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A new semi-supervised learning 
model combined with Cox and 
SP-AFT models in cancer survival 
analysis
Hua Chai1, Zi-na Li2, De-yu Meng2, Liang-yong Xia1 & Yong Liang1

Gene selection is an attractive and important task in cancer survival analysis. Most existing supervised 
learning methods can only use the labeled biological data, while the censored data (weakly labeled 
data) far more than the labeled data are ignored in model building. Trying to utilize such information 
in the censored data, a semi-supervised learning framework (Cox-AFT model) combined with Cox 
proportional hazard (Cox) and accelerated failure time (AFT) model was used in cancer research, which 
has better performance than the single Cox or AFT model. This method, however, is easily affected by 
noise. To alleviate this problem, in this paper we combine the Cox-AFT model with self-paced learning 
(SPL) method to more effectively employ the information in the censored data in a self-learning way. 
SPL is a kind of reliable and stable learning mechanism, which is recently proposed for simulating the 
human learning process to help the AFT model automatically identify and include samples of high 
confidence into training, minimizing interference from high noise. Utilizing the SPL method produces 
two direct advantages: (1) The utilization of censored data is further promoted; (2) the noise delivered 
to the model is greatly decreased. The experimental results demonstrate the effectiveness of the 
proposed model compared to the traditional Cox-AFT model.

Disease related gene selection has great potential in outcome prediction for cancer research. The identified gene and 
constructed disease related network based on these genes1 has been widely used in cancer prediction2, classification3,  
treatment4 and gene-targeting drug development5. How to accurately select the pathogenic gene is an attractive 
and important task in cancer research. Various methods have been used to solve this problem, including Cox pro-
portional hazards model (Cox)6, accelerated failure time model (AFT)7, cancer hallmark approach8 and construct 
network motifs as cancer biomarkers9.

The high dimension and low sample size of biological data greatly increase the difficulty of cancer survival 
analysis. It is statistically challenging because the number of genes is far larger than that of the labeled samples. To 
solve this problem, many supervised learning methods have been designed by using different kinds of regulari-
zation methods, such as elastic net10, L1

 regularization11, L1/2 regularization12, minimax concave penalty (MCP)13, 
smoothly clipped absolute deviation (SCAD)14 and so on. Meanwhile we cannot ignore the censored data in the 
biological dataset. Censored data means that the observed time is not the true survival time, and for such data we 
only know the fact that the actual survival time is longer than the observed time. Nevertheless, many researchers 
have pointed out the information underlying the censored data are very helpful for model building15. Hence some 
semi-supervised learning methods such as16,17 were proposed to utilize the censored data and have achieved 
better results than the conventional supervised learning methods. While those methods are mainly based on the 
logistic model or SVM model. In 18, a novel semi-supervised learning framework integrating the Cox model and 
AFT model was proposed to solve the following two dilemmas:
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 Few available data versus high dimensional covariates dilemma
The Cox model is one of the most widely used methods in cancer analysis which can assess patients’ survival risk 
and classify the patients into ‘high risk’ and ‘low risk’ groups using the gene expression profile. However, the lack 
of enough information in the labeled dataset tends to conduct the issue of the inaccuracy of prediction. Trying 
to solve this dilemma, the AFT model is employed to estimate the true survival time for the censored data, and 
therefore more disease information in the censored data can be delivered to the Cox model, which can help Cox 
model to produce better predictions.

 Similar phenotype disease data versus different genotype cancer dilemma
Recent research pointed out that similar phenotype cancers may be completely different diseases on the molec-
ular genotype level19,20, and hence the AFT model cannot use some cancer data which have the same phenotype 
directly but with different molecular genotypes directly. The Cox-AFT model alleviated this dilemma by using 
the Cox model to classify the cancer data firstly because the cancers with different molecular genotype levels may 
lead to the different risks of the patients.

In the Cox-AFT model, the Cox model was used to classify the similar phenotype disease data into ‘low risk’ 
and ‘high risk’ subgroups, and these subgroups will be sent into the specific AFT model to get approximate esti-
mate of survival time for the censored data. At last, these pseudo labeled censored data will be fed into the Cox 
model as labeled data.

Though effective to some extent, the Cox-AFT model suffers from the robust issues caused by heavy noise and 
even outliers. We found that many censored data always violate the constraint that the estimated survival time is 
supposed to be longer than the censored time. Therefore these falsely labeled samples are dismissed in this model, 
which restricts the full exploitation of the censored data. Furthermore, the samples satisfying the constraint may 
not be estimated correctly in the stage of the AFT model. Fed with such data with label noise, the Cox model may 
be evidently degenerated and its performance may be more or less harmed to the next training cycle.

The reliability and stability of the Cox-AFT model relies heavily on the accuracy of the AFT model. However, 
the single AFT model always encounters the robust issue in semi-supervised learning scenarios. In the first few 
iterations of the AFT model, censored samples have high chance to be wrongly labeled due to the inaccurate 
model parameters. Worse still, the AFT model utilizes all the labeled censored data to conduced model learning, 
and as a result the noisy information remains in the following iterations. Therefore the selection of samples values 
a lot in the training of the AFT model.

