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Enhancing robustness of 
interdependent network under 
recovery based on a two-layer-
protection strategy
Maoguo Gong, Yixing Wang, Shanfeng Wang & Wenfeng Liu

The robustness of coupled networks has attracted great attention recently, because the spread of 
failures from one network to its coupled network makes the coupled networks more vulnerable. Most 
existing achievements mainly focused on the integrity properties of coupled networks. However, 
failures also exist when networks are being reconstructed. Moreover, existing node-protection methods 
which aim to enhance the robustness of coupled networks only protect the influential nodes in one 
layer. In this paper, firstly, a two-layer-protection strategy is proposed to enhance the robustness of 
coupled networks under their reconstruction. Secondly, we adopt five strategies based on different 
centralities to select influential nodes, and propose a two-layer vision for each of them. Lastly, 
experiments on three different coupled networks show that by applying the two-layer-protection 
strategy, the robustness of coupled networks can be enhanced more efficiently compared with other 
methods which only protect nodes in one layer.

Recently, the property, function, and their relations of complex networks have attracted much attention. Complex 
networks are used to represent the real systems in the form of graphs which consist of nodes and edges1. Nodes 
are used to represent the entities of real systems, and edges represent information interactions or other rela-
tions among entities. Studies on the nature of complex networks have received abundant achievements2–5, such 
as acquaintance networks (in the field of social networks)6, neural networks (in the field of biology)5, and the 
Worldwide Web (in the field of technology)7. Nowadays, with the significant progress made by people in the fields 
of transportation, electronic, and computer science, networks have become more and more complex8, which 
means that there is a high risk when complex networks face attacks or failures. The above phenomenon explains 
why the robustness of complex networks9,10 has become the research focus.

The robustness of networks measures the remaining structural integrity of networks when unpredictable 
changes such as attacks or failures occur on them. To be more detailed, the robustness of networks is estimated in 
the first time by considering the critical component of networks when they are damaged completely9. But in the 
real world, the situation that a network is completely destroyed is relatively rare, and the more common situation 
is that a network is partly destroyed but will still have some functional components. Schneider’s model11 has 
become the mainstream criterion of the network robustness. The measure Rn considers the sum of the remaining 
fraction of the largest connected component in every iteration when nodes are gradually removed. Then, the 
criterion can be adopted in every possible condition of networks facing failures or targeted attacks. Rn can be 
computed as = ∑ =R S p( )n N p

N1
1 , where p is the number of removed nodes, s(p) represents the fraction of the larg-

est connected component when p nodes fail. The N1/  factor makes it convenient to compare the robustness of 
networks with different sizes.

In recent years, networks have become more dependent on others. In the real world, many systems have 
their coupled networks. Different infrastructures are coupled with others, even coupled together. For example, 
power stations are coupled with the water supply system, transportation, and the Internet. The functionality of 
the Internet not only relies on itself, but also on the power system. The Internet system cannot work normally 
without power, which means if power stations are broken down, the water supply, transportation system, etc., 
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would also face a substantial risk of cascade failures at the same time. The electrical blackout in Italy in 2003 is a 
real-world instance to study the process of the cascade failure: firstly, damages on power stations caused nodes 
failure in the Internet communication network, which led to a breakdown of power stations in return. In the end, 
the entire system disintegrated12–14. Study of this coupling property can help people to learn more about how the 
modern system works. A recent research proposed a framework to study the process of cascade failures of coupled 
networks14. It shows that due to the coupling property, networks become extremely fragile facing random failures, 
and in this situation, even a small failure in one network would trigger a cascade breakup in the whole system. 
For instance, assuming a system coupled by network A and B, failures of some nodes in network A would lead to 

Figure 1. Illustration of the remaining fraction of nodes in each iteration f p( ( ))rc . When fraction p of nodes are 
recovered. Curves of different color represent different protect strategies, and dashed lines represent the method 
of single-layer protection respect to a specific strategy while solid lines are their two-layer version. (a) 
Correlation between f p( )rc  and recovered nodes p on ER-ER system. (b) Correlation between f p( )rc  and 
recovered nodes p on SF-ER system. (c) Correlation between f p( )rc  and recovered nodes p on Power-ER system.

