capacitator. Mechanical pressure on the foil changes the 
position and geometry of the air voids with respect to each other resulting in a shift of the electrical charge. This 
shift of the electrical charge can be measured and converted to a voltage signal. Any mechanical activity on the 
sensor by inner organs and muscular movement deforming the skin26 is part of the recorded signal. To improve 
signal quality, the sensor should be placed next to the organ of interest and if possible perpendicular to its main 
movement axis. For a ballistocardiographic measurement, we placed the BCG foil under the chest of the partic-
ipant during PSG in supine position without direct contact with the sensor (Fig. 1A). Thus, the measurement 
is performed in a dorsoventricular axis. This may not be considered as the ideal direction to record the highest 
amplitude in BCG deflection but the most convenient for long term unobtrusive recording. Deformation of the 
BCG foil by the mechanical heart contraction moves the charged air voids in the BCG foil in respect to each 
other (Fig. 1B,C) generating an electrical charge which can be recorded and displayed in an ECG related signal 
(Fig. 1D). The signal was acquired with 1000 Hz and our algorithm offers near real-time analysis with a latency 
of less than 2 seconds.

Signal processing. ECG signals are distinguished by a heart rate-dependent sequence of a distinct electrical 
deflection. In Fig. 7A, an example ECG episode of randomly chosen 128 consecutive heartbeats is shown, the R 
peak is marked at 0 ms at the time-scale. All consecutive heartbeats are near identical. Due to the superposition of 
the BCG signal with any kind of mechanical pressure on the EmFit foil, like cardiac, breathing or other mechani-
cal activities (Fig. 7B), the genuine recorded signal shows far wider variability in time and shape and has to be fur-
ther processed to extract the cardiac movement as surrogate for mechanical heart activity. After filtering motion 
artefacts and superimposing breathing activity, a regularly repeating sequence of peaks becomes visible (Fig. 7C). 
In contrast to an ECG, there is again high inter- and intrapatient variability in BCG signal pattern, which makes 
an automated signal detection more complicated (supplementary material Fig. S6A–D).

To prepare the BCG signal for further analysis, specific steps of preprocessing have to be performed. The genu-
ine recorded EmFit signal (Fig. 8A), recorded in the dorsoventricular axis is superimposed by breathing and other 
organ activity or body movement. In the vertical axis, large oscillations with a wavelength of 5 to 10 seconds are 
visible corresponding to respiratory work. Within these respiration waves, smaller oscillations with a higher fre-
quency are visible but seem to show no specific sequence. After applying a time-domain filter and differencing the 
signal, breathing artefacts are removed and a repeated specific sequence related to the cardiac expulsion of blood 
in the big arteries27 as surrogate for the cardiac mechanical activity is uncovered (Fig. 8B). We used identical filter 
settings for all recordings with 80 dB stop-band attenuation and a cut-off frequency of 0.5 Hz.

Beat-to-Beat analysis. After pre-processing, each heartbeat must be identified and analysed by a forward 
moving window of interest (Fig. 8C1–C5). The extracted cardiac mechanical activity, when compared to a syn-
chronized recorded ECG, shows a wider variability in time, amplitude height, chronology of peaks and overall 
shape. Commonly used techniques for automated cardiac signal detection work with a fiducial point analysis 
to identify previous well-known deflections or peak patterns, such as the QRS complex in the ECG. Due to 
the ambiguous character of the BCG deflection with high inter- and intrapersonal variability (supplementary 
material Figs S1 and S6A–D), a fiducial point analysis does not seem feasible for BCG analysis12. Thus, a novel 
algorithm inspired by the pitch-tracking method of speech analysis was used23,28 for a beat-to-beat analysis and 
to determine the cycle length, specific signal quality and other parameters of each identified heartbeat. With a 
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window of interest, the signal is scanned for predefined frequencies. By this approach, the specific peak pattern 
does not have to be known beforehand, but we assume that consecutive heartbeats consist of corresponding 
sequences of amplitudes.

The window of interest is more than twice the length of the lowest expected cycle length and uses a stepwise 
approach of 200 ms forward in time. For each new position, an adaptive threshold measurement of amplitude 
is performed (Fig. 8C1). In case of violation of the threshold, this timeframe is considered as corrupted by a 
high-energy artefact and ignored in further analysis. The window of interest then moves on and starts a new 
measurement. If there is no threshold violation in the analysed window of interest, the algorithm continues with 
the comparison of repeating amplitude patterns (Fig. 8C2, indicated by a blue and red line).

Three local interval estimators compare the actual sequence (red line) to the preceding heartbeat (blue line) 
calculating the heartbeat specific cycle length, integral of curve and amplitude height (Fig. 8C3) and a resulting QI 
(Fig. 8C4). To validate the calculated cycle length in the BCG we applied the “Open Source Arrhythmia Detection 
Software” (EP Limited, 35 Medford St., Somerville, MA, USA) to a synchronized recorded ECG (Fig. 8D). For 
validation, we considered only episodes of at least 10 consecutive heartbeats with a least a QI of 0.1.