To solve the issues mentioned above, we introduce a robust learning mechanism called self-paced learn-
ing (SPL). The self-paced learning21 was proposed based on the core idea of the curriculum learning (CL)22. 
Curriculum learning (CL) simulates the learning process of human beings and tend to learn easy samples first and 
then gradually include more complex samples into training process. The challenge in CL is the requirements of 
the prior knowledge about the sample easiness order. Compared to CL, SPL can identify the easy and hard sam-
ples adaptively according to what the model has already learned and gradually add harder samples into training. 
The SPL method has been used successfully in multiple machine learning tasks23–25. Moreover,26  has proved the 
robust insight of SPL regime, by proving the equivalence between the optimization of SPL objective function and 
the majority minimization of a non-convex penalty. Hence SPL is a powerful robust learning regime to help us 
estimate the patients’ survival time more accurately.

In this paper we introduce the SPL regime in the Cox-AFT model (Cox-SP-AFT), largely improving the model 
capacity in the presence of heavy noises and outliers. SPL is embedded into the AFT model and takes effect by 
automatically selecting samples following the “easy” to “hard” mode in the training process, which means learn-
ing samples of high confidence first and gradually considering more complex ones. This learning mechanism 
leads to more accurate estimation for the censored samples compared to that without SPL and brings many 
benefits. A comparison experiment between Cox-AFT models with and without considering SPL is shown in 
the Experiment section. It is verified that the Cox-SP-AFT model can select more correct disease-related genes, 
estimate the patients’ survival time more accurately and employ more censored data, validating the superiority of 
our proposed semi-supervised learning model with SPL.

Method
Suppose that the dataset includes l samples consisting of complete dataset and censored dataset to study the cor-
relations between the gene expression profile X and according survival time Y. δ =t x( , , )i i i i

l
1 represents an individ-

ual patient’s sample, where ti is the observed time, and = …x x x x( , , )i i i ip1 2  is the gene expression profile. If 
δ = 0,i  it represents ti is the censored time; If δ = 1,i  it means yi is the labeled time.

Cox proportional hazard model. The Cox proportional hazard model is used to classify the patients into 
two groups of the ‘low risk’ and ‘high risk’, and the baseline hazard function can be expressed as:
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In fact, some correlation coefficients βi of the ith gene may be zero in the true model, which means that not the 
whole covariates have effect to the prediction. Therefore the model should be able to identify the nonzero coeffi-
cients in the gene expression profile; a regularization part was added to solve this problem. So the penalized Cox 
model with penalty function can be expressed as:

∑β β λ β=
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β
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l Parg min ( ) ( ) ,
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where λ is a tuning parameter and P(β) is the regularization term.
In recent years, methods with different regularization terms such as elastic net, L1, MCP and L1/2 have been used 

in cancer survival analysis. In our semi-supervised learning model, we use the MCP regularization. This combina-
tion has good performance in sparsity and data-fitting ability. The derivative of the MCP can be expressed as:
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Accelerated Failure Time (AFT) model. The AFT model is a log-linear regression model which can be 
used to predict the patients’ survival time:

β β β ε= + + … + + .t x x xlog (5)i i p ip i1 i1 2 2

In the AFT model of our model, censored data are initially labeled using the Kaplan-Meier weight estimator 
because it’s simple and fast. Trying to get more accurate results in a robust way, the SPL regime is integrated in 
the AFT model.

Self-Paced Learning. Curriculum Learning was first proposed in16,17, which follows the learning principle 
of humans. Afterwards,16 formulates the key principle of CL as a concise optimization model through introduc-
ing a regularization term. The SPL objective function includes a weighted loss term on all samples and a general 
self-paced regularization can be expressed as:

∑ω λ ω λ= +
ω ∈ =

E V v L y g x f vmin ( , ; ) ( ( , ( , )) ( , )),
(6)V i

n
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1 denotes the training data set, where xi is the ith training sample and yi is the according label. 
ωL y g x( , ( , ))i i  represents the loss function of xi. ωg x( , )i  is the decision function, and ω is the model parameter 

inside. = ...V v v( , , )n1  is a weight vector of all samples. λ is the age parameter for controlling the learning pace, 
and λf v( , ) is the self-paced regularization term imposed on the sample weight. By optimizing the weight vector 
V with gradually increasing age parameter, more samples can be automatically selected into the training process 
from easy to complex in a purely self-paced way. There are several variants to the original hard regularization 
function λ λ= −f v v( , ) , such as the linear and mixture SP regularization in21.

SP-AFT Model. The SP-AFT model updates the original AFT model through additionally embedding the 
SPL regime, and inherits the priorities of SPL method, such as better robustness and higher accuracy. The spe-
cific objective function of SP-AFT model is given by adding weights to the censored data as well as a self-paced 
regularization term:
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where m, n are the numbers of labeled samples and censored samples, respectively. =x t{ , }i i i
n

1 is the labeled dataset 
with δ = 1i , and = +

+x t{ , }j j j n
n m

1 is the censored dataset with δ = 0i . β = + ... +v l j n n m, y , , ( 1, , )j j j  are the model 
parameter, label variable, the weight term and the loss for the censored sample x t( , )j j . α = −αf v v( , )j j denotes 
the self-paced regularization term imposed on the weight term vj as well as the age parameter α. The age param-
eter controls the learning pace and the larger value will allow more complex samples into training. βP( ) represents 
the MCP regularization term on β.