No Degree Local Betweenness Comm Random

ER-ER

single-layer 0.3744 0.3997 0.3911 0.3988 0.3928 0.3918

two-layer 0.3744 0.4245 0.4147 0.421 0.4143 0.412

SF-ER

single-layer 0.3485 0.3804 0.3837 0.3842 0.3725 0.3618

two-layer 0.3485 0.4652 0.4164 0.4614 0.4425 0.389

SF-Power

single-layer 0.403 0.426 0.4267 0.4397 0.4172 0.42

two-layer 0.403 0.4478 0.4273 0.4626 0.4341 0.4388

Table 1. Comparisons of Rrc (λ = 0.5) between existing methods and two-layer protection based on five 
strategies.
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damage of nodes’ functionality in network B, and the damage would spread to A in return15,16. This circulatory 
failure may cause a complete crash of the entire coupled networks. In the end, only the largest component (largest 
connected cluster) of the survived nodes are still in function12,13.

Recently, more and more attentions have been paid on the robustness of coupled networks. Many novel models 
have been proposed to improve the robustness of coupled networks when the functionalities of them are damaged. 
In Schneider’s research, by selecting autonomous nodes, the robustness of coupled networks can be tremendously 
enhanced17,18. The autonomous nodes do not lose their functionality when their coupled nodes suffer from dam-
ages. Because of the partial-independent property, the degree of coupling decreases. And in the same study, the 
robustness of coupling networks is greatly increased by setting 10% autonomous nodes. Compared with single-layer 
networks, coupled networks are extremely vulnerable to failures15. Huang et al. showed that only protecting the 
high-degree nodes cannot efficiently improve the robustness of coupled networks19. Huang developed a mathemat-
ical framework to solve targeted-attack problems by mapping them to random-attack problems19. Besides, there is 
another model of cascade failures in coupled networks developed by Zio20. In their works, two parameters are used 
to simulate the cascading failure process: Lcr indicates the critical load, and S represents the average cascade size. 
They can together identify cascade-safe regions for interdependent networks and with which the robustness of the 
system is enhanced. According to ref.21, by adjusting dynamically the capacity of overload nodes, without changing 
the price of the coupling system, they proposed a strategy to protect the overload nodes from failures. There are also 
some protection-based strategies which can improve the robustness of coupling networks by protecting nodes, such 
as Degree centrality22, Betweenness centrality22, LeaderRank centrality23, Local centrality24.

As for applications in the real world, what should be done first to rescue the functionality of a damaged sys-
tem is to gradually reconstruct the damaged entities25. Reconstructing a damaged system can be regarded as an 
inverse procedure of attacking, and it can be modeled as a process in which the damaged nodes are gradually 
revived. In the recovery processes, nodes in a network can be triggered to work normally if their coupled nodes 
in another network have been revived. The cascading failure would also occur in the recovery procedure and 
damage the system as well as in the attacking situation. When it happens, the system should be revived as soon 
as possible before things become any worse. Reactive all nodes in the same time would be a solution to recover 
the system. But in real world, it would cost a lot to simultaneously fix all the nodes. In this paper, we adopt a 
targeted-recover strategy which recover the high-degree nodes gradually25–27. Ma et al. proposed a model to 
enhance the robustness of coupled networks under their recoveries28. They found that by protecting influential 
nodes, the robustness of coupled networks can be greatly improved under their target recoveries. In their work, 
they compared the robustness by protecting nodes based on different strategies. Concretely, by protecting influ-
ential nodes selected by different standard (Random, Degree, Betweenness, LeaderRank, Local, PageRank29), the 
robustness of coupled network can be greatly improved.