Figure 7. Diagram of 128 consecutive heartbeats in ECG (A) and BCG (B,C) recording with time dependent 
analysis by ECG R-wave peak detection at 0 ms in any diagram. For better amplitude visualization, the maxima 
and minima are visualized with colour gradients in an arbitrary scale; (A) The ECG shows a harmonic signal 
over the whole displayed time during sinus rhythm; (B) Sinus rhythm; genuine BCG signal deteriorates due to 
signal superposition of breathing and movement artefacts. (C) Sinus rhythm (filtering the BCG signal) exposes 
a typical mechanical amplitudes sequence of each heartbeat but also shows the ambiguous and intraindividually 
variable nature of mechanical heartbeat movement.
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Calculating the Quality Index (QI). Due to the fact that the genuine BCG signal itself is sometimes diffi-
cult to interpret if the recorded signal quality is poor or superimposed by artefacts, we added a QI. The QI allows 
the algorithm and users to classify the identified heartbeat in BCG signal and the estimated cycle length for its 
reliability and potential accurateness. Thus, the QI marks episodes of low or no signal quality to identify episodes 
with artefacts and to automatically exclude them from analysis due to the assumption of low accurateness of cycle 
length estimation for these episodes.

On a conceptual level, the QI is a measure of how similar the waveforms of two detected subsequent heartbeats 
are to each other. The underlying intuition behind the method is that if two subsequent heartbeats identified by 
the algorithm are highly dissimilar, there also is a high chance that at least one of these beats is in fact an artefact 
and the resulting cycle length invalid.

Technically, the QI describes the likelihood of the estimated cycle length after a Bayesian fusion of the three 
different local interval estimators on an arbitrary scale. If the three estimators disagree with each other on the 
most likely cycle length, the resulting QI would attain a value close to zero, whereas a higher accordance among 
the local interval estimators leads to a higher QI, which should result in a more precise calculation of this sin-
gle heartbeat’s characteristics23,28. Additionally, identifying artefacts by the adaptive threshold comparing the QI 
allows to filter episodes of low signal quality as well as to improve the accuracy of cycle length detection at the cost 
of a reduced absolute number of analysable heartbeat episodes. The calculations of each identified heartbeat are 
stored for further correlation analysis (Fig. 8C5).

Statistical analysis. Distribution of the recorded ECG and BCG heartbeats showed right-sided outliers, 
leading to skewness to the left and increased kurtosis. In time-series analysis, considerable autocorrelation was 
present in the data. For such a big sample of auto-correlated measurements with inter-participant heterogeneity, 
conventional significance tests for normality are not valid. Therefore, we analysed the data predominantly with 
descriptive methods like histograms, Bland-Altman and scatter plots. Because of the outliers, Spearman rank 
correlation was preferred to the Pearson coefficient. To avoid outlier effects, in some cases we used the median to 
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Figure 8. Processing the genuine BCG signal, identifying and analysing the heartbeats and correlation with 
a simultaneous recorded ECG. (A) Genuine BCG signal shows a superposition of slow oscillating respiration 
work at 5–10 seconds, high but smaller oscillating cardiac activity as well as deterioration by artefacts like body 
movement (B) After filtering the respiration and movement artefacts, the mechanical vibration of cardiac 
activity becomes visible; (C1) A sliding window of interest moves forward on the signal and identifies artefacts 
and marks corrupted sequences or continues for further analysis. (C2) By comparison of repeating amplitude 
sequences, consecutive heartbeats (blue and red line) are identified in a frequency range of interest; (C3) Three 
local interval estimators compare the two identified BCG patterns for their specific sequence, height, area under 
the curve and cycle length. (C4) Out of this information an individual cycle length and QI of each captured beat 
is estimated. The QI shows the comparability to the previous identified beats and allows to filter artefacts; (C5) 
Estimated parameters of each identified heartbeat are stored for further analysis. (D) Heartbeat cycle length is 
correlated for this study with a simultaneously recorded ECG.
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represent the central tendency of the recorded data. For qualitative analysis, all values are expressed in percent-
ages and absolute numbers. Statistical analysis was performed with SPSS 24 (IBM Corp. Released 2016. IBM SPSS 
Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp.). ECG and BCG deflections were analysed and dis-
played with Signalplant 1.2.2.4 (MEDISIG – F. Plesinger; J. Jurco; 2013–2017; Institute of Scientific Instruments of 
the CAS; Czech Republic). Although our algorithm needs no training phase, the QI was calculated by comparing 
at least two consecutive heartbeats. Thus, we applied the algorithm to the complete BCG signal, but considered 
for statistical analysis only episodes of at least 10 consecutive heartbeats with a QI > 0.1.

Data availability statement. The datasets generated during and/or analysed during the current study are 
available from the corresponding author upon reasonable request.
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