Alternate Optimization Search(AOS) algorithm is adopted to optimize SP-AFT model. The detailed optimi-
zation procedure is presented below:

Initialize. Some optimization variables and parameters are preset in this step. For the censored data set, the 
survival time of each sample is estimated with the Kaplan-Meier method. = ...+ +V v v( , , )n n m

0
1  is an all-one 

vector of Rm. λ is set to a small value to include several samples into training in the first round.
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Update β(t). β will be updated by the AFT model with the MCP regularization utilizing the complete data and 
censored data with non-zero weight. In this implementation, loss function is adopted as follows:

β
β

β
=
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if t x

y x otherwise
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( ) (8)
j
T j j
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j j
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This loss function is derived from the constraint that the survival time must be no less than the censor time. 
Therefore, if the estimated survival time of a sample is less than the censor time, this sample must be falsely 
labeled and its loss value is positive infinity. However, if a censored sample obeys the censor condition, its loss 
function is square loss. Therefore, Formula (7) degenerates to the following AFT model:

∑β β γ β= +
β ∈
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Where I  denotes the sample set of complete data and censored data with non-zero weight −vj
t( 1). We employ the 

minimax penalty here and the off-the-shelf methods to solve (9).

Update vj
t( ). The physical meaning of this step is to select confident samples from the censored dataset according 

vj. With this step of selecting high-confidence samples, the robustness of SP-AFT can be largely improved com-
pared to that of the AFT model. Calculate the derivative with respect to vj of (7):
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Through such simple calculation, we can get the closed-form updating equation for vj:

α=






≤

.
v l

otherwise
1 ,
0 (11)

j
t j

t
( )

( )

The samples with losses smaller than age parameter α will be seen as ‘easy’ ones and assigned as =v 1j ; 
Otherwise will be signed as =v 0j .

At the first start, the weight values of the censored data are all set to 1, and we suppose that they are confident 
samples in the first iteration because the Kaplan-Meier estimate is a good but primary approximation to the real 
survival time. In the following iterations, confident samples are selected according to the loss value. A sample with 
loss value no more than the age parameter λ will be picked.

Update yj
t( ). In this step, we update the estimated survival time for the censored data with the learned parameter 

β(t) as well as the weight:
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This updating formula indicates that if =v 1j
t( ) , the sample xj will be assigned the newly estimated survival 

time. Otherwise, the estimated value will remain unchanged. Once the censored samples are pseudo estimated, 
the age parameter λ is enlarged to include more censored samples with larger losses into training. The iteration 
will stop until convergence.

The Algorithm of SP- AFT Model.
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Cox-SP-AFT model. The work flow of our proposed semi-supervised learning model is shown in Fig. 1. In 
a training round of Cox-SP-AFT model, the training samples are firstly put into the Cox model penalized with 
MCP regularization, and the constructed model will classify the whole dataset into ‘high-risk’ and ‘low-risk’ 
groups. Then the two groups will be sent into their according SP-AFT models, respectively. In the SP-AFT model, 
the survival time of the censored data will be estimated. However, some estimated time of censored samples 
were less than the censored times. It is obvious that these censored samples were wrongly labeled. Thanks to the 
mechanism of SPL method, these samples with large losses will be automatically assigned zero weights and take 
no effect in the next iteration. At the terminal iteration of SP-AFT, reliable labeled samples (with non-zero weight) 
will be added to the labeled dataset thus updating the training set of the next Cox-SP-AFT round. The algorithm 
of our proposed Cox-SP-AFT model is outlined below:

Figure 1. The workflow of our proposed semi-supervised learning model with SPL.

Dataset Cox-EN Cox-lasso Cox-MCP Semi-Cox SP-Semi-Cox

1 9.86 6.69 6.74 12.18 12.66

2 11.32 7.58 7.51 13.48 14.27

3 16.78 12.31 12.04 19.43 19.83

4 10.21 6.70 6.75 11.57 11.91

5 13.72 9.96 9.88 15.22 16.35

6 9.25 6.18 6.26 13.14 14.29

7 12.39 8.32 8.17 14.60 16.33

8 13.02 8.46 8.39 15.32 16.82

9 11.40 7.42 7.54 14.71 15.56

10 15.39 10.26 10.21 18.31 19.29

Average 12.33 8.39 8.35 14.80 15.73

Table 1. The number of the selected correct genes obtained by different methods.
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Results
We designed the simulation scheme as in27. The simulation data were generated as following:

Step 1: We set the dimension of the genes p = 2000, in which 20 corresponding coefficients of the related genes 
were nonzero, and the coefficients of the remaining 1980 genes were zero. The censored rate k was set 0.5; the 
correlation coefficients c was set 0.3. The number size n of the whole dataset was 250.

Step 2: We generate the γ γγ …, , ,i i ip0 1  (i = 1, …, n) independently from standard normal distribution, the X 
was set γ γ= − +X c c1ij ij i0 .