Methods which are mentioned above have been proved to be efficient ways to enhance the coupling systems. 
But they only focus on protecting nodes in one layer (one network in the coupled system) of a coupled system 
under attacks. It turns out that in the real world, one network is as important as its coupled network because they 

Figure 2. Illustration of the remaining fraction of nodes in each iteration f p( ( ))rc . When fraction p of nodes are 
recovered tested on the ER-SF network. Curves of different color represent different coupling rate. In order to 
show the difference clearly, nodes are coupled under a same role when they are recovered and for the same 
reason only curves under the two-layer-protection are showed in the illustration.

coupling rate No 90% 70% 50% 30% 10%

two-layer-strategy 0.2537 0.3457 0.3859 0.4157 0.4401 0.4655

Table 2. Comparisons of λ = .R ( 0 5)rc  between SF-ER networks with different coupling rates under the two-
layer Betweenness strategy.
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are at same risks of failure and the system cannot operate if one of them lose its functionality12,15,30. Besides, the 
status of a node in one network cannot be used to measure how important it is in the whole coupled networks. 
There are “global” nodes which are easily to spread the damage to their neighbors or to their coupled nodes. For 
example, when reconstructing the Power-Internet system, there are nodes in Power network which are vulnera-
ble and in the meantime their coupled nodes play an important role in the Internet network. When these nodes 
are shut down because of failures, it would damage the Internet networks. Based on the above discussion, it is 
reasonable to take the whole coupled system into consideration instead of only one network of the system, and 
to protect the nodes that are influential for the whole coupled networks. A way is to temporarily fuse the two 
coupled networks into one.

In this paper, we propose a two-layer-protection (TLP) method to enhance the robustness of coupled net-
works under recoveries, in which we protect influential nodes of the entire two-layer coupled networks instead of 
those only in one of the network in the coupled system. Firstly, we generate a pair of totally damaged coupled net-
works, and study the process of cascade failure under recoveries. Secondly, for five different strategies, we propose 
a technique based on a two-layer strategy to select influential nodes in coupled networks respectively. Finally, 
experiments on artificial networks and real-world networks shows the performance of the proposed method.

Results
The performance of proposed strategy in enhancing the robustness of networks under recoveries is given. And 
the model is tested on the following three damaged coupling networks. Nodes in the tested networks are coupled 
with each using the model in refs14,15. Each node in one network is randomly coupled with the one in the other 
network and in this way, a coupling system becomes a pair of networks.

ER-ER system. Networks that have the random-connected property have been widely studied. These “ran-
dom connecting” networks represent the topology of a lot of traditional networks and are often modeled as 
Erdő-Rényi(ER) random networks31. In ER random network, two nodes are connected with probability p, and the 
average degree k is calculated as p * N, where N is the total number of nodes. The proposed strategy are tested on 
a completely damaged coupling ER-ER system (coupled by a totally damaged ER network with N = 5000 and 

=K 2 and an ER network with N = 5000 and =K 2) to simulate the traditional graphs.

SF-ER system. Modern systems tend to have a scale-free (SF) property, such as social networks (including 
collaboration networks), interbank payment networks32,33, Semantic networks34. A scale-free network is a net-
work whose degree follows a power law distribution. That is, the fraction P(k) of nodes in the network having k 
connections to other nodes goes for large values of k as γ−~P K k( ) , where γ is an exponential parameter whose 
value is typically in the range γ< <2 3. Not all the systems are coupled by networks with same property in the 
real world, so it is important to analyze composite coupled networks. The proposed strategy is tested on a com-
pletely damaged coupling SF-ER system(coupled by a totally damaged ER network with N = 5000 and =K 2 and 
a SF network with N = 5000 and γ = 2.4.

SF-Power system. More and more modern networks have a scale free property and in the meantime, they 
also have a modular structure with which some nodes link densely with each other but connect sparsely with 
other nodes of the network. A U.S. Power Grid network (power) with N = 4941 nodes and M = 6954 edges have 
both scale-free property and modular structure. In this paper, the completely damaged power network is coupled 
with a SF network with N = 4919 and γ = 2.2 to simulate a real-world coupling system.

In the experiments, we compute the Rrc and Rrl of three different kinds of coupled networks, which are listed 
above. The reason why we choose Rrc and Rrl as criterions is that traditional measurement like Rn only consider 
half of a coupled system and cannot show how well a two-layer strategy performs. Rrc and Rrl are computed as 
follows:

Rrc. Based on the model of Ma28, in a system coupled by networks A and B, the cascade failures under recover-
ies when a fraction of nodes p in network A are recovered can be modeled as equations (1)

No Degree Local Betweenness Comm Random

ER-ER

single-layer 0.0394 0.0489 0.0507 0.055 0.0435 0.0445

two-layer 0.0394 0.0531 0.0555 0.0497 0.0434 0.0439

ER-SF

single-layer 0.0418 0.0509 0.048 0.0584 0.0463 0.0469

two-layer 0.0418 0.0559 0.0542 0.051 0.0456 0.0458

SF-Power

single-layer 0.0217 0.0259 0.0251 0.0383 0.024 0.0235

two-layer 0.0217 0.0305 0.0278 0.0264 0.0231 0.0229

Table 3. Comparisons of Rrl between existing methods and two-layer protection based on five strategies.
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For a system coupled by network A and B, the integrity depends on not only the function nodes in network 
A, but also the fraction of remaining nodes of network B. In Ma’s model28, an index Rrc is proposed to judge the 
recovery robustness with the functionality integrity of both networks are considered. Equation (3) shows the 
computation of Rrc:
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Figure 3. Illustration of the average inverse geodesic length in each iteration f p( ( ))rc . When fraction p of nodes 
are recovered. Curves of different color represent different protect strategies, and dashed lines represent the 
method of single-layer protection respect to a specific strategy while solid lines are their two-layer version. (a) 
Correlation between f p( )rl  and recovered nodes p on ER-ER system. (b) Correlation between f p( )rl  and 
recovered nodes p on SF-ER system. (c) Correlation between f p( )rl  and recovered nodes p on Power-ER system.



www.nature.com/scientificreports/

6ScIEntIfIc REPORTS | 7: 12753  | DOI:10.1038/s41598-017-13063-2

where f p( )rc  represents the integrity of the whole system when the fraction of nodes p in network A have been 
recovered. Θ p( )r  and ∆ p( )r  can be calculated by equation (1). λ is a mixing parameter ranging from 0 to 1 which 
refer the situation that robustness is determined only by network A(B).

Results of Rrc are given in Table 1 (as the column ‘No’): among the original systems, the ER-ER system performs 
best against cascading failures and shows a highest Rrc under recoveries in the three systems. The reason that the orig-
inal ER-ER system is robust is that its nodes are connected randomly, while SF-ER and power-SF are brittle because 
of the scale-free property. Scale-free property of network means that some nodes of it are linked densely while some 
are connected sparsely. When a node in a closely connected component failed, a severe cascading failure will occur.

Then, five strategies are adopted to protect 5% influential nodes, and compare the performance between them 
and the proposed two-layer vision of them under their recoveries. The corresponding results are given in Table 1 
and as it shows, performances are greatly improved since a small fraction of nodes (5%) are under protection, 
especially for the Betweenness protection and Degree protection strategies. To be more detailed, for the tested 
ER-ER coupled networks, under the Betweenness strategy, the Rrc can achieve 0.3988 from the original 0.3744, 
whose improvement reach 6.52%, 10.24% for ER-SR system (from 0.3485 to 0.3842), and 9.11% for SF-Power 
system (from 0.4030 to 0.4397). But with a two-layer Degree strategy, improvement can reach 12.45% for the 
ER-ER system (from 0.3744 to 0.4210), 32.40% for the SF-ER system (from 0.3485 to 0.4614), and 14.80% for the 
SF-Power system (from 0.4030 to 0.4626). Comparing to single strategies, the proposed two-layer method can 
achieve considerable improvements which are 5.57% for ER-ER system, 20.09% for SF-ER system, and 5.68% 
for the SF-Power system. This is because influential nodes which are selected by the proposed strategy are more 
“global” than those chosen by the traditional ways since cascading failures occur on both sides of a system. And 
in this way, every node can become a “global” node and the status of a “global” node can be used to measure how 
important it is in the entire coupled networks. It is notable that the improvement on the ER-ER system is much 
less than the SF-ER system. This is because nodes in ER-ER networks are connected randomly, which makes every 