Step 3: The survival time was computed as: = −
α

α
ω β

∗
∗( )y log 1i

U
X

1 log( )
exp( )

, where U is the uniformly distributed 
variable, α is the shape parameter and the ω is the scale parameter.

Step 4: The censored time point was decided in random selection, and the censored time ′y i was computed as 
′ = ⁎y rand y(1)i i, we recorded the ( δ′y y X, , ,i i i i), where the yi is the true survival time, ′y i is the observed time, 

Xi is the gene expression profile and δi represent the data is censored or not.
We generated 10 datasets through setting different β values of random selected genes, 200 random selected 

samples in each dataset were used as the training data and the remaining 50 samples were used as the test data 
each time, in this paper we compared five methods including three supervised learning and two semi-supervised 
learning models, the supervised learning methods were penalized by elastic net, lasso and MCP respectively. 
The difference between the two semi-supervised learning models is they contain the self-paced learning or not. 
Different methods in each dataset were evaluated 100 times and the average results were shown in below.

Table 1 is the number of the selected correct genes obtained by five different Cox methods, three supervised 
learning methods: the elastic net penalized Cox model (Cox-EN), the lasso penalized Cox model (Cox-lasso) 
and the Cox mode with MCP (Cox-MCP), the other two methods are Cox models in semi-supervised learning 
models with or without self-paced learning (Semi-Cox or SP-Semi-Cox). The last row shows the average val-
ues of the results obtained by different methods. We can find the number of selected correct genes obtained by 

Dataset Cox-EN Cox-lasso Cox-MCP Semi-Cox SP-Semi-Cox

1 87.46 52.73 34.21 56.73 48.35

2 72.68 40.32 25.56 40.30 32.28

3 135.22 96.35 60.41 88.61 80.74

4 58.36 34.07 20.93 35.50 30.25

5 121.79 86.43 52.66 73.91 68.17

6 70.26 36.59 21.78 38.25 33.18

7 80.47 48.95 33.52 54.32 49.83

8 66.58 40.09 23.36 41.87 35.62

9 98.39 62.71 44.63 60.38 56.35

10 50.41 31.24 17.36 30.47 26.44

Average 84.17 52.95 30.44 52.03 46.12

Table 2. The number of the total selected genes obtained by different methods.

Figure 2. The gene selection accuracy obtained by different methods.

The Algorithm of Cox-SP-AFT Model.
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Cox-lasso and Cox-MCP are nearly the same; the Cox-EN selected more correct genes than the Cox-lasso and 
Cox-MCP. However the performance of the semi-Cox without SPL is better than Cox-EN, and it is obviously that 
the SP-Semi-Cox model selected most correct genes.

The numbers of the total selected genes obtained by different methods were shown in Table 2, the Cox-EN 
selected most genes, it means there may be many genes unrelated to disease. The results obtained by Cox-lasso 
and Semi-Cox are nearly the same, the SP-Semi-Cox selected less genes compared to the Semi-Cox without SPL 
but more than the Cox-MCP, and the supervised learning method Cox-MCP selected least genes.

The accuracy of correct gene selection obtained by different methods were shown in Fig. 2, it is obviously 
that the accuracy obtained by the SP-Semi-Cox is highest in the five methods. The accuracy of Semi-Cox is 
higher than other three supervised learning methods, and the accuracy of Cox-EN is lowest because it selected 
many unrelated genes. Compared the performances we can say though the Cox-MCP selected fewer genes than 
SP-Semi-Cox, but it cannot find more correct related genes, our SP-Semi-Cox is more efficient, the results proved 
our model has the strongest ability to find the cancer related genes.

The survival curves obtained by different Cox methods in one dataset are shown in Fig. 3, the red line is the 
survival curve of high risk patients, and the green line is the survival curve of low risk patients. We find the two 

Figure 3. The survival curve obtained by (a) Cox-EN (b) Semi-lasso (c) Cox-MCP (d) Semi-Cox (e) SP-Semi-
Cox.

Figure 4. The CI obtained by different methods in 10 simulation datasets.
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survival curves obtained by the three supervised learning methods, both have some places overlap or intersect, 
however seeing the survival curves obtained by SP-Semi-Cox, the classification performance was best, and two 
curves with different colors did not intersect.

To further evaluate the accuracy of the model, we use the Concordance Index (CI) which can be determined as:

δ

δ
=

∑ ∑ < =

∑ ∑ < =
.CI

f f

t t

1 ( & 1)

1 ( & 1)
i j i j i

i j i j i

where t t,i j are the survival time of the patients i and j, f(.) is the survival risk function, the values of CI are 
between 0 and 1, and the higher value means the higher accuracy the method obtained.

The average CI obtained by different methods in 10 simulation datasets are shown in Fig. 4, we can find the 
CI obtained by semi-supervised learning models is higher than which obtained by the three supervised learning 
methods, the performance of the Cox model in our semi-supervised learning model with self-paced learning is 
best, the Cox model in semi-supervised learning model without self-paced learning perform better than the three 
supervised learning methods but worse than the Cox-SP-AFT model.