Figure 4. Illustration of the remaining fraction of nodes in each iteration f p( ( ))rc  when λ = 0.3. (a) Correlation 
between f p( )rc  and recovered nodes p on ER-ER system. (b) Correlation between f p( )rc  and recovered nodes p 
on SF-ER system. (c) Correlation between f p( )rc  and recovered nodes p on Power-ER system.
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node in the system has the same property. As Table 1 shows, the improvement on the SF-Power is also less than on 
the SF-ER system. This is because the SF network (in the paper LFR network is used as an example) and the Power 
network are more likely to have their own features. Performance on SF-ER and SF-Power system can be greatly 
improved because in the two-layer strategy, nodes are selected to be protected according to their values in the 
whole coupled system instead of only in on network. From Table 1 we can conclude that, the two-layer method 
can improve the robustness of a coupled system more efficiently and have a 10.45% improvement on average 
compared to the single layer protection.

In order to analyze the variation of Rrc and compare the performance between single-layer protection and 
two-layer protection in the recover process on the three types of systems, the variations of functional fraction of 
nodes in the largest connected component f p( )rc  are analyzed when a fraction of p nodes are revived. The simu-
lations of Rrc are shown in Fig. 1. The illustration shows that the two-layer protection can transform coupled 
networks from a first order phase transition into a second order phase transition. But there are two exceptions: 
nodes in ER-ER network connect randomly, which means methods based on modular structure such as two-layer 
Comm cannot performance well on it, on the SF-Power network, T-Comm doesn’t perform well because the 
SF(in this paper LFR are used as an example) network and Power network have their own structures which would 
affect the two-layer strategies. It is notable that with the two-layer protection, the ER-ER networks, the SF-ER 
networks and the SF-Power networks begin to recover their functionalities when around 30%, 20%, and 25% 
nodes are recovered respectively, comparing to 36%, 30% and 38% with single-layer protection.

It is reasonable to conclude that, under every centrality strategy, networks with two-layer protection always 
begin to recover their functionalities before those with single-layer protection. The results of the two-layer 
betweenness strategy on the ER-SF networks with different coupling rates are shown in Fig. 2, and the values of 
Rrc are shown in Table 2. Figure 2 shows that a network which is strongly coupled with another network is more 
fragile to failures. This is because failures are easy to spread from one network to another in a strongly coupled 
system. To highlight the difference between networks with different coupling rates, networks are coupled under 
a same role in the recover process. The illustration shows that networks with lower coupling rate always begin to 

Figure 5. Illustration of the remaining fraction of nodes in each iteration f p( ( ))rc  when λ = 0.8. (a) Correlation 
between f p( )rc  and recovered nodes p on ER-ER system. (b) Correlation between f p( )rc  and recovered nodes p 
on SF-ER system. (c) Correlation between f p( )rc  and recovered nodes p on Power-ER system.
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recover themselves before those with high coupling rate. Besides, from Table 2 we know that, networks with lower 
coupling rate are more robust than those with higher coupling rate.

Rrl. Average inverse geodesic length35 is widely used to analyze the robustness of networks, which can be com-
puted as

∑∑=
= =N d

L 1 1

(4)i

N

j

N

ij
2

1 1

where N is the size of the network, dij is the geodesic length which represents the length of the shortest path 
between node i and node j. We track the product of average inverse geodesic length of network A and network B, 
which is computed as:
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where LA(p), LB(p) is the average inverse geodesic length computed by equation (4), and p is the fraction of recov-
ered nodes. It is suitable to measure the condition of coupled networks by f p( )r l  because it takes the robustness of 
the whole coupled network into consideration.

The results of Rr l on three kinds of coupled networks are shown in Table 3 and as it shows, the robustness of the 
tested coupled networks are enhanced. For example, under the two-layer betweenness strategy, the Rr l can reach 

Figure 6. Illustration of the average inverse geodesic length in each iteration f p( ( ))rc  when λ = 0.3. (a) 
Correlation between f p( )rc  and recovered nodes p on ER-ER system. (b) Correlation between f p( )rc  and 
recovered nodes p on SF-ER system. (c) Correlation between f p( )rl  and recovered nodes p on Power-ER system.
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0.0584 from 0.0418 on the ER-SF network, comparing to 0.051 under the single method. Performances of the 
two-layer degree and the two-layer local strategies are not commendable because these two centralities are not 
focused on the flow of information in networks. Simulations of Rr l are shown in Fig. 3. In the diagram the variation 
of average inverse geodesic length ( f p( )r l ) is tracked so that we can see how Rr l changes in the recovery process.

To analyze how isλ affects the performance of the proposed method, the variation of three kinds of coupled 
networks with different λ are tracked. Results are shown in Figs 4–7. From the diagrams we can conclude that, 
when λ varies, the proposed two-layer method can still recover a coupled network efficiently. Changes of λ only 
affects the absolute value of f p( )r l  and f p( )rc , and the trend of the variation stays the same.

Discussion
To sum up, we proposed a two-layer-protection strategy to protect influential nodes in coupled networks based on 
five different strategies (both global and local) and keep them functional from cascade failures under their recov-
eries. When global structures are considered, we use the two-layer vision of Degree, Betweenness and Random 
centralities to select influential nodes. As for local structures, the Comm centrality is introduced into coupled net-
works to protect nodes. In order to carefully analyze the variations on the fraction of largest connected component 
and the average inverse geodesic length, the proposed strategy is carried out on the recovery process. Experimental 
results have shown that, by protecting some influential nodes, the robustness of coupled systems can be enhanced, 
and the improvement can be more significant under the two-layer method. We also find that, comparing to the 
single method, the robustness can be greatly improved even for random-connected networks like Erdő-Rényi 
using the two-layer protection. It is notable that while here the Degree, Betweenness, Local, Comm and Random 
strategies are used as metrics for two-layer protection, it is feasible that other criterion will also work.

Methods
Nodes recovery. As well known, coupled networks are more fragile than single networks when they suffered 
failures. They are also vulnerable when being recovered. In the real world, coupled networks’ break-down always 
starts from only one of its networks and then the failure spreads to its coupled network30. For example, damages 
on power station would lead to disconnection of communication network, which will cause a cascade failure in the 

Figure 7. Illustration of the average inverse geodesic length in each iteration f p( ( ))rc  when λ = 0.8. (a) 
Correlation between f p( )rl  and recovered nodes p on ER-ER system. (b) Correlation between f p( )rl  and 
recovered nodes p on SF-ER system. (c) Correlation between f p( )rl  and recovered nodes p on Power-ER system.
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coupled networks in turn14. As in the recovery process, for example, a system coupled by network A and network B 
could walk through the following process. Firstly, a fraction p of nodes in network A(B) are revived, which will trig-
ger the recovery of their coupled nodes in network B(A). The newly recovered nodes in network A(B) that are not in 
the largest cluster would lose their functionality, and this failure in network A(B) will cause the failure of its coupled 
nodes in network B(A). This failing process recursively occurs until there are no more failures in both networks.

Protect influential nodes. Based on the network knowledge, we know that by protecting influential nodes, 
the robustness of complex networks can be greatly enhanced15,17,36. Earlier studies have shown some effective 
strategies to choose influential nodes.

Random Cr(i). To obtain the influence of nodes, in this strategy, the random centrality of node i is computed 
as:

=C i random( ) () (6)r

where random() is a function to generate a float number between 0 and 1.

Degree Cd(i). In the degree centrality, nodes with high degree are regarded as influential. The centrality is 
computed as22:

∑=
=

C i d a( )
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ij ij
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where dij is the connection between node i and node j in the adjacent matrix, in which =a 1ij  represents that 
there is a connection between node i and j, otherwise =a 0ij .

Betweenness Cb(i). In this strategy, influence of nodes are measured by the shortest path which passes 
through the node i. The betweenness centrality is calculated as22:
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where δjq represents the number of shortest paths from node j to node q, and δ i( )jq  denotes the number of shortest 
paths walking through node i from node j to q.