Table 3 shows the MSE of estimated time obtained by five different AFT methods in different models: the 
elastic net penalized AFT model (AFT -EN), the lasso penalized AFT model (AFT -lasso), the AFT mode with 
MCP (AFT -MCP), the AFT models in semi-supervised learning models (Semi- AFT) and the AFT models in 

Dataset AFT -EN AFT -lasso AFT -MCP Semi-AFT SP-Semi-AFT

1 12.47 12.86 12.61 12.06 11.40

2 13.24 13.12 13.15 13.03 12.88

3 7.71 8.08 7.89 7.62 7.21

4 3.01 3.06 2.92 2.69 2.42

5 9.77 9.76 9.84 9.52 9.48

6 8.43 8.61 8.40 8.19 7.52

7 7.54 7.64 7.76 7.44 6.00

8 9.53 9.75 9.69 9.14 9.09

9 11.17 11.32 11.14 10.93 10.85

10 8.71 8.82 8.67 8.4 7.66

Average 9.15 9.30 9.20 8.90 8.44

Table 3. The MSE obtained by different methods in different simulation dataset.

Dataset genes samples labeled data training test

GSE3141 21025 111 58 91 19

GSE10141 6145 80 32 70 11

GSE22210 1452 193 65 173 21

GSE26389 4358 206 36 62 12

Table 4. Details of the real cancer datasets.

Dataset Cox-EN Cox-lasso Cox-MCP Semi-Cox SP-Semi-Cox

GSE3141 126.71 84.57 62.08 78.14 71.65

GSE10141 104.22 71.05 50.66 73.45 68.26

GSE22210 346.83 271.69 161.83 240.40 212.57

GSE26389 145.13 92.86 48.72 87.46 78.71

Table 5. The number of selected genes obtained by different methods in real datasets.

Dataset Cox-EN Cox-lasso Cox-MCP Semi-Cox SP-Semi-Cox

GSE3141 0.838 0.832 0.841 0.858 0.862

GSE10141 0.894 0.886 0.893 0.912 0.920

GSE22210 0.905 0.895 0.900 0.923 0.932

GSE26389 0.890 0.894 0.898 0.915 0.919

Table 6. The average CI obtained by different methods in different real datasets.
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Dataset AFT -EN AFT -lasso AFT -MCP Semi-AFT SP-Semi-AFT

GSE3141 3.12 3.40 3.21 2.85 2.64

GSE10141 18.13 18.34 18.02 16.75 15.86

GSE22210 54.22 56.17 55.33 49.88 43.61

GSE26389 20.42 21.24 20.71 17.52 15.78

Table 7. The MSE obtained by different methods in real datasets.

Rank

Gene description

Cox -EN Cox -lasso Cox -MCP Semi- Cox SP-Semi- Cox

1 THSD1 GLMN VMO1 IGDCC4 IGDCC4

2 GIPC3 LOC653513 FABP1 HHATL HHATL

3 GLMN CRYGN HHATL FABP1 GLMN

4 HHATL LOC654433 ANGPTL7 VMO1 FABP1

5 CRYGN GIPC3 FABP1 CDSN SLAMF9*

6 LOC653513 THSD1 PXN NPTX2 BDNFOS*

7 PDSS2 PDSS2 MOV10L1 PRSS27 DNA2

8 PXN HHATL C22orf43 GLMN GTF2H5*

9 BTBD19 BTBD19 GLMN LOC255025 PXN

10 CTSZ PXN KCNMB4 PXN DNA2

Table 8. The selected genes obtained by different methods in GSE3141.

Rank

Gene description

Cox -EN Cox -lasso Cox -MCP Semi- Cox SP-Semi- Cox

1 NTRK3 NTRK3 EIF3S6 MMP1 SSBP1*

2 CCT6B MMP1 NSMAF NTRK3 NTRK3

3 MMP1 CCT6B FBLN2 SDS M6PRBP1

4 PSMD1 PSMD1 MAGEC1 M6PRBP1 RPL17

5 M6PRBP1 M6PRBP1 RPL17 CHD5 CADM1

6 ESRRG ESRRG PSMD1 TCN2 SDS

7 RPL17 EIF3S6 M6PRBP1 GTF3C1 FBLN2

8 ACSL3 F3 RPL29 ESRRG MMP1

9 MAGEC1 RPL17 CCT6B FBLN2 CUL2*

10 F3 DDEF2 NTRK3 RPL17 ESRRG

Table 9. The selected genes obtained by different methods in GSE10141.

Rank

Gene description

Cox -EN Cox -lasso Cox -MCP Semi- Cox SP-Semi- Cox

1 IFNGR1 IFNGR1 VBP1 VBP1 VBP1

2 VBP1 GNMT IFNGR1 CHI3L2 BCL2A1

3 SEMA3C VBP1 GNMT PTCH2 HIC2

4 GNMT SEMA3C TAL1 BCL2A1 IFNGR1

5 HOXA11 PWCR1 CTAG1B FGR GNMT

6 ABL2 MCAM FABP3 SEMA3C PTCH2

7 MCAM HOXA11 HIC2 GNMT AFP*

8 HS3ST2 ABL2 HS3ST2 IPF1 HS3ST2

9 PWCR1 HS3ST2 CCND1 HS3ST2 FABP3

10 IRAK3 IRAK3 PI3 IFNGR1 FGF1*

Table 10. The selected genes obtained by different methods in GSE22210.
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semi-supervised learning models with SPL (SP-Semi- AFT). The last row shows the average values of the MSE 
obtained by different methods. It is easy to find the Semi-AFT is better than the other three supervised learning 
AFT models, and SP-Semi-AFT model has the best performance among these five models, it means our model 
with SPL can predict the patients’ survival time accurately. Comparing the MSE obtained by three supervised 
learning AFT models, the results are much close.

Discussion
In order to further evaluate the performances of different methods, these methods were applied on four gene real 
datasets which were collected in Gene Expression Omnibus (GEO): GSE3141, GSE10141, GSE22210, GSE26389. 
GSE3141 has the information about the gene expression profile and the clinically relevant associations with dis-
ease outcomes in cancer28. Some data about the patients who after undergoing potentially curative treatments 
for hepatocellular carcinoma were recorded in GSE1014129. GSE22210 contains the gene expression profiling of 
the breast cancer patients30. GSE26389 is the dataset which contain the gene information about the gastric cancer 
patients31. Some details about these different cancer datasets are given in Table 4. The first column is the num-
ber of the genes, the second is the number of the samples, and then is the number of labeled data in the dataset 
(remaining data are the censored data), the last second column is the number of training data, and the last column 
is the number of the test labeled data we used in the experiments. The experiments results were the average values 
of the 100 experiments on the corresponding datasets.

The numbers of selected genes are shown in Table 5, it is easy to find no matter in which dataset, the 
Cox-MCP always selected the least disease related genes, the SP-Semi-Cox selected more gens than Cox-MCP 
but less than other three methods. Comparing the remaining three methods, the Semi-Cox selected fewer genes 
than the Cox-EN and Cox-lasso, the Cox-EN selected most genes in the real dataset experiments. Though the 
SP-Semi-Cox cannot select the least genes, its accuracy is the highest as shown in the simulation experiments; 
this means that researchers will be most likely to identify genes associated with the disease by using our model 
selected genes.

The average CI obtained by different methods in different real datasets is shown in Table 6. The CI obtained by 
Cox-lasso is always lowest; however the gap between the three supervised learning methods is small. Compared 
the CI obtained by three supervised learning methods, the CI obtained by the Cox models in semi-supervised 
learning models were higher. We also found the performance of SP-Semi-Cox is better than Semi-Cox, it means 
the self-paced learning can improve the semi-supervised learning model obviously.

Table 7 gives the MSE obtained by different methods in the real datasets. We get the same conclusion as in the 
simulation experiments: The SP-Semi-AFT has the best performance for predicting the patients’ survival time, 
and the MSE obtained by Semi-AFT without SPL is lower than the other three supervised learning AFT models. 
Additionally, the performance of AFT –EN is better than the AFT-MCP, and the AFT-lasso has the highest MSE 
in the real data experiments.

The 10 top-ranked disease related genes selected by different Cox models in different real datasets were shown 
in Tables 8–11, the names in bold were the selected genes by different methods, and the genes with star(*) means 
these gene were only selected by SP-Semi-Cox method in Cox-SP-AFT model.

It is very obviously that there are many genes which are selected by different methods at the same time in 
different datasets, such as PXN in GSE3141, NTRK3 in GSE10141, VBP1 in GSE2210 and KDM5A in GSE26389. 
PXN encodes a cytoskeletal protein involved in actin-membrane attachment at sites of cell adhesion to the extra-
cellular matrix, and it has been proved to be positively correlated with the clinic pathological factors of colorectal 
cancer32. NTRK3 encodes a member of the neurotrophic tyrosine receptor kinase (NTRK) family, the mutations 
in NTRK3 have been proved to be associated with breast carcinomas and other cancers in clinical33. VBP1 plays a 
role in the transport of the Von Hippel-Lindau protein from the perinuclear granules to the nucleus or cytoplasm, 
the mutation and loss of VBP1 may be related to the renal-cell carcinoma development34. The encoded protein of 
KDM5A plays a role in gene regulation through the histone code by specifically demethylation lysine 4 of histone 
H3, many researchers thought this gene may play a role in tumor progression35.

On the other hand, the Cox-SP-AFT model selected some unique genes compared other methods, BDNFOS 
in GSE314, CUL2 in GSE10141, AFP in GSE22210, EIF4H in GSE26389. BDNFOS is encoded as a member of 
the nerve growth factor family of proteins, and it plays a role in the regulation of the stress response which was 