Local Cl(i). In local centrality, the standard of measuring the influence of nodes is determined by its direct 
neighbor and its next nearest neighbor. The Local centrality can be computed as24:

∑ ∑=
∈Φ ∈Φ

C i m u( ) ( )
(9)

l
V Vj i u j

where m(u) is the number of nodes whose shortest paths from them to node u are less than 3, and Φi(Φj) is the 
neighbor of node i(j).

Figure 8. Illustration of proposed protecting model on a small coupled network. (a) Illustration of T-degree 
model, in which nodes are listed in descending order of their degree. (b) Illustration of T-betweenness model. 
In the betweenness centrality model, when the protection is limited to one layer, the node i (marked in red) only 
controls the information flow in link 1, 2. In the proposed two layer model, node i controls the information flow 
in link 1, 3 additionally.
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Comm Cc(i). In order to make sure the proposed two-layer protection is also efficient on networks with modular 
structure, we adopt Comm strategy in the experiment. The two-layer version of Comm centrality will be discussed 
in next section as a contrast. This measure takes into account of both intra and inter-community links of a node37. 
When selecting influential nodes, the “hub” and the “bridge” are considered. The “hub” represents a kind of nodes 
which has many connections with the other nodes in its own community. And the “bridge” is the kind of nodes 
which connect their community to other communities in the network. The Comm centrality is computed as37:
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where M is an integer number, in order to make sure that both in-degree and out-degree are in the same range. 
The in-degree ki

in represents the number of connections connecting it to the nodes of the same community. And 
the out-degree is equal to the number of edges connecting to other nodes which are outside the community. The 
in-degree and out-degree are calculated as

∑ ∑= =
∈ ∈

k A i j k A i j( , ), ( , )
(11)

i
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j C
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j C

In the equation (10), µcom represents the fraction of the out-degree to the total connection in community C. The 
value of µcom can be calculated as

µ =
∑ ∈ k k

size C
/

( ) (12)com
i C i

out
i

Two-layer protection. Coupled networks can be modeled as G = (A, B, LAB), where LAB represents the cou-
pling links between network A and B. In our strategy, each node in network A is randomly coupled with a node 
of network B. Nodes in network B can be triggered to operate normally if their coupled nodes in network A have 
been recovered. And nodes are revived gradually with a targeted recover method. Earlier studies have shown that 
by decoupling nodes15, generating autonomous nodes17, or by protecting influential nodes22,23 can greatly enhance 
the robustness of coupled networks. But in the real world, for example, in epidemiology, diseases can spread 
within any populations but can also be transferred other populations, even to different species. In the process of 
the transmission of disease, one population and another population are both infectious and have equal probability 
to infect others38. Based on the above knowledge, it is reasonable to protect nodes which are important to both 
layers in the coupled networks rather than only one of them. The proposed strategy consists the following parts: 
in the beginning, the coupled system G = (A, B, LAB) are expended to G = (C(LA, LB, LAB)), where LA represents 
the edges of network A and LB denotes the edges in network B while LAB represents the coupling links between 
network A and B. The initial networks A and B consists N nodes respectively. And the combined network C 
consists of 2 N nodes. Edges of C are composed of LA, LB and LAB, where LAB now are links in network C instead 

Figure 9. Illustration of proposed model on a small coupled network. (a) The community distribution in 
network C. Community C C1 2 are marked in green and blue respectively. (b) Nodes selected by the TLCP model 
are highlighted in red.
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of the coupling links between the two networks. Then a fraction of nodes is selected to be protected in the order 
of a specific strategy. Based on the phenomena, we propose a two-layer-protection technique for five strategies 
respectively. With this strategy, the robustness of coupling networks can be greatly enhanced. Strategies used to 
protect influential nodes are given as follows.

T-degree(two-layer-degree). In the T-degree strategy, nodes are selected to be influential in the descending 
order of the degree centrality. For example, a toy system coupled by network A and B are given in Fig. 8(a). In the 
small system, 2 nodes are under protection. In the traditional way, node 1 and 2 in network A are chosen so that 
they and their coupled nodes can operate normally when failure occurs. By doing so, there is a node with degree 
5 and a node with degree 4 under protection in the system. Experiment shows that, with the fraction of protected 
nodes remaining unchanged, protecting node 1 in network A and node 1 in network B lead to a better performance.