Rank

Gene description

Cox -EN Cox -lasso Cox -MCP Semi- Cox SP-Semi- Cox

1 CREM CREM PMM2 CREM CREM

2 SNF8 SNF8 SNF8 PMM2 EIF4H*

3 KDM5A KDM5A TAX1BP1 MYD88 PMM2

4 IL18R1 IL18R1 RAD21 MCM7 HIST1H1A*

5 MEF2D PMM2 HAT1 PSMD4 SNF8

6 RAD21 MEF2D MRPS12 KDM5A MEF2D

7 VRK1 RAD21 VRK1 SNF8 PSMD4

8 MRPS12 VRK1 CREM HAT1 KDM5A

9 HAT1 FGF9 KDM5A SEMA3C HAT1

10 PMM2 HAT1 FGF9 RAD21 RAD21

Table 11. The selected genes obtained by different methods in GSE26389.
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said may be related to the lung cancer36. The mutational of CUL2 may play an important role in many human 
cancers37. The alpha-fetoprotein encoded by AFP is a major plasma protein which is often said to be associated 
with hepatoma or teratoma38. The encoded translation initiation factors of EIF4H can be used to stimulate the 
initiation of protein synthesis at the level of mRNA utilization, controlling this gene translational may make 
key contribution translational control in tumor promotion39. These genes which are mentioned in the literature 
demonstrated that our semi-supervised learning model can identify the real cancer related genes on the other 
hand.

Conclusion
In this paper we propose a new semi-supervised learning model by combining the Cox and SP-AFT models using 
cancer data of high dimension and low sample size. The Cox model is used to classify the cancer patients and 
then the SP-AFT model can robustly predict the censored data. The embedded self-paced learning regime helps 
our model learn from censored data in a purely self-paced manner. To conclude, our proposed Cox-SP-AFT 
model can utilize more censored samples and estimate their survival time with more accuracy. Therefore, the 
proposed semi-supervised system is supposed to achieve higher reliability and stability. Moreover, with the aid of 
SPL mechanism, this model will be an efficient and versatile tool to make great contributions in cancer survival 
analysis.

References
 1. Cloutier, M. & Wang, E. Dynamic modeling and analysis of cancer cellular network motifs. Integrative Biology 3, 724–732 (2011).
 2. McGee, S. R., Tibiche, C., Trifiro, M. & Wang, E. Network Analysis Reveals A Signaling Regulatory Loop in the PIK3CA-mutated 

Breast Cancer Predicting Survival Outcome. Genomics, proteomics & bioinformatics 15, 121–129 (2017).
 3. Gao, S. et al. Identification and construction of combinatory cancer hallmark–based gene signature sets to predict recurrence and 

chemotherapy benefit in stage II colorectal cancer. JAMA oncology 2, 37–45 (2016).
 4. Li, J. et al. Identification of high-quality cancer prognostic markers and metastasis network modules. Nature communications 1, 34 

(2010).
 5. Pardridge, W. M. Drug and gene targeting to the brain with molecular Trojan horses. Nature reviews. Drug discovery 1, 131 (2002).
 6. Goeman, J. J. L1 penalized estimation in the Cox proportional hazards model. Biometrical journal 52, 70–84 (2010).
 7. Wei, L. J. The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Statistics in 

medicine 11, 1871–1879 (1992).
 8. Wang, E. et al. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome 

sequencing data. Seminars in cancer biology 30, 4–12 (2015).
 9. Fu, C., Li, J. & Wang, E. Signaling network analysis of ubiquitin-mediated proteins suggests correlations between the 26S proteasome 

and tumor progression. Molecular BioSystems 5, 1809–1816 (2009).
 10. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society 67, 301–320 

(2005).
 11. Tibshirani, R. Regression shrinkage selection via the LASSO. Journal of the Royal Statistical Society. Series B (Methodological) 

267–288 (1996).
 12. Xu, Z. et al. L1/2 Regularization: A Thresholding Representation Theory and a Fast Solver. IEEE Transactions on Neural Networks & 

Learning Systems 23, 1013–1027 (2012).
 13. Zhang, C. H. Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics 38, 894–942 (2010).
 14. Fan, J. & Li, R. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. Journal of the American Statistical 

Association 96, 1348–1360 (2001).
 15. Wang, Y., Chen, S. & Zhou, Z. H. New Semi-Supervised Classification Method Based on Modified Cluster Assumption. IEEE 

Transactions on Neural Networks & Learning Systems 23, 689–702 (2012).
 16. Shi, M. & Zhang, B. Semi-supervised learning improves gene expression-based prediction of cancer recurrence. Bioinformatics 27, 

3017 (2011).
 17. Nguyen, T. P. & Ho, T. B. Detecting disease genes based on semi-supervised learning and protein-protein interaction networks. 

Artificial Intelligence in Medicine 54, 63 (2012).
 18. Liang, Y. et al. Cancer survival analysis using semi-supervised learning method based on Cox and AFT models with 

L1/2regularization. BMC Medical Genomics 9, 1–11 (2016).
 19. Lapointe, J. et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proceedings of the National 

Academy of Sciences of the United States of America 101, 811–816 (2004).
 20. Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of 

the National Academy of Sciences 98, 10869–10874 (2001).
 21. Kumar, M. P., Benjamin, P. & Daphne, K. Self-paced learning for latent variable models. Advances in Neural Information Processing 

Systems. 1189–1197 (2010).
 22. Bengio, Y. et al. Curriculum learning. Journal of the American Podiatry Association 60, 6 (2009).
 23. Jiang L. et al. Easy Samples First: Self-paced Reranking for Zero-Example Multimedia Search. Proceedings of the 22nd ACM 

international conference on Multimedia. ACM, 547–556 (2014).
 24. Tang K. et al. Shifting weights: Adapting object detectors from image to video. Advances in Neural Information Processing Systems. 

638–646 (2012).
 25. Kumar, M. P. et al. Learning specific-class segmentation from diverse data. Computer Vision (ICCV), 2011 IEEE International 

Conference on. IEEE, 1800–1807 (2011).
 26. Meng, D., Zhao, Q. & Jiang, L. What objective does self-paced learning indeed optimize? arXiv preprint arXiv 1511, 06049 (2015).
 27. Bender, R., Augustin, T. & Blettner, M. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine 

24, 1713–1723 (2005).
 28. Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006).
 29. Villanueva, A. et al. Combining clinical, pathology, and gene expression data to predict recurrence of hepatocellular carcinoma. 

Gastroenterology 140, 1501–1512 (2011).
 30. Holm, K. et al. Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer 

Research 12, R36 (2010).
 31. Buffart, T. E. et al. Losses of chromosome 5q and 14q are associated with favorable clinical outcome of patients with gastric cancer. 

The oncologist 17, 653–662 (2012).
 32. Du, C. et al. Paxillin is positively correlated with the clinicopathological factors of colorectal cancer, and knockdown of Paxillin 

improves sensitivity to cetuximab in colorectal cancer cells. Oncology reports 35, 409–417 (2016).
 33. Dokanehiifard, S. et al. A novel microRNA located in the TrkC gene regulates the Wnt signaling pathway and is differentially 

expressed in colorectal cancer specimens. Journal of Biological Chemistry 292, 7566–7577 (2017).



www.nature.com/scientificreports/

1 2SCIENTIFIC REPORTS | 7: 13053  | DOI:10.1038/s41598-017-13133-5

 34. Clifford, S. C. et al. Genomic organization and chromosomal localization of the human CUL2 gene and the role of von Hippel‐
Lindau tumor suppressor‐binding protein (CUL2 and VBP1) mutation and loss in renal‐cell carcinoma development. Genes, 
Chromosomes and Cancer 26, 20–28 (1999).

 35. Wang, S. et al. RBP2 induces epithelial-mesenchymal transition in non-small cell lung cancer. PloS one 8, e84735 (2013).
 36. Shen, M. J. et al. Long noncoding nature brain-derived neurotrophic factor antisense is associated with poor prognosis and 

functional regulation in non–small cell lung caner. Tumor Biology 39, 1010428317695948 (2017).
 37. Park, S. W. et al. Mutational analysis of hypoxia‐related genes HIF1α and CUL2 in common human cancers. Apmis 117, 880–885 

(2009).
 38. Matsumoto, K. et al. Clinic pathological features of alpha-fetoprotein producing early gastric cancer with enteroblastic 

differentiation. World Journal of Gastroenterology 22, 8203 (2016).
 39. Vaysse, C. et al. Key contribution of eIF4H-mediated translational control in tumor promotion. Oncotarget 6, 39924 (2015).

Acknowledgements
This work is supported by the Macau Science and Technology Development Funds (Grand No. 003/2016/AFJ) from  
the Macau Special Administrative Region of the People’s Republic of China,  the National Grand Fundamental Research  
973 Program of China under Grant No. 2013CB329404 and the China NSFC projects under contract 61373114, 
61661166011, 11690011, 61721002.

Author Contributions
Y.L., H.C. and L.Y.X. proposed the semi-supervised learning model designed the code and wrote the manuscript, 
D.Y.M and Z.N.L. designed the algorithm and provided the real data. All authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	A new semi-supervised learning model combined with Cox and SP-AFT models in cancer survival analysis
	 Few available data versus high dimensional covariates dilemma
	 Similar phenotype disease data versus different genotype cancer dilemma
	Method
	Cox proportional hazard model. 
	Accelerated Failure Time (AFT) model. 
	Self-Paced Learning. 
	SP-AFT Model. 
	Initialize. 
	Update β(t). 
	Update . 
	Update . 

	Cox-SP-AFT model. 

	Results
	Discussion
	Conclusion
	Acknowledgements
	Figure 1 The workflow of our proposed semi-supervised learning model with SPL.
	Figure 2 The gene selection accuracy obtained by different methods.
	Figure 3 The survival curve obtained by (a) Cox-EN (b) Semi-lasso (c) Cox-MCP (d) Semi-Cox (e) SP-Semi-Cox.
	Figure 4 The CI obtained by different methods in 10 simulation datasets.
	Table 1 The number of the selected correct genes obtained by different methods.
	Table 2 The number of the total selected genes obtained by different methods.
	Table 3 The MSE obtained by different methods in different simulation dataset.
	Table 4 Details of the real cancer datasets.
	Table 5 The number of selected genes obtained by different methods in real datasets.
	Table 6 The average CI obtained by different methods in different real datasets.
	Table 7 The MSE obtained by different methods in real datasets.
	Table 8 The selected genes obtained by different methods in GSE3141.
	Table 9 The selected genes obtained by different methods in GSE10141.
	Table 10 The selected genes obtained by different methods in GSE22210.
	Table 11 The selected genes obtained by different methods in GSE26389.