T-betweenness (two-layer-betweenness). Firstly the coupled system G = (A, B, LAB) are extended to 
G = (C, (LA, LB, LAB)), where LA represents the edges of network A and LB denotes the edges in network B while LAB 
represents the coupling links between network A and B. The initial networks A(B) consists N nodes respectively. 
And the combined network C consists of 2 N nodes. Edges of C are composed of LA, LB and LAB, where LAB now 
are normal links in network C instead of the coupling links between the two networks. Secondly we search the 
whole network C and select a fraction of nodes which have the highest betweenness and protect them from dam-
ages. Nodes in network C are ranked in a descend order according to the betweenness centrality, which can be 
calculated as equation (8). By combining network A and B into one, the betweenness of one node i now represents 
the number of the shortest paths in network C that pass through i, which means the paths arch across the system 
form network A to B are also considered. These crossing paths play important roles in information delivery and 
failure spreading, but they are ignored in the traditional studies. Illustration is given in Fig. 8(b).

T-comm (two-layer-comm). It is good to explain the strategy by giving an example. When some recovered 
nodes of network A in community C1 lose their functions, nodes which are directly connected with them would 
fail. Then this failure would affect other nodes in community C1, which would cause a complete fragmentation to 
the whole community C1. Nodes in network B which are coupled with the nodes in community C1 would fail, and 
in this situation, it might lead to a further fragmentation in network B. It is good to explain the proposed strategy 
by giving an example. In the following illustration, influence nodes are selected in the order of their comm cen-
tralities (equation (10)). In order to obtain the community property, a community detection process is needed. 
But detecting communities in network A and B respectively is not enough because nodes in a small community 
in layer 1 could be coupled with nodes in a large community in layer 2. In this case, the communities in network 
A(B) cannot represent the structure of the system. We extend the work in refs37,39 by protecting influential nodes 
selected based on the T-comm centrality, the performance of coupled networks in the failing procedure is 
improved. To detect communities in both layers and regard them as a single network, firstly we expend the system 
G = (A, B, LAB) to G = (C,(LA, LB, LAB)). Then a community detection procedure is implemented on network C. 
Here we use the BGLL model39. There are two steps in this model. (1) Every nodes in network C is assigned a 
community, and each node i is assigned to the community of its neighbor j, if the gain of modularity ∆Q is max-
imum in this process. This step stops when a local maximum of the modularity is attained. (2) Regard each com-
munity which is obtained in step (1) as a “node” and repeat the procedure until the modularity stops changing. 
The gain of modularity ∆Q by moving an isolated node i into community C can be computed as
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where Σin is the sum of the weights of the links that are inside community C, Σtot represents the sum of the 
weights of the links which link to nodes in community C, ki is the degree of node i, ki,in is the sum of the weights 
of links between i and nodes in community C, and m represents the sum of weights of links in the entire network. 
In our experiment, all weights are set to be 1 because the networks we use are all undirected. Then the Comm 
centrality of the combined network C is calculated. Then a small fraction of nodes which have the highest Comm 
centrality are protected. Therefore, this small fraction of nodes can operate normally when they or their coupled 
nodes suffer from damages. An instance of community distribution is given in Fig. 9(a). The selected nodes to be 
protected are shown in Fig. 9(b). To explain easily, five nodes are protected intuitively in the illustration.

T-local (two-layer-local). In this strategy, same procedure is implemented as the above strategies to gener-
ate network C. Then we calculate the local centrality as equation (9). Note that in equation (9), neighbors of node 
i now contains not only the nodes directly linked with it but also the node coupled with it in another network. 
By doing so, the nearest and next nearest nodes which play crucial roles when measuring the influence of node i 
will be distributed in both network A and B, instead of only in one of them. In this way, nodes that make a major 
contribution to the cascade failure can be captured.
